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Abstract

In this paper we investigate the existence and uniqueness of solutions for the initial
value problems (IVP for short), for some classes of functional hyperbolic differential
equations with finite and infinite delay by using some fixed point theorems.
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1 Introduction

The Darboux problem for partial hyperbolic differential equations was studied in the papers
of Abbas et al. [1, 6], Vityuk [48], Vityuk and Mykhailenko [49, 50] and by other authors.
We can find numerous applications in rheology, control, porous media, viscoelasticity, elec-
trochemistry, electromagnetism, etc. [24, 27, 36, 39, 43, 47]. There has been a significant
development in ordinary and partial fractional differential equations in recent years; see the
monographs of Abbas et al. [6], Kilbas et al. [37], Miller and Ross [42], Samko et al. [45],
the papers of Abbas et al. [1, 4, 5, 7, 8, 9, 10, 11, 12] and the references therein.
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In the present paper, we investigate the existence and uniqueness of solutions of some
classes of fractional order implicit hyperbolic differential equations with delay. First, we
consider the following fractional order IVP for the system

D
r
θu(x,y) = f (x,y,u(x,y),D

r
θu(x,y)); if (x,y) ∈ J := [0,a]× [0,b], (1.1)

u(x,y) = φ(x,y); if (x,y) ∈ J̃ := [−α,a]× [−β,b]\(0,a]× (0,b], (1.2)u(x,0) = ϕ(x); x ∈ [0,a],
u(0,y) = ψ(y); y ∈ [0,b],

(1.3)

where a,b,α,β > 0, θ = (0,0), D
r
θ is the mixed regularized derivative of order r = (r1,r2) ∈

(0,1]× (0,1], f : J×C×Rn→ Rn is a given function, φ ∈C(J̃), ϕ : [0,a]→ Rn, ψ : [0,b]→
Rn are given absolutely continuous functions with ϕ(x) = φ(x,0), ψ(y) = φ(0,y) for each
x ∈ [0,a], y ∈ [0,b], and C := C([−α,0]× [−β,0]) is the space of continuous functions on
[−α,0]× [−β,0].

We denote by u(x,y) the element of C defined by

u(x,y)(s, t) = u(x+ s,y+ t); (s, t) ∈ [−α,0]× [−β,0],

here u(x,y)(., .) represents the history of the state from time (x−α,y− β) up to the present
time (x,y).

Next, we consider the following fractional order IVP for the system

D
r
θu(x,y) = f (x,y,u(x,y),D

r
θu(x,y)); if (x,y) ∈ J := [0,a]× [0,b], (1.4)

u(x,y) = φ(x,y), if (x,y) ∈ J̃′ := (−∞,a]× (−∞,b]\(0,a]× (0,b], (1.5)u(x,0) = ϕ(x); x ∈ [0,a],
u(0,y) = ψ(y); y ∈ [0,b],

(1.6)

where ϕ,ψ are as in problem (1.1)-(1.3) and φ ∈ C(J̃′), f : J ×B×Rn → Rn is a given
continuous function, and B is called a phase space that will be specified in Section 3.

Later we deal with the existence and uniqueness of solutions to fractional order IVP, for
the system

D
r
θu(x,y) = f (x,y,u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y))),D

r
θu(x,y)); if (x,y) ∈ J, (1.7)

u(x,y) = φ(x,y); if (x,y) ∈ J̃, (1.8)

u(x,0) = ϕ(x), u(0,y) = ψ(y); x ∈ [0,a], y ∈ [0,b], (1.9)

where f : J×C×Rn→ Rn, ρ1,ρ2 : J×C→ R are given functions.

Finally we consider the following initial value problem for partial functional differential
equations

D
r
θu(x,y) = f (x,y,u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y))),D

r
θu(x,y)); if (x,y) ∈ J, (1.10)
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u(x,y) = φ(x,y); if (x,y) ∈ J̃′, (1.11)

u(x,0) = ϕ(x), u(0,y) = ψ(y); x ∈ [0,a], y ∈ [0,b], (1.12)

where f : J×B×Rn→ Rn, ρ1,ρ2 : J×B→ R are given functions.

Differential delay equations, or functional differential equations, have been used in
modeling scientific phenomena for many years. Often, it has been assumed that the de-
lay is either a fixed constant or is given as an integral in which case it is called a distributed
delay, see for instance the books [30, 38]. Over the past several years it has become appar-
ent that equations with state-dependent delay arise also in several areas such as in classical
electrodynamics [26], in population models [13, 15, 18, 19], in models of commodity price
fluctuations [16, 40], and in models of blood cell productions [17, 20, 21, 41].

There exists an extensive literature for integer order differential equations with state-
dependent delay equations, see among another works, Aiello et al. [13], Arino et al. [14],
Domoshnitsky et al. [25], Hartung et al. [31, 32, 33, 34], Hernandez et al. [35], Schu-
makher [46], Qesmi and Walther [44], and Walther [51].

We present two results for each of our problems, the first one is based on Banach’s
contraction principle and the second one on the nonlinear alternative of Leray-Schauder
type. The main results of the present paper extend those considered without delay [10, 50],
and those when the nonlinearity does not depend on the fractional derivative [2, 3, 10, 12].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. By C(J) we denote the Banach space of all continuous functions
from J into Rn with the norm

‖w‖∞ = sup
(x,y)∈J

‖w(x,y)‖,

where ‖.‖ denotes a suitable complete norm on Rn.

As usual, by AC(J) we denote the space of absolutely continuous functions from J into Rn

and L1(J) is the space of Lebesgue-integrable functions w : J→ Rn with the norm

‖w‖1 =
∫ a

0

∫ b

0
‖w(x,y)‖dydx.

Definition 2.1. [37, 45] Let α ∈ (0,∞) and u ∈ L1(J). The partial Riemann-Liouville integral
of order α of u(x,y) with respect to x is defined by the expression

Iα0,xu(x,y) =
1
Γ(α)

∫ x

0
(x− s)α−1u(s,y)ds, for almost all x ∈ [0,a] and all y ∈ [0,b],

where Γ(.) is the (Euler’s) Gamma function defined by Γ(ς) =
∫ ∞

0 tς−1e−tdt; ς > 0.
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Analogously, we define the integral

Iα0,yu(x,y) =
1
Γ(α)

∫ y

0
(y− s)α−1u(x, s)ds, for all x ∈ [0,a] and almost all y ∈ [0,b].

Definition 2.2. [37, 45] Let α ∈ (0,1] and u ∈ L1(J). The Riemann-Liouville fractional
derivative of order α of u(x,y) with respect to x is defined by

(Dα
0,xu)(x,y) =

∂

∂x
I1−α
0,x u(x,y), for almost all x ∈ [0,a] and all y ∈ [0,b].

Analogously, we define the derivative

(Dα
0,yu)(x,y) =

∂

∂y
I1−α
0,y u(x,y), for all x ∈ [0,a] and almost all y ∈ [0,b].

Definition 2.3. [37, 45] Let α ∈ (0,1] and u ∈ L1(J). The Caputo fractional derivative of
order α of u(x,y) with respect to x is defined by the expression

cDα
0,xu(x,y) = I1−α

0,x
∂

∂x
u(x,y), for almost all x ∈ [0,a] and all y ∈ [0,b].

Analogously, we define the derivative

cDα
0,yu(x,y) = I1−α

0,y
∂

∂y
u(x,y), for all x ∈ [0,a] and almost all y ∈ [0,b].

Definition 2.4. [48] Let r = (r1,r2) ∈ (0,∞)× (0,∞), θ = (0,0) and u ∈ L1(J). The left-sided
mixed Riemann-Liouville integral of order r of u is defined by

(Ir
θu)(x,y) =

1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1u(s, t)dtds.

In particular,

(Iθθu)(x,y) = u(x,y), (Iσθ u)(x,y) =
∫ x

0

∫ y

0
u(s, t)dtds; for almost all (x,y) ∈ J,

where σ = (1,1).
For instance, Ir

θu exists for all r1,r2 ∈ (0,∞), when u ∈ L1(J). Note also that when u ∈C(J),
then (Ir

θu) ∈C(J), moreover

(Ir
θu)(x,0) = (Ir

θu)(0,y) = 0; x ∈ [0,a], y ∈ [0,b].

Example 2.5. Let λ,ω ∈ (−1,0)∪ (0,∞) and r = (r1,r2) ∈ (0,∞)× (0,∞), then

Ir
θxλyω =

Γ(1+λ)Γ(1+ω)
Γ(1+λ+ r1)Γ(1+ω+ r2)

xλ+r1yω+r2 , for almost all (x,y) ∈ J.

By 1−r we mean (1−r1,1−r2) ∈ (0,1]× (0,1].Denote by D2
xy := ∂2

∂x∂y , the mixed second
order partial derivative.
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Definition 2.6. [50] Let r ∈ (0,1]× (0,1] and u ∈ L1(J). The mixed fractional Riemann-
Liouville derivative of order r of u is defined by the expression Dr

θu(x,y) = (D2
xyI1−r

θ u)(x,y)
and the Caputo fractional-order derivative of order r of u is defined by the expression

cDr
θu(x,y) = (I1−r

θ D2
xyu)(x,y) =

1
Γ(1− r1)Γ(1− r2)

∫ x

0

∫ y

0

D2
stu(s, t)

(x− s)r1(y− t)r2
dtds.

The case σ = (1,1) is included and we have

(Dσ
θ u)(x,y) = (cDσ

θ u)(x,y) = (D2
xyu)(x,y), for almost all (x,y) ∈ J.

Example 2.7. Let λ,ω ∈ (−1,0)∪ (0,∞) and r = (r1,r2) ∈ (0,1]× (0,1], then

Dr
θxλyω =

Γ(1+λ)Γ(1+ω)
Γ(1+λ− r1)Γ(1+ω− r2)

xλ−r1yω−r2 , for almost all (x,y) ∈ J.

Definition 2.8. [50] For a function u : J→ Rn, we set

q(x,y) = u(x,y)−u(x,0)−u(0,y)+u(0,0).

By the mixed regularized derivative of order r = (r1,r2) ∈ (0,1]× (0,1] of a function u(x,y),
we name the function

D
r
θu(x,y) = Dr

θq(x,y).

The function
D

r1
0,xu(x,y) = Dr1

0,x[u(x,y)−u(0,y)],

is called the partial r1−order regularized derivative of the function u(x,y) : J → Rn with
respect to the variable x. Analogously, we define the derivative

D
r2
0,yu(x,y) = Dr2

0,y[u(x,y)−u(x,0)].

3 The phase space B

The notation of the phase spaceB plays an important role in the study of both qualitative and
quantitative theory for functional differential equations. A usual choice is a semi-normed
space satisfying suitable axioms, which was introduced by Hale and Kato (see [29]). For
any (x,y) ∈ J denote E(x,y) := [0, x]× {0} ∪ {0} × [0,y], furthermore in case x = a, y = b we
write simply E. Consider the space (B,‖(., .)‖B) is a seminormed linear space of functions
mapping (−∞,0]× (−∞,0] into Rn, and satisfying the following fundamental axioms which
were adapted from those introduced by Hale and Kato for ordinary differential functional
equations:

(A1) If z : (−∞,a]× (−∞,b]→ Rn continuous on J and z(x,y) ∈ B, for all (x,y) ∈ E, then
there are constants H,K,M > 0 such that for any (x,y) ∈ J the following conditions
hold:

(i) z(x,y) is in B;
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(ii) ‖z(x,y)‖ ≤ H‖z(x,y)‖B,

(iii) ‖z(x,y)‖B ≤ K sup(s,t)∈[0,x]×[0,y] ‖z(s, t)‖+M sup(s,t)∈E(x,y)
‖z(s,t)‖B,

(A2) For the function z(., .) in (A1), z(x,y) is a B-valued continuous function on J.

(A3) The space B is complete.

Now, we present some examples of phase spaces [22, 23].

Example 3.1. Let B be the set of all functions φ : (−∞,0]× (−∞,0]→ Rn which are con-
tinuous on [−α,0]× [−β,0], α,β ≥ 0, with the seminorm

‖φ‖B = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is isometric to the space
C([−α,0]× [−β,0],Rn) of all continuous functions from [−α,0]× [−β,0] into Rn with the
supremum norm, this means that partial differential functional equations with finite delay
are included in our axiomatic model.

Example 3.2. Let γ ∈ IR, Cγ be the set of all continuous functions φ : (−∞,0]×(−∞,0]→Rn

for which a limit lim‖(s,t)‖→∞ eγ(s+t)φ(s, t) exists, with the norm

‖φ‖Cγ = sup
(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)‖φ(s, t)‖.

Then we have H = 1 and K = M =max{e−γ(a+b),1}.

Example 3.3. Let α,β,γ ≥ 0 and let

‖φ‖CLγ = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖+
∫ 0

−∞

∫ 0

−∞

eγ(s+t)‖φ(s, t)‖dtds.

be the seminorm for the space CLγ of all functions φ : (−∞,0]× (−∞,0]→ Rn which are
continuous on [−α,0]× [−β,0] measurable on (−∞,−α]× (−∞,0]∪ (−∞,0]× (−∞,−β], and
such that ‖φ‖CLγ <∞. Then

H = 1, K =
∫ 0

−α

∫ 0

−β
eγ(s+t)dtds, M = 2.

4 Existence Results with Finite Delay

Let us start by defining what we mean by a solution of the problem (1.1)-(1.3).

Definition 4.1. A function u ∈C(α,β) :=C([−α,a]× [−β,b]) such that u(x,y), D
r1
0,xu(x,y),

D
r2
0,yu(x,y),D

r
θu(x,y) are continuous for (x,y) ∈ J and I1−r

θ u(x,y) ∈ AC(J) is said to be a
solution of (1.1)-(1.3) if u satisfies equations (1.1),(1.3) on J and the condition (1.2) on J̃.

In the sequel, we need the following lemma
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Lemma 4.2. [50] Let a function f (x,y,u,z) : J×Rn×Rn→Rn be continuous. Then problem
(1.1)-(1.2) is equivalent to the problem of the solution of the equation

g(x,y) = f (x,y,µ(x,y)+ Ir
θg(x,y),g(x,y)),

and if g(x,y) ∈C(J) is the solution of this equation, then u(x,y) = µ(x,y)+ Ir
θg(x,y), where

µ(x,y) = ϕ(x)+ψ(y)−ϕ(0).

Further, we present conditions for the existence and uniqueness of a solution of problem
(1.1)-(1.3).

Theorem 4.3. Assume

(H1) The function f : J×C×Rn→ Rn is continuous,

(H2) For any u,v ∈ C, w,z ∈ Rn and (x,y) ∈ J, there exist constants ` > 0 and 0 < l < 1 such
that

‖ f (x,y,u,z)− f (x,y,v,w)‖ ≤ `‖u− v‖C+ l‖z−w‖.

If
`ar1br2

(1− l)Γ(1+ r1)Γ(1+ r2)
< 1, (4.1)

then there exists a unique solution for IVP (1.1)-(1.3) on [−α,a]× [−β,b].

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the
operator N : C(α,β)→C(α,β) defined by,

(Nu)(x,y) =

Φ(x,y); (x,y) ∈ J̃,
µ(x,y)+ Ir

θg(x,y); (x,y) ∈ J,
(4.2)

where g ∈C(J) such that
g(x,y) = f (x,y,u(x,y),g(x,y)).

From Lemma 4.2, the problem of finding the solutions of the IVP (1.1)-(1.3) is reduced to
finding the solutions of the operator equation N(u) = u.

Let v,w ∈C(α,β). Then, for (x,y) ∈ J, we have

‖N(v)(x,y)−N(w)(x,y)‖ ≤
∫ x

0

∫ y

0

(x− s)r1−1(y− t)r2−1

Γ(r1)Γ(r2)
‖g(s, t)−h(s, t)‖dtds, (4.3)

where g,h ∈C(J) such that

g(x,y) = f (x,y,v(x,y),g(x,y))

and
h(x,y) = f (x,y,w(x,y),h(x,y)).
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By (H2), we get

‖g(x,y)−h(x,y)‖ ≤ `‖v(x,y)−w(x,y)‖C+ l‖g(x,y)−h(x,y)‖.

Then

‖g(x,y)−h(x,y)‖ ≤
`

1− l
‖v(x,y)−w(x,y)‖C

≤
`

1− l
‖v−w‖∞.

Thus, (6.1) implies that

‖N(v)−N(w)‖∞ ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1 `

1− l
‖v−w‖∞dtds

≤
`ar1br2

(1− l)Γ(1+ r1)Γ(1+ r2)
‖v−w‖∞.

Hence

‖N(v)−N(w)‖∞ ≤
`ar1br2

(1− l)Γ(1+ r1)Γ(1+ r2)
‖v−w‖∞.

By (4.1), N is a contraction, and hence N has a unique fixed point by Banach’s contraction
principle.

Theorem 4.4. [28] (Nonlinear alternative of Leray-Schauder type) Let X be a Banach
space and C a nonempty convex subset of X. Let U a nonempty open subset of C with 0 ∈U
and T : U →C continuous and compact operator.
Then either

(a) T has fixed points. Or

(b) There exist u ∈ ∂U and λ ∈ [0,1] with u = λT (u).

Theorem 4.5. Assume (H1) and the following hypothesis hold

(H3) There exist p,q,d ∈C(J,R+) such that

‖ f (x,y,u,z)‖ ≤ p(x,y)+q(x,y)‖u‖C+d(x,y)‖z‖

for (x,y) ∈ J and each u ∈ C, z ∈ Rn.

If

d∗+
q∗ar1br2

Γ(1+ r1)Γ(1+ r2)
< 1, (4.4)

where d∗ = sup
(x,y)∈J

d(x,y) and q∗ = sup
(x,y)∈J

q(x,y),

then the IVP (1.1)-(1.3) has at least one solution on [−α,a]× [−β,b].
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Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator N defined in (4.2). We shall show that the operator N is continuous and compact.

Step 1: N is continuous.
Let {un}n∈IN be a sequence such that un→ u in C(α,β). Let η > 0 be such that ‖un‖ ≤ η. Then

‖(Nun)(x,y)− (Nu)(x,y)‖ ≤
∫ x

0

∫ y

0

(x− s)r1−1(y− t)r2−1

Γ(r1)Γ(r2)
‖gn(s, t)−g(s, t)‖dtds, (4.5)

where gn,g ∈C(J) such that

gn(x,y) = f (x,y,un(x,y),gn(x,y))

and
g(x,y) = f (x,y,u(x,y),g(x,y)).

Since un→ u as n→∞ and f is a continuous function, we get

gn(x,y)→ g(x,y) as n→∞, for each (x,y) ∈ J.

Hence, (4.5) gives

‖N(un)−N(u)‖∞ ≤
ar1br2

Γ(1+ r1)Γ(1+ r2)
‖gn−g‖∞→ 0 as n→∞.

Step 2: N maps bounded sets into bounded sets in C(α,β).

Indeed, it is enough show that for any η∗ > 0, there exists a positive constant M∗ such that,
for each u ∈ Bη∗ = {u ∈C(α,β) : ‖u‖∞ ≤ η∗}, we have ‖N(u)‖∞ ≤ M∗. For (x,y) ∈ J, we have

‖(Nu)(x,y)‖ ≤ ‖µ(x,y)‖+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1‖g(s, t)‖dtds, (4.6)

where g ∈C(J) such that
g(x,y) = f (x,y,u(x,y),g(x,y)).

By (H3) we have for each (x,y) ∈ J,

‖g(x,y)‖ ≤ p(x,y)+q(x,y)‖µ(x,y)+ Ir
θg(x,y)‖+d(x,y)‖g(x,y)‖

≤ p∗+q∗
(
‖µ‖∞+

ar1br2‖g(x,y)‖
Γ(1+ r1)Γ(1+ r2)

)
+d∗‖g(x,y)‖,

where p∗ = sup
(x,y)∈J

p(x,y).

Then, by (4.4) we have

‖g(x,y)‖ ≤
p∗+q∗‖µ‖∞

1−d∗− q∗ar1 br2

Γ(1+r1)Γ(1+r2)

:= M.

Thus, (4.6) implies that

‖N(u)‖∞ ≤ ‖µ‖∞+
Mar1br2

Γ(1+ r1)Γ(1+ r2)
:= M∗.
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Step 3: N maps bounded sets into equicontinuous sets in C(α,β).

Let (x1,y1), (x2,y2) ∈ J, x1 < x2, y1 < y2, Bη∗ be a bounded set of C(α,β) as in Step 2, and let
u ∈ Bη∗ . Then

‖(Nu)(x2,y2)− (Nu)(x1,y1)‖

≤ ‖µ(x2,y2)−µ(x1,y1)‖

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y1

0
[(x2− s)r1−1(y2− t)r2−1− (x1− s)r1−1(y1− t)r2−1]‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

(x2− s)r1−1(y2− t)r2−1‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y2

y1

(x2− s)r1−1(y2− t)r2−1‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

0
(x2− s)r1−1(y2− t)r2−1‖g(s, t)‖dtds,

where g ∈C(J) such that
g(x,y) = f (x,y,u(x,y),g(x,y)).

But ‖g(x,y)‖ ≤ M. Thus

‖(Nu)(x2,y2)− (Nu)(x1,y1)‖ ≤ ‖µ(x2,y2)−µ(x1,y1)‖

+
M

Γ(1+ r1)Γ(1+ r2)
[2yr2

2 (x2− x1)r1 +2xr1
2 (y2− y1)r2

+ xr1
1 yr2

1 − xr1
2 yr2

2 −2(x2− x1)r1(y2− y1)r2].

As x1→ x2, y1→ y2 the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can conclude that N is
continuous and completely continuous.

Step 4: A priori bounds.
We now show there exists an open set U ⊆ C(α,β) with u , λN(u), for λ ∈ (0,1) and u ∈ ∂U.
Let u ∈C(α,β) and u = λN(u) for some 0 < λ < 1. Thus, for each (x,y) ∈ J, we have

u(x,y) = λµ(x,y)+
λ

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1g(s, t)dtds.

This implies by (H3) and as in step 2 that, ‖u‖ ≤M∗.Hence, for each (x,y) ∈ [−α,a]×[−β,b],
we have

‖u‖∞ ≤max(‖φ‖C ,M∗) := R.

Set
U = {u ∈C(α,β) : ‖u‖∞ < R+1}.

By our choice of U, there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0,1). As a consequence
of Theorem 4.4, we deduce that N has a fixed point u in U which is a solution to problem
(1.1)-(1.2).
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5 Existence Results for Infinite Delay

Let us start by defining what we mean by a solution of the problem (1.4)-(1.6). Let the
space

Ω := {u : (−∞,a]× (−∞,b]→ Rn : u(x,y) ∈ B for (x,y) ∈ E and u|J ∈C(J,Rn)}.

Definition 5.1. A function u ∈Ω is said to be a solution of (1.4)-(1.6) if u satisfies equations
(1.4) and (1.6) on J and the condition (1.5) on J̃′.

Our first existence result for the IVP (1.4)-(1.6) is based on the Banach contraction
principle.

Theorem 5.2. Assume that the following hypotheses hold:

(H′1) There exist constants `′ > 0 and 0 < l′ < 1such that

‖ f (x,y,u,z)− f (x,y,v,w)‖ ≤ `′‖u− v‖B+ l′‖z−w‖,

for any u, v ∈ B, z,w ∈ Rn, and (x,y) ∈ J.

If
K`′ar1br2

(1− l′)Γ(1+ r1)Γ(1+ r2)
< 1, (5.1)

then there exists a unique solution for IVP (1.4)-(1.6) on (−∞,a]× (−∞,b].

Proof. Consider the operator N :Ω→Ω defined by,

(Nu)(x,y) =
{
φ(x,y); (x,y) ∈ J̃′,
µ(x,y)+ Ir

θg(x,y); (x,y) ∈ J,
(5.2)

where
g(x,y) = f (x,y,u(x,y),g(x,y))); (x,y) ∈ J.

Let v(., .) : (−∞,a]× (−∞,b]→ Rn be a function defined by,

v(x,y) =
{
φ(x,y), (x,y) ∈ J̃′,
µ(x,y), (x,y) ∈ J.

Then v(x,y) = φ for all (x,y) ∈ E. For each w ∈ C(J) with w(x,y) = 0 for each (x,y) ∈ E we
denote by w the function defined by

w(x,y) =
{

0, (x,y) ∈ J̃′,
w(x,y) (x,y) ∈ J.

If u(., .) satisfies the integral equation,

u(x,y) = µ(x,y)+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1g(s, t)dtds,
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we can decompose u(., .) as u(x,y)=w(x,y)+v(x,y); (x,y) ∈ J,which implies u(x,y) =w(x,y)+

v(x,y), for every (x,y) ∈ J, and the function w(., .) satisfies

w(x,y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1g(s, t)dtds,

where
g(x,y) = f (x,y,w(x,y)+ v(x,y),g(x,y)); (x,y) ∈ J.

Set
C0 = {w ∈C(J) : w(x,y) = 0 for (x,y) ∈ E},

and let ‖.‖(a,b) be the seminorm in C0 defined by

‖w‖(a,b) = sup
(x,y)∈E

‖w(x,y)‖B+ sup
(x,y)∈J

‖w(x,y)‖ = sup
(x,y)∈J

‖w(x,y)‖, w ∈C0.

C0 is a Banach space with norm ‖.‖(a,b). Let the operator P : C0→C0 be defined by

(Pw)(x,y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1 f (s, t,w(s,t)+ v(s,t),g(s, t))dtds, (5.3)

where
g(x,y) = f (x,y,w(x,y)+ v(x,y),g(x,y)); (x,y) ∈ J.

Then the operator N has a fixed point is equivalent to P has a fixed point, and so we turn
to proving that P has a fixed point. We shall show that P : C0→ C0 is a contraction map.
Indeed, consider w,w∗ ∈C0. Then we have for each (x,y) ∈ J

‖(Pw)(x,y)− (Pw∗)(x,y)‖ ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1‖g(s, t)−g∗(s, t)‖dtds,

where
g∗(x,y) = f (x,y,w∗(x,y)+ v(x,y)).

But, for each (x,y) ∈ J, we have

‖g(x,y)−g∗(x,y)‖ ≤
`′

1− l′
‖w(x,y)−w∗(x,y)‖B.

Thus, we obtain that, for each (x,y) ∈ J

‖(Pw)(x,y) − (Pw∗)(x,y)‖ ≤
`′

(1− l′)Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1

× ‖w(s,t)−w∗(s,t)‖Bdtds

≤
`′

(1− l′)Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1

× k sup
(s,t)∈[0,x]×[0,y]

‖w(s, t)−w∗(s, t)‖Bdtds

≤
K`′

(1− l′)Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1dtds‖w−w∗‖(a,b).
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Therefore
‖P(w)−P(w∗)‖(a,b) ≤

k`′ar1br2

Γ(1+ r1+)Γ(1+ r2)
‖w−w∗‖(a,b).

and hence, by (5.1) P is a contraction. Therefore, P has a unique fixed point by Banach’s
contraction principle.

Now we give an existence result based on the nonlinear alternative of Leray-Schauder
type [28].

Theorem 5.3. Assume that the following hypotheses hold:

(H′2) There exist p′,q′,d′ ∈C(J,R+) such that

‖ f (x,y,u,v)‖ ≤ p′(x,y)+q′(x,y)‖u‖B+d′(x,y)‖v‖,

for each (x,y) ∈ J, u ∈ B, and v ∈ Rn.

If

d∗∗+
q∗∗ar1br2

Γ(1+ r1)Γ(1+ r2)
< 1, (5.4)

where d∗∗ = sup
(x,y)∈J

d′(x,y) and q∗∗ = sup
(x,y)∈J

q′(x,y), then the IVP (1.4)-(1.6) has at least one

solution on (−∞,a]× (−∞,b].

Proof. Let P : C0→ C0 defined as in (5.3). As in Theorem 4.5, we can prove that P is
continuous and completely continuous. We now show there exists an open set U′ ⊆C0 with
w , λP(w), for λ ∈ (0,1) and w ∈ ∂U′. Let w ∈ C0 and w = λP(w) for some 0 < λ < 1. Thus
for each (x,y) ∈ J,

w(x,y) =
λ

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1g(s, t)dtds.

where
g(x,y) = f (x,y,u(x,y),g(x,y)); (x,y) ∈ J.

By (H′2) and (5.4) we get for each (x,y) ∈ J,

‖g(x,y)‖ ≤
p∗∗+q∗∗‖µ‖∞

1−d∗∗− q∗∗ar1 br2

Γ(1+r1)Γ(1+r2)

:= M′,

where p∗∗ = sup
(x,y)∈J

p′(x,y). This implies that, for each (x,y) ∈ J, we have

‖w(x,y)‖ ≤
M′ar1br2

Γ(1+ r1)Γ(1+ r2)
:= M̃.

Hence
‖w‖(a,b) ≤ M̃.

Set
U′ = {w ∈C0 : ‖w‖(a,b) < M̃+1}.

P : U′ → C0 is continuous and completely continuous. By our choice of U′, there is no
w ∈ ∂U′ such that w = λP(w), for λ ∈ (0,1). As a consequence of the nonlinear alternative of
Leray-Schauder type (Theorem 4.4), we deduce that N has a fixed point which is a solution
to problem (1.4)-(1.6).
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6 Existence Results with State Dependent Delay

6.1 Finite delay case

Definition 6.1. A function u ∈ C(α,β) such that u(x,y), D
r1
0,xu(x,y), D

r2
0,yu(x,y),D

r
θu(x,y) are

continuous for (x,y) ∈ J and I1−r
θ u(x,y) ∈ AC(J) is said to be a solution of (1.1)-(1.3) if u

satisfies equations (1.1),(1.3) on J and the condition (1.2) on J̃.

Set R :=R(ρ−1 ,ρ
−
2 )

= {(ρ1(s, t,u),ρ2(s, t,u)) : (s, t,u) ∈ J×C, ρi(s, t,u) ≤ 0; i = 1,2}.

We always assume that ρi : J×C→R; i= 1,2 are continuous and the function (s, t) 7−→ u(s,t)
is continuous from R into C.

Further, we present conditions for the existence and uniqueness of a solution of problem
(1.7)-(1.9).

Theorem 6.2. Assume that the following hypotheses hold:

(H01) The f : J×C×Rn→ Rn is continuous,

(H02) There exist `∗ > 0, 0 < l∗ < 1 such that

‖ f (x,y,u,v)− f (x,y,u,v)‖ ≤ `∗‖u−u‖C+ l∗‖v− v‖;

for any u, u ∈ C, v, v ∈ Rn and (x,y) ∈ J.

If
`∗ ar1br2

(1− l∗)Γ(1+ r1)Γ(1+ r2)
< 1, (6.1)

then there exists a unique solution for IVP (1.7)-(1.9) on [−α,a]× [−β,b].

Proof. Consider the operator N : C(α,β)→C(α,β) defined by,

(Nu)(x,y) =


φ(x,y); (x,y) ∈ J̃,

µ(x,y)+ 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0 (x− s)r1−1(y− t)r2−1

×g(s, t)dtds; (x,y) ∈ J,

(6.2)

where, g ∈C(J) such that

g(x,y) = f (x,y,u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y)),g(x,y)).

Let u,v ∈C(α,β). Then, for (x,y) ∈ [−α,a]× [−β,b],

‖(Nu)(x,y)− (Nv)(x,y)‖ ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1

× ‖g(s, t)−h(s, t)‖dtds,
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where, g,h ∈C(J) such that

g(x,y) = f (x,y,u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y)),g(x,y))

and
h(x,y) = f (x,y,v(ρ1(x,y,v(x,y)),ρ2(x,y,v(x,y)),h(x,y)).

Since
‖g−h‖∞ ≤

`∗
1− l∗

‖v−w‖C(a,b) ,

we obtain that

‖(Nu)− (Nv)‖C(a,b) ≤
`∗ar1br2

(1− l∗)Γ(1+ r1)Γ(1+ r2)
‖v−w‖C(a,b) .

Consequently, by (6.1), N is a contraction, and hence N has a unique fixed point by Banach’s
contraction principle.

Theorem 6.3. Assume (H01) and the following hypothesis holds:

(H03) There exist p,q,d ∈C(J,R+) such that

‖ f (x,y,u,v)‖ ≤ p(x,y)+q(x,y)‖u‖C+d(x,y)‖v‖;

for each u ∈ C, v ∈ Rn and (x,y) ∈ J.

If

d∗+
q∗ar1br2

Γ(1+ r1)Γ(1+ r2)
< 1, (6.3)

where d∗ = sup
(x,y)∈J

d(x,y) and q∗ = sup
(x,y)∈J

q(x,y), then the IVP (1.7)-(1.9) has at least one

solution on [−α,a]× [−β,b].

Proof. Consider the operator N defined in (6.2). We can easily show that the operator
N is continuous and completely continuous.

A priori bounds. We now show there exists an open set U ⊆ C(α,β) with u , λN(u),
for λ ∈ (0,1) and u ∈ ∂U. Let u ∈ C(α,β) and u = λN(u) for some 0 < λ < 1. Thus for each
(x,y) ∈ J,

u(x,y) = λµ(x,y)

+
λ

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y− t)r2−1g(s, t)dtds,

where, g ∈C(J) such that

g(x,y) = f (x,y,u(ρ1(x,y,u(x,y)),ρ2(x,y,u(x,y)),g(x,y)).

This implies by (H03) and as in step 2 (Theorem 4.5) that, for each (x,y) ∈ J, we have
‖u‖C(a,b) ≤ M∗.

U = {u ∈C(a,b) : ‖u‖∞ < M∗+1}.

By our choice of U, there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0,1). As a consequence
of the nonlinear alternative of Leray-Schauder type (Theorem 4.4) we deduce that N has a
fixed point u in U which is a solution to problem (1.7)-(1.9).
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6.2 Infinite delay case

Let us start in this section by defining what we mean by a solution of the problem (1.10)-
(1.12).

Definition 6.4. A function u ∈Ω such that u(x,y), D
r1
0,xu(x,y), D

r2
0,yu(x,y),D

r
θu(x,y) are con-

tinuous for (x,y) ∈ J and I1−r
θ u(x,y) ∈ AC(J) is said to be a solution of (1.10)-(1.12) if u

satisfies equations (1.10),(1.12) on J and the condition (1.11) on J̃′.

Set R′ :=R′(ρ−1 ,ρ−2 )

= {(ρ1(s, t,u),ρ2(s, t,u)) : (s, t,u) ∈ J×B ρi(s, t,u) ≤ 0; i = 1,2}.

We always assume that ρi : J×B→R; i= 1,2 are continuous and the function (s, t) 7−→ u(s,t)
is continuous from R′ into B.

We will need to introduce the following hypothesis:

(Cφ) There exists a continuous bounded function L :R′(ρ−1 ,ρ−2 )→ (0,∞) such that

‖φ(s,t)‖B ≤ L(s, t)‖φ‖B, for any (s, t) ∈ R′.

In the sequel we will make use of the following generalization of a consequence of the
phase space axioms ([[35], Lemma 2.1]).

Lemma 6.5. If u ∈Ω, then

‖u(s,t)‖B = (M+L′)‖φ‖B+K sup
(θ,η)∈[0,max{0,s}]×[0,max{0,t}]

‖u(θ,η)‖,

where
L′ = sup

(s,t)∈R′
L(s, t).

Now, we give (without proof) the existence result for the IVP (1.10)-(1.12)

Theorem 6.6. Assume that the following hypothesis holds:

(C1) there exist `′′∗ > 0, 0 < l′′∗ < 1 such that

‖ f (x,y,u,v)− f (x,y,u,v)‖ ≤ `′′∗ ‖u− v‖B+ l′′∗ ‖u− v‖;

for any u, v ∈ B, u,v ∈ Rnand (x,y) ∈ J.

If
`′′∗ Kar1br2

(1− l′′∗ )Γ(1+ r1)Γ(1+ r2)
< 1, (6.4)

then there exists a unique solution for IVP (1.10)-(1.12) on (−∞,a]× (−∞,b].

Theorem 6.7. Assume (Cφ) and that the following hypothesis holds:



90 S. Abbas, M. Benchohra and J.J. Nieto

(C2) There exist p,q,d ∈C(J,R+) such that

‖ f (x,y,u,v)‖ ≤ p(x,y)+q(x,y)‖u‖B+d(x,y)‖v‖ for (x,y) ∈ J, u ∈ B, v ∈ Rn.

If

d∗+
q∗ar1br2

Γ(1+ r1)Γ(1+ r2)
< 1, (6.5)

where d∗ = sup
(x,y)∈J

d(x,y) and q∗ = sup
(x,y)∈J

q(x,y), then the IVP (1.10)-(1.12) has at least one

solution on (−∞,a]× (−∞,b].

7 Examples

Example 1: Consider the following partial hyperbolic implicit differential equations of the
form

D
r
θu(x,y) =

1

5ex+y+2(1+ |u(x−1,y−2)|+ |D
r
θu(x,y)|)

; if (x,y) ∈ [0,1]× [0,1], (7.1)

u(x,y) = x+ y2, (x,y) ∈ [−1,1]× [−2,1]\(0,1]× (0,1], (7.2)

u(x,0) = x, u(0,y) = y2; x,y ∈ [0,1]. (7.3)

Set

f (x,y,u(x,y),D
r
θu(x,y)) =

1

5ex+y+2(1+ |u(x−1,y−2)|+ |D
r
θu(x,y)|)

; (x,y) ∈ [0,1]× [0,1].

Clearly, the function f is continuous. For each u,v ∈ C, u,v ∈ R and (x,y) ∈ [0,1]× [0,1] we
have

| f (x,y,u(x,y),v(x,y))− f (x,y,u(x,y),v(x,y))| ≤
1

5e2 (‖u−u‖C+ ‖v− v‖).

Hence condition (H2) is satisfied with ` = l =
1

5e2 . We shall show that condition (4.1) holds
with a = b = 1. Indeed

`ar1br2

(1− l)Γ(1+ r1)Γ(1+ r2)
=

1
(5e2−1)Γ(1+ r1)Γ(1+ r2)

< 1,

which is satisfied for each (r1,r2) ∈ (0,1]× (0,1]. Consequently Theorem 4.3 implies that
problem (7.1)-(7.3) has a unique solution defined on [−1,1]× [−2,1].

Example 2: Consider now the following partial hyperbolic functional implicit differen-
tial equations with infinite delay

D
r
θu(x,y) =

ex+y−γ(x+y)‖u(x,y)‖

2(ex+y+ e−x−y)(1+ c‖u(x,y)‖+ |D
r
θu(x,y)|)

, if (x,y) ∈ [0,1]× [0,1], (7.4)

u(x,y) = x+ y2, (x,y) ∈ (−∞,1]× (−∞,1]\(0,1]× (0,1], (7.5)
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u(x,0) = x, u(0,y) = y2, x,y ∈ [0,1], (7.6)

where c = Γ(1+r1)Γ(1+r2)
2 , r = (r1,r2) ∈ (0,1]× (0,1] and γ a positive real constant.

Let
Bγ = {u ∈C((−∞,0]× (−∞,0],R) : lim

‖(θ,η)‖→∞
eγ(θ+η)u(θ,η) exists in R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ,η)|.

Let
E := [0,1]×{0}∪ {0}× [0,1],

and u : (−∞,1]× (−∞,1]→ R such that u(x,y) ∈ Bγ for (x,y) ∈ E, then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(x,y)(θ,η) = lim
‖(θ,η)‖→∞

eγ(θ−x+η−y)u(θ,η)

= e−γ(x+y) lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ,η) <∞.

Hence u(x,y) ∈ Bγ. Finally we prove that

‖u(x,y)‖γ = K sup{|u(s, t)| : (s, t) ∈ [0, x]× [0,y]}+M sup{‖u(s,t)‖γ : (s, t) ∈ E(x,y)},

where K = M = 1 and H = 1.
If x+ θ ≤ 0, y+η ≤ 0 we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞,0]× (−∞,0]},

and if x+ θ ≥ 0, y+η ≥ 0 then we have

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ [0, x]× [0,y]}.

Thus for all (x+ θ,y+η) ∈ [0,1]× [0,1], we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞,0]× (−∞,0]}+ sup{|u(s, t)| : (s, t) ∈ [0, x]× [0,y]}.

Then
‖u(x,y)‖γ = sup{‖u(s,t)‖γ : (s, t) ∈ E}+ sup{|u(s, t)| : (s, t) ∈ [0, x]× [0,y]}.

(Bγ,‖.‖γ) is a Banach space. We conclude that Bγ is a phase space. Set

f (x,y,u(x,y),v) =
ex+y−γ(x+y)‖u(x,y)‖

2(ex+y+ e−x−y)(1+ c‖u(x,y))‖+ ‖v(x,y)‖
, (x,y) ∈ [0,1]× [0,1].

For each u, u ∈ Bγ, v, v ∈ R and (x,y) ∈ [0,1]× [0,1] we have

| f (x,y,u(x,y),v(x,y))− f (x,y,u(x,y),v(x,y))| ≤
ex+y

2(ex+y+ e−x−y)
(c‖u−u‖B+ ‖v− v‖)

≤
c
2
‖u−u‖B+

1
2
‖v− v‖.
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Hence condition (H1′) is satisfied with `′ = c
2 , l′ = 1

2 . Since a = b = K = 1, we get

k`′ar1br2

(1− l′)Γ(1+ r1)Γ(1+ r2)
=

c
Γ(1+ r1)Γ(1+ r2)

=
1
2
< 1.

Consequently, Theorem 5.2 implies that problem (7.4)-(7.6) has a unique solution defined
on (−∞,1]× (−∞,1].

Example 3: Consider wow the following fractional order hyperbolic partial functional
differential equations of the form

D
r
θu(x,y) =

1
10ex+y+4

×
2+ |u(x−σ1(u(x,y)),y−σ2(u(x,y)))|

1+ |u(x−σ1(u(x,y)),y−σ2(u(x,y)))|+ |D
r
θu(x,y)|

, if (x,y) ∈ [0,1]× [0,1], (7.7)

u(x,0) = x, u(0,y) = y2; x,y ∈ [0,1], (7.8)

u(x,y) = x+ y2, (x,y) ∈ [−1,1]× [−2,1]\[−1,0]× [−2,0], (7.9)

where σ1 ∈C(R, [0,1]), σ2 ∈C(R, [0,2]). Set

ρ1(x,y,ϕ) = x−σ1(ϕ(0,0)), (x,y,ϕ) ∈ J×C([−1,0]× [−2,0],R),

ρ2(x,y,ϕ) = y−σ2(ϕ(0,0)), (x,y,ϕ) ∈ J×C([−1,0]× [−2,0],R),

f (x,y,ϕ,ψ)=
|ϕ|+2

(10ex+y+4)(1+ |ϕ|+ |ψ|)
, (x,y) ∈ [0,1]×[0,1], ϕ ∈C([−1,0]×[−2,0],R), ψ ∈R.

For each ϕ, ϕ ∈C([−1,0]× [−2,0],R), ψ,ψ ∈ R and (x,y) ∈ [0,1]× [0,1] we have

| f (x,y,ϕ,ψ)− f (x,y,ϕ,ψ)| ≤
1

10e4 (‖ϕ−ϕ‖C + ‖ψ−ψ‖).

Hence the condition (H02) is satisfied with `∗ = l∗ =
1

10e4 . We shall show that condition
(6.1) holds with a = b = 1. Indeed

`∗ar1br2

(1− l∗)Γ(1+ r1)Γ(1+ r2)
=

1
(10e4−1)Γ(1+ r1)Γ(1+ r2)

< 1,

which is satisfied for each (r1,r2) ∈ (0,1]× (0,1]. Consequently, Theorem 6.2 implies that
problem (7.7)-(7.9) has a unique solution defined on [−1,1]× [−2,1].

Example 4: We consider now the following fractional order partial implicit differential
equations with infinite delay of the form

D
r
θu(x,y) =

cex+y−γ(x+y)

ex+y+ e−x−y

×
|u(x−σ1(u(x,y)),y−σ2(u(x,y)))|

1+ |u(x−σ1(u(x,y)),y−σ2(u(x,y)))|+ |D
r
θu(x,y)|

; if (x,y) ∈ J, (7.10)
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u(x,0) = x, u(0,y) = y2; x,y ∈ [0,1], (7.11)

u(x,y) = x+ y2, (x,y) ∈ J̃, (7.12)

where J := [0,1]× [0,1], J̃ := (−∞,1]× (−∞,1]\(0,1]× (0,1],
c = 1+ 2

Γ(1+r1)Γ(1+r2) , γ a positive real constant and σ1,σ2 ∈C(R, [0,∞)).
Let the phase space

Bγ = {u ∈C((−∞,0]× (−∞,0], IR) : lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ,η) exists in IR},

defined as in Example 2. Set

ρ1(x,y,ϕ) = x−σ1(ϕ(0,0)), (x,y,ϕ) ∈ J×Bγ,

ρ2(x,y,ϕ) = y−σ2(ϕ(0,0)), (x,y,ϕ) ∈ J×Bγ,

f (x,y,ϕ,ψ) =
cex+y−γ(x+y)|ϕ|

(ex+y+ e−x−y)(1+ |ϕ|+ |ψ|)
, (x,y) ∈ [0,1]× [0,1], ϕ ∈ Bγ.

For each ϕ, ϕ ∈ Bγ, ψ, ψ ∈ R and (x,y) ∈ [0,1]× [0,1] we have

| f (x,y,ϕ,ψ)− f (x,y,ϕ,ψ)| ≤
1
c

(‖ϕ−ϕ‖γ + ‖ψ−ψ‖).

Hence condition (C1) is satisfied with `′′∗ = l′′∗ =
1
c
. Since a = b = K = 1. we get

K`′′∗ ar1br2

(1− l′′∗ )Γ(1+ r1)Γ(r2+1)
=

1
(c−1)Γ(1+ r1)Γ(1+ r2)

=
1
2
< 1,

for each (r1,r2) ∈ (0,1]× (0,1]. Consequently Theorem 6.6 implies that problem (7.10)-
(7.12) has a unique solution defined on (−∞,1]× (−∞,1].
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Equations, Developments in Mathematics, 27, Springer, New York, 2012.

[7] S. Abbas, M. Benchohra and G.M. N’Guérékata, Asymptotic stability in nonlinear de-
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