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Abstract

We describe the natural identification of FH∗(X × X,4;ω⊕−ω) with FH∗ (X,ω).

Under this identification, we show that the extra elements in Ham(X×X,ω⊕−ω) found

in [3], for X = (S 2×S 2 ,ω0⊕λω0) for λ > 1, do not define new invertible elements in

FH∗(X,ω).
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1 Introduction

Let M be a symplectic manifold with an anti-symplectic involution c, such that L is the

Lagrangian submanifold fixed by c. For any map u : (Σ,∂Σ)→ (M,4), where Σ is a manifold

with boundary, we define v : Σ∪∂ Σ→ X by

v|Σ = p1 ◦u and v|
Σ
= p2 ◦u,

where Σ is Σ with the opposite orientation. For any map v : Σ∪∂ Σ→ X we obtain the

corresponding map u : (Σ,∂Σ)→ (M,4) by

u(x) = (v(x),v(x)),

where x denotes x ∈ Σ. We use δ to denote the map v 7→ u.

For M = X×X and involution switching the factors, then L = 4. Let δk := pk ◦ δ where

pk is the projection to the k-factor, then it induces a map of Floer homologies. We show in
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Lemma 1.1. There is a commutative diagram of isomorphisms of the Floer homologies:

FH∗(M,4)

�

δ1

uullllllllllllll

δ2

�
))RRRRRRRRRRRRRR

FH∗(X)
τ

�

// FH∗(X)

In [2], with proper assumptions, we described a construction of Lagrangian Seidel el-

ement from a path of Hamiltonian diffeomorphisms. In particular, a loop γ in Ham(M)

defines a Lagrangian Seidel element ΨL
γ ∈ FH∗(M,L), where L is a Lagrangian submani-

fold. The Albers’ map

A : FH∗(M)→ FH∗(M,L)

whenever well-defined, for example when L is monotone, relates the Seidel elements ΨM
γ ∈

FH∗(M) to ΨL
γ . Let S M denote the image of Seidel map ΨM : π1Ham(M)→ FH∗(M) and

S L that of ΨL : π1(Ham(M),HamL(M)) → FH∗(M,L), where HamL(M) is the group of

Hamiltonian diffeomorphisms preserving L which restrict to isotopies on L, then

A (S M) ⊆ S L

Question 1.2. When all the terms involved is well defined, is the inclusion A (S M) ⊆ S L (in

general) proper?

An affirmative answer to this question would imply an affirmative answer to the open ques-

tion about the non-triviality of π0HamL(M).

For the case L = 4, since δ1 is an isomorphism, the inclusion is equivalent to δ1A (S M)

⊆ δ1(S 4) as subsets of FH∗(X). In §3, we show that S X ⊆ δ1A (S M). More precisely,

Theorem 1.3. [Corollary 3.2] Let γ ∈ π1Ham(X). It naturally lifts to a split element γ+ ∈
π1Ham(M), and we have δ1A (ΨM

γ+
) = ΨX

γ .

As a corollary, it shows that the natural map π1Ham(X)×π1Ham(X)→ π1Ham(M) is injec-

tive. In light of this result, we pose the following question, which is related to Question 1.2

for the special case of diagonal.

Question 1.4. Is any inclusion in the sequence S X ⊆ δ1A (S M) ⊆ δ1(S 4) proper?

For X = S 2 × S 2 as in [3], we show in §3 that the image under δ1A of the extra Seidel

elements found in [3] is contained in S X.

Acknowledgement. S. Hu is partially supported by an NSERC Discovery Grant.

2 Identification of Floer homologies

2.1 Notations

Let

D2
+ = {z ∈ C : |z| 6 1,=z > 0},

∂+ denote the part of boundary of D2
+ on the unit circle, parametrized by t ∈ [0,1] as eiπt ,

and ∂0 the part on the real line, parametrized by t ∈ [0,1] as 2t−1.
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Let (M,L) be a pair of symplectic manifold and a Lagrangian submanifold, and Ω is

the symplectic form. For β ∈ π2(M,L), µL(β) denotes its Maslov number, and Ω(β) its

symplectic area. The space of paths in M connecting points of L is

PLM = {l : ([0,1],∂[0,1])→ (M,L), [l] = 0 ∈ π1(M,L)}

and the corresponding covering space with covering group ΓL = π2(M,L)/(kerω∩kerµL) is

P̃LM = {[l,w] : w : (D2
+;∂+,∂0)→ (M; l,L)}

where (l,w) ∼ (l′,w′) ⇐⇒ l = l′ and ω(w#(−w′)) = µL(w#(−w′)). The space of contractible

loops in M parametrized by R/Z is denoted Ω(M) and the corresponding covering space

with covering group Γω = π2(M)/(kerω∩kerc1) is given by

Ω̃(M) = {[γ,v] : v : (D2,∂D2)→ (M,γ)}

where (γ,v) ∼ (γ′,v′) ⇐⇒ γ = γ′ and ω(v#(−v′)) = c1(v#(−v′)). Here, ∂D2 is parametrized

as the unit circle in C by {e2πit : t ∈ [0,1]}, and c1 = c1(T M) in some compatible almost

complex structure. We denote the space of loops in M parametrized by R/TZ and the

corresponding covering space as Ω(T )(M) and Ω̃(T )(M) respectively, thus Ω(M) = Ω(1)(M)

and Ω̃(M) = Ω̃(1)(M).

Let H : [0,1]×M → R be a time-dependent Hamiltonian function, which defines on

P̃LM the action functional

aH([l,w]) = −
∫

D2
+

w∗ω+

∫

[0,1]

Ht(l(t))dt,

where we use the convention dH = −ιXH
ω for the Hamiltonian vector fields. Similarly, a

time dependent Hamiltonian function K for t ∈ R/TZ defines an action functional aK on

Ω̃(T )(M). We will not distinguish notations for the two types of action functionals when it

is clear from the context which one is under discussion.

Given the time dependent Hamiltonian function H, let l̃ ∈ P̃LM such that l is a con-

necting orbit for H, then µH (̃l) denotes the corresponding Conley-Zehnder index. Similarly,

for the time dependent Hamiltonian functino K, let γ̃ ∈ Ω̃(T )(M) such that γ is a periodic

orbit for K, then µK (̃γ) denotes the corresponding Conley-Zehnder index. The following

relations hold

µH (̃l)−µH (̃l′) = µL(w#(−w′)) and µK (̃γ)−µK (̃γ′) = c1(u#(−v′))

where l = l′ and γ = γ′.

2.2 Doubling construction

First we describe the doubling construction when the Lagrangian submanifold is the fixed

submanifold of an anti-symplectic involution. It applies in this case since the diagonal 4 is

the fixed submanifold of the involution of switching the two factors.

Let c : M → M be an anti-symplectic involution and L ⊂ M be the fixed submanifold

of τ, then it is a Lagrangian submanifold. We’ll use (H,J) to denote a pair of 2-periodical

Hamiltonian functions and compatible almost complex structures, i.e.

H : R/2Z×M→ R and J = {Jt}t∈R/2Z.
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Definition 2.1. The pair (H,J) is c-symmetric if it satisfies

Ht(x) = H2−t(c(x)) and Jt(x) = −dc◦ J2−t ◦dc.

For such a pair, we define the halves (H,J) := (Ht,Jt)t∈[0,1] and

(H′,J′) := (H1−t ◦ c,−dc◦ J1−t ◦dc)t∈[0,1] = (Ht+1,Jt+1)t∈[0,1].

The doubling map δ described in the introduction is a special case of the following

construction for a symplectic manifold with an anti-symplectic involution:

Definition 2.2. Let u : (Σ,∂Σ)→ (M,L) be a map from a manifold Σ with boundary ∂Σ, the

doubled map is given by:

v : Σ∪∂ Σ→ M : v|Σ = u and v|
Σ
= c◦u,

where Σ is Σ with the opposite orientation. We also write δ(u) := v which gives the doubling

map between the spaces of continuous maps:

δ : Map(Σ,∂Σ; M,L)→ Map(Σ∪∂ Σ; M).

In particular, we have the map between the space of paths in (M,L) and loops of period 2 in

M, as well as their covering spaces:

δ :PLM→ Ω(2)(M) and δ : P̃LM→ Ω̃(2)(M)

Let (H,J) be a c-symmetric pair and {φt}t∈[0,2] the Hamiltonian isotopy generated by H,

then

φt = c◦φ2−t ◦φ−1
2 ◦ c =⇒ (c◦φ2)2 = 11. (2.1)

Let (H,J) and (H′,J′) be the two halves of H, then

Ht = H′1−t ◦ c and Jt = −dc◦ J′1−t ◦dc,

Let φ′t denote the Hamiltonian isotopy generated by H′, then

φ′t = c◦φ1−t ◦φ−1
1 ◦ c

It follows that if l is a Hamiltonian path generated by H connecting x,y ∈ L, then l′(t) :=

c◦ l(1− t) is a Hamiltonian path generated by H′ connecting y, x ∈ L, and the double γ = δ(l)

is a periodic orbit for H. This correspondence lifts to the covering spaces and the following

holds.

Lemma 2.3. For l̃ ∈ P̃LM let γ̃ = δ(̃l), then

aH(̃γ) = 2aH (̃l) = 2aH′ (̃l
′).

Moreover, if l̃ is a critical point of aH then γ̃ is a critical point of aH. If γ̃ is non-degenerate,

then l̃ is as well. A Floer trajectory for aH is taken to a Floer trajectory for aH by δ, which

converges to the corresponding critical points when the trajectory has finite energy. �

A result from [2] relates the Conley-Zehnder indices of connecting paths generated by

H and H′.

Lemma 2.4 (Lemma 5.2 of [2]). Let l̃ and l̃′ be respective critical points of aH and aH′ as

above. Then µH (̃l) = µH′ (̃l
′). �
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2.3 Index comparison

We briefly recall the definition of Conley-Zehnder index using the Maslov index of paths of

Lagrangian subspaces as in Robbin-Salamon [5]. Let l̃ = [l,w] be a non-degenerate critical

point of aH. Then w : D2
+ → M and l = ∂w is a Hamiltonian path. There is a symplectic

trivializationΦ of w∗T M given by Φz : Tw(z)M→ Cn with the standard symplectic structure

ω0 on Cn. Furthermore, we require that Φr(Tw(r)L) = Rn, for r ∈ [−1,1] ⊂ D2
+. Then the

linearized Hamiltonian flow dφt along l defines a path of symplectic matrices

Et = Φeiπt ◦dφt ◦Φ−1
1 ∈ S p(Cn) (2.2)

Then the Conley-Zehnder index of l̃ is given by

µH (̃l) = µ(EtR
n,Rn)

where µ is the Maslov of paths of Lagrangian subspaces introduced in [5].

We continue with the notations of Lemma 2.3.

Proposition 2.5. Suppose that all the critical points involved are non-degenerate, then

µH (̃l)+µH′ (̃l
′)−µH (̃γ) =

1

2
sign(Q), (2.3)

where Q(•,∗) = Ω((11−dφ2)•,dc(∗)) is a quadratic form on Tl(0)M.

Proof: For notational convenience, we denote

l̃+ = l̃, l̃− = l̃′,H+ = H,H− = H′,φ+t = φt and φ−t = c◦φ1−t ◦φ−1
1 ◦ c for t ∈ [0,1],

then φ± is the flow generated by H±. Assume that we can choose the trivialization Φz :

Tv(z)M → Cn of v∗T M so that Φz = cz ◦Φz ◦ dc, where cz : Cn → Cn is the complex con-

jugation, which takes ω0 to −ω0. In particular, Φr(Tv(r)L) = cz ◦Φr ◦ dc(Tv(r)L) = Rn for

r ∈ [−1,1]. Define the following paths of symplectic matrices:

Ft = Φeiπt ◦dφt ◦Φ−1
1 for t ∈ [0,2] and F±t = Φ±eiπt ◦dφ±t ◦Φ−1

±1 for t ∈ [0,1],

Then Ft = cz ◦F2−t ◦F−1
2
◦ cz and

µH(̃γ) = µ((Ft ,11)4,4) and µH± (̃l±) = µ(F±t R
n⊕Rn,4)

where 4 : Cn→ Cn⊕Cn is the diagonal and the symplectic structure on Cn⊕Cn is given by

Ω0 = ω0⊕ (−ω0). We have by additivity of Maslov index:

µH(̃γ) = µ((F+t ,11)4,4)+µ((F−t ◦F1,11)4,4)

and the left hand side of (2.3) is the sum of the following differences:

µ(F+t R
n ⊕Rn,4)−µ((F+t ,11)4,4) and µ(F−t R

n⊕Rn,4)−µ((F−t ◦F1,11)4,4).

For F ∈ S p(Cn), (F,11)−14 = (11,F)4, thus the first difference is

µ(F+t R
n⊕Rn,4)−µ((F+t ,11)4,4) = µ((11,F+t )4,4)−µ((11,F+t )4,Rn⊕Rn)

=s(Rn ⊕Rn,4;4, (11,F1)4) = s(Rn⊕Rn, (11,F1)4;4, (11,F1)4)
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where s is the Hömander index (cf. [5]) and the last equality follows from the following

properties of Hörmander index for Lagrangian subspaces A,B,C,D,D′ :

s(A,B; A,C) = s(A,B; A,C)−s(A,C; A,C) = s(C,B; A,C)

s(A,B;C,D)− s(A,B;C,D′) = s(A,B; D′,D).
(2.4)

Let c′ :Cn⊕Cn→ Cn⊕Cn : (z1,z2) 7→ (z2,z1), then c′ preserves 4 and Rn⊕Rn while reverses

the sign of the symplectic structure, thus

s(Rn ⊕Rn, (11,F1)4;4, (11,F1)4) = −s(Rn ⊕Rn, (F1,11)4;4, (F1,11)4).

For the second difference, we get

µ(F−t R
n ⊕Rn,4)−µ((F−t ◦F1,11)4,4)

=µ((11,F−t )4, (F1,11)4)−µ((11,F−t )4,Rn⊕Rn)

=s(Rn⊕Rn, (F1,11)4;4, (11,F−1 )4).

It follows that the difference on the left side of (2.3) is

s(Rn ⊕Rn, (F1,11)4;4, (11,F−1 )4)− s(Rn ⊕Rn, (F1,11)4;4, (F1,11)4)

=s(Rn ⊕Rn, (F1,11)4; (F1,11)4, (11,F−1 )4).

We now identify the last Hömander index as the signature. Let L =Rn⊕Rn, K = (F1,11)4
and L′ = (11,F−

1
)4, then they are pairwisely transverse, by the non-degeneracy assumption.

Thus in the splitting C2n = L⊕K we may write L′ as the graph of an invertible linear map

f : K → K∗ � L and let KL′ = graph(t f ), t ∈ [0,1] be the path of Lagrangian subspaces

connecting K to L′ then

s(L,K; K,L′ ) = µ(KL′ ,K)−µ(KL′ ,L) = µ(KL′ ,K) =
1

2
sign(Q′) (2.5)

where Q′(v) = Ω0(v, f (v)) for v ∈ K is a quadratic form on K. Choose the following coordi-

nates

L = {(x,y)|x,y ∈ Rn},K = {(F1(z),z)|z ∈ Cn} and

L′ = {(w,F−1 (w))|w ∈ Cn} = {(w,F−1
1

(w))} = {(F1(w),w)},

where we note F−
1
= c◦F−1

1
◦ c, then it’s easy to check that

f : K→ L : z 7→ (x,y) = −(F1(z)+F1(z),z+ z)

and for v = (F1(z),z)

Q′(v) =−ω0(F1(z),F1(z))+ω0(z,z)

=−ω(F1(z),F1 ◦F−1
2 (z))+ω0(z,z)

=ω0((11−F2)(z),z)

=Q(z).
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Together with (2.5), we are done.

We now show the existence of a trivializationΦz withΦz = cz◦Φz ◦dc. Let V± be the ±1

eigen-bundle of dc action on v|∗
[−1,1]

T M, then they are transversal Lagrangian subbundles.

Since [−1,1] is contractible, we trivialize V+ and choose a section {e j
r}nj=1

for r ∈ [−1,1] of

the frame bundle. The induced trivialization of V− is then given by { f j
r }nj=1

whereω(e
j
r , f k

r )=

δk j. Then the trivializationΦr can be defined by {e j
r, f k

r } 7→ standard basis of Cn = Rn⊕ iRn.

Then the trivializationΦr satisfies Φr = cz ◦Φr ◦dc. Extend it to D2
+ to obtain trivialization

Φz for z ∈ D2
+. Now define Φz for z ∈ D2

− by Φz = cz ◦Φz ◦ dc and Φz∈D2 gives a continuous

trivialization of v∗T M with the desired property. �

2.4 Diagonal

For (M,L) = (X ×X,4), the doubling construction applies. Let pi : M→ X, for i = 1,2, be

the projection to the i-th factor, then we obtain the following maps

δi = pi ◦ δ : Map(Σ,∂Σ; M,4)→ Map(Σ∪∂ Σ; X)

which are natural isomorphism between the spaces of continuous maps. As special cases,

the doubling gives isomorphisms of the path / loop spaces and the respective covering

spaces:

δi :P4(M)→ Ω(2)(X) and δi : P̃4(M)→ Ω̃(2)(X)

More explicitly, for example, for l ∈ P4(M) we write l(t) = (l1(t), l2(t)) then

(δ1(l))(t) =

{
l1(t) for t ∈ [0,1]

l2(2− t) for t ∈ [1,2]

This isomorphism extends to their corresponding normed completions as well. They also

induce the isomorphisms δi : π2(M,4)→ π2(X). The exact sequence of homotopy groups

gives

. . .→ π2(4)→ π2(M) � π2(X)×π2(X)
j−→ π2(M,4)→ . . .

Then we have for β ∈ π2(X):

δ1 ◦ j(β,0) = δ2 ◦ j(0,−β) = β

It’s straight forward to see that for β ∈ π2(X), δ2 ◦ δ−1
1

(β) = −β = τ(β). The isomorphism

of homotopy group gives rise the isomorphism δi : Γ4 � Γω as well as the corresponding

Novikov rings. More precisely, for aβe
β ∈Λ4, we have

δ1(aβe
β) = aβe

δ1(β) ∈ Λω and δ2(aβe
β) = (−1)

1
2µ4(β)aβe

δ2(β) ∈ Λ−ω

then δ2 ◦ δ−1
1

: Λω → Λ−ω coincides with the isomorphism induced by reversing the sym-

plectic structure on (X,ω) (cf. [2] §4).

Let {Ht, Jt}t∈[0,2] be a pair of periodic Hamiltonian functions and compatible almost

complex structures on (X,ω), then

(Ht,Jt) = (Ht ⊕H2−t,Jt ⊕−J2−t)
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is a c-symmetric pair on M = X × X, with symplectic form Ω = ω⊕ (−ω). Let {φt}t∈[0,2]

denote the Hamiltonian isotopy generated by Ht on X, then {ψt = (φt,φ2−t ◦φ−1
2

)}t∈[0,2] is the

Hamiltonian isotopy generated by Ht on M. It follows that x ∈ X is a non-degenerate fixed

point of φ2 iff (x, x) ∈ 4 is a non-degenerate fixed point of ψ2.

Let (H1,J1) and (H2,J2) be the two halves of (H,J), i.e.

(H1,J1) = (Ht,Jt)t∈[0,1] and (H2,J2) = (Ht+1,Jt+1)t∈[0,1]

Let l̃ ∈ P̃4M be a critical point of aH1 , then Lemma 2.3 implies that γ̃ = δ(̃l) ∈ Ω̃(2)(M) is a

critical point of aH. Let γ̃1 = p1 (̃γ) = δ1(̃l) ∈ Ω̃(X), then it is a critical point of aH. Similarly,

γ̃2 = p2 (̃γ) is a critical point of aH, with Ht = H2−t. Furthermore, the non-degeneracy of any

one of these critical points implies that all the rest are also non-degenerate.

Lemma 2.6. Suppose that all critical points involved are non-degenerate, then µH (̃γ) =

2µH(̃l). It follows that

µH (̃l) = µH (̃γ1)

Proof: The critical point γ̃ is determined by it projection to the two factors, γ̃1 and γ̃2.

Notice that ψt = (φt,φ2−t◦φ−1
2

), in (2.2), the identificationΦmay chosen such that it respects

the decomposition T M = p∗
1
T X ⊕ p∗

2
T X. Then it’s clear that

µH(̃γ) = µH (̃γ1)+µH (̃γ2)

Similar to Lemma 5.2 of [2], straight forward computation shows that

µH (̃γ1) = µH (̃γ2)⇒ µH(̃γ) = 2µH (̃γ1)

Now we only have to see that µH(̃γ) = 2µH(̃l). By Lemma 2.4 and Proposition 2.5, we

only need to compute sign(Q). Let γ(0) = (x, x) ∈ 4 and ξ1,ξ2 ∈ TxX, then ξ = (ξ1,ξ2) ∈
Tγ(0) M and

Q(ξ,ξ) = Ω((11−dψ2)(ξ1,ξ2), (ξ2,ξ1))

=ω((11−dφ2)ξ1,ξ2)−ω((11−dφ2)ξ2,ξ1)

=2ω((11−dφ2)ξ1,ξ2)

It follows that sign(Q) = 0. �

2.5 Proof of the lemma

The lemma follows from the following proposition and Proposition 4.2 of [2] which relates

the quantum homology of opposite symplectic structures.

Proposition 2.7. δ1 induces a natural isomorphism of the Floer theories

δ1 : FH∗(M,4;Ω) � FH∗(X,ω).
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Proof: Using the notations from the last subsection, we first compare the action functionals.

Let l̃ = [l,w] ∈ P̃4M and γ̃1 = [γ1,v1] so that γ̃1 = δ1 (̃l), then

aH([γ1,v1]) = −
∫

D2

v∗1ω+

∫

[0,2]

Ht(γ1(t))dt = −
∫

D2
+

w∗Ω+

∫

[0,1]

Ht(l(t))dt = aH([l,w]).

Let {ξt}t∈[0,2] be a vector field along γ1, then {ηt = (ξt,ξ2−t)}t∈[0,1] is a vector field along l

with η0,1 ∈ T4 and vice versa. This gives the isomorphism on the tangent spaces:

Dδ1 : TlP4M→ Tγ1
Ω(2)(X) : η 7→ ξ.

It then follows that for η,η′ ∈ TlP4M and the corresponding ξ’s:

(ξ,ξ′)J =

∫

[0,2]

ω(ξt , Jt(ξ
′
t ))dt =

∫

[0,1]

ω(ξt, Jt(ξ
′
t ))dt+ω(ξ2−t, J2−t(ξ

′
2−t))dt = (η,η′)J.

From these we see that the Floer equations for the two theories are identified by δ1 and the

moduli spaces of smooth solutions are isomorphic for the two theories.

By Lemma 2.6, the gradings of the two theories coincide via δ1. We consider the

orientations. Let’s first orient the moduli spaces of holomorphic discs in (M,4). Here we

may assume that the almost complex structures involved are generic. The map δ1 induces

δ1 : H∗(M,4)→ H∗(X)

as well as the maps between the moduli spaces of (parametrized) holomorphic objects (discs

or spheres):

δ1 : M̃(M,4; J,B)→M̃(X; J,δ1(B)).

The map δ1 is an isomorphism. We the put the induced orientation on the moduli space

of discs. The moduli spaces of caps are similarly related by δ1 and the orientations for a

preferred basis on either theory can be chosen to be compatible with respect to δ1. It then

follows that the orientations of the theories coincide under δ1.

To identify the two theories in full, we study the compactifications of the moduli spaces,

in particular the compactifications by bubbling off holomorphic discs/spheres. The partial

compactification given by the broken trajectories is naturally identified by δ1 and the iden-

tification of the Floer equations.

Consider next the moduli spaces of holomorpic discs in (M,4). The map δ1 defined

for the moduli spaces above extends to objects with marked points, which, for spheres, are

along RP1 ⊂ CP1 while for the discs, are along the boundary:

δ1 : M̃k(M,4; Ji,B)→M̃k(X; Ji,δ1(B)) for i = 0,1.

When we pass to the unparametrized moduli spaces, we also denote the induced map δ1.

Next, we consider the evaluation maps from the moduli spaces of objects with 1-marked

point:

ev4 :M1(M,4; Ji,B)→4 and ev :M1(X; Ji,δ1(B))→ X.

Let p1 : 4→ X be the natural projection, then we see that

p1 ◦ ev4 = ev◦ δ1.
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In particular, the image of the evaluation map ev4 has at most the same dimension as that

of ev (in fact, they coincide via p1):

dimR = 2c1(T X)(B)+2n−4.

The bubbling off of spheres are similar. The Floer theory FH∗(X,ω) is well defined and it

follows that FH∗(M,4;Ω) is well defined as well and they are isomorphic. �

Recall from [2] (Proposition 5.5) that the Lagrangian Floer theories of (M,4,Ω) and

(M,4,−ω) are related by an isomorphism

τ∗ : FH∗(M,4,Ω;H,J)→ FH∗(M,4;−Ω;H,J)

where H
t
= H2−t and J

t
= −J2−t here. We observe that the involution c on M identifies the

tuples:

c : (M,4,−Ω;H,J)→ (M,4;Ω;H,J)

and the induced map of c on Floer homology composed with τ∗ is the identity map. The

Lemma 1.1 is given by the following diagram

FH∗(M,4;Ω)
τ∗
�

//

δ1

��

FH∗(M,4;−Ω)
c∗

//

δ1

��

FH∗(M,4;Ω)

δ2ttiiiiiiiiiiiiiiii

FH∗(X,ω)
τ

�

// FH∗(X,−ω)

The commutativity of the left square follows from the discussion of reversing the symplectic

structure in [2] (§4 – 5), while it’s obvious that the right triangle commutes.

Corollary 2.8. The half pair of pants product is well defined for FH∗(M,4) and it has a

unit.

Proof: Everything is induced from FH∗(X,ω) using the map δ1. �

3 Seidel elements and the Albers map

Let Ω0Ham(M,Ω) be the space of loops in Ham(M,Ω) based at 11. It’s a group under

pointwise composition. In Ω0Ham(M,Ω), a loop g is split if g = (g1,g2) is in the image of

the natural maps

Ω0Ham(X,ω)×Ω0Ham(X,−ω)→ Ω0Ham(M,Ω)

Otherwise, it is non-split. Similarly, such notions are defined for the π1 of the Hamiltonian

groups.

3.1 Split loops

In Seidel [6], the covering space Ω̃0Ham(M,Ω) is defined as

Ω̃0Ham(M,Ω) :=

{
(g, g̃) ∈Ω0Ham(M,Ω)×Homeo(Ω̃(M))

∣∣∣∣ g̃ lifts the action of g

}



244 S. Hu and F. Lalonde

with covering group ΓΩ. We use g̃ to denote an element in Ω̃0Ham(M,Ω). The results in

[2] imply that, similar to [6], g̃ defines a homomorphism FH∗ (̃g) of FH∗(M,4) as a module

over itself. Recall that δ1 : Γ4 � Γω. Moreover, in the homotopy exact sequence

. . .→ π2(4)
i−→ π2(M)→ π2(M,4)→ . . .

we have img(i) ⊂ kerc1 ∩kerΩ, from which it follows that ΓΩ � Γ4.

In the following, we parametrize the loops in Ω0Ham(X,ω) by [0,2] and those in

Ω0Ham(M,Ω) by [0,1]. For α ∈ Ω0Ham(X,ω), define the reparametrization α( 1
2 )(t) = α(2t)

for t ∈ [0,1]. The natural injective map

i+ :Ω0Ham(X,ω)→ Ω0Ham(M,Ω) : α 7→ α+ = (α( 1
2

),11)

lifts to an injective map ĩ+ on the corresponding covering spaces (see the proof of Proposi-

tion 3.1). For α̃ ∈ Ω̃0Ham(X,ω), let α̃+ = ĩ+(α̃+) ∈ Ω̃0Ham(M,Ω) and α̃− = ĩ−(α̃) where ĩ−
is the lifting of

i− :Ω0Ham(X,−ω)→ Ω0Ham(M,Ω) : α 7→ α− = (11, (α−)( 1
2

))

We note that α̃• is determined by the image of any element in Ω̃0(M) by the unique lifting

property of covering space. Take the trivial loop p = (x,y) ∈ M, then x ∈ M is a trivial

loop in Ω0(X). Let α̃(x̃) = [α(x),w] ∈ Ω̃0(X), where x̃ = [x, x] ∈ Ω̃0(X). Then α̃+(p̃) =

[(α( 1
2 )(x),y),w×{y}].

Proposition 3.1. The following diagram commutes

FH∗(M,4;Ω)
δ1

//

FH∗(α̃±)

��

FH∗(X,ω)

FH∗(α̃)

��

FH∗(M,4;Ω)
δ1

// FH∗(X,ω)

A similar diagram is commutative with δ2 and FH∗(α̃−) in places of δ1 and FH∗(α̃).

Proof: We describe the case for α̃+ and α̃− is similar. Let l̃ ∈ P̃4M and γ̃ = δ1 (̃l) ∈ Ω̃(2)(X).

By definition we have l(t) = (γ(t),γ(2− t)) for t ∈ [0,1] and h1 acts on l by

(α+ ◦ l)(t) = (α2t ◦γ(t),γ(2− t))

Then

(δ1(α+ ◦ l))(t) =

{
α2t(γ(t)) for t ∈ [0,1]

γ(t) for t ∈ [1,2]

which implies that

δ1(α+ ◦ l) = (α( 1
2 )#11)◦γ = (α( 1

2 )#11)◦ δ1(l)

Notice that α( 1
2

)#11 and α differ by a reparametrization. The equality above lifts to the

covering of the loop spaces and gives a chain level identity for the respective Floer theories.

In particular

δ1 ◦FH∗(α̃+) = FH∗(α̃)◦ δ1
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�

For α ∈ Ω0Ham(X,ω), let α̃ be a lifting to Ω̃0Ham(X,ω). The corresponding Seidel

element is

ΨX(α̃) := FH∗(α̃)(11) ∈ FH∗(X,ω)

where 11 is the unit of the pair of pants product. Moreover, for any other lifting α̃′ of α,

there is B ∈ Γω such that

ΨX(α̃′) = eBΨX(α̃)

Similarly, the Lagragian Seidel element is given by

Ψ4(α̃+) = Ψ4(α̃−) = FH∗(α̃+)(11)

where 11 is the unit of the half pair of pants product.

Corollary 3.2. For α̃, α̃± as given above we have δ1(Ψ4(α̃+)) = δ1(Ψ4(α̃−)) = ΨX(α̃). �

Since any split loop is the product of (α,11) and (11,α′), it follows that the split loops in

Ω0Ham(M,Ω) generate Seidel elements in FH∗(X,ω).

3.2 The Albers’ map

Here we argue that the Albers’ map is well defined for the example under consideration,

where X = (S 2 × S 2,ω0 ⊕ λω0) with λ ∈ (1,2]. Recall that the map A : FH∗(M,Ω) →
FH∗(M,4;Ω) is defined by counting of maps from the “chimney domain” R× [0,1]/ ∼:

−∞ 0 +∞

H

γ̃ l̃

R× [0,1]/ ∼

where (s,0) ∼ (s,1) when s 6 0, and the conformal structure at (0,0) is given by
√

z. In

the figure above, the shaded left half of the strip has its two boundaries glued together

forming a half infinite cylinder. At −∞ it converges to γ̃, a critical point for the Floer theory

FH∗(M,Ω), while at +∞ it converges to l̃, a critical point for the Floer theory FH∗(M,4;Ω).

In [1], the map A is defined for monotone Lagrangians. Here, (M,4) is not monotone

because

c1(T M)((0100)− (1000)) = 0 while ω((0100)− (1000)) = λ−1 > 0

On the other hand, for generic ω-compatible J on X, the class (0100)− (1000) is not rep-

resented by J-holomorphic spheres. In fact, the space of non-generic J’s has codimension
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2. We choose such a generic pair (H,J) (for the Floer theory FH∗(X,ω)) then the corre-

sponding c-symmetric pair (H,J) on (M,Ω) is also generic for the Floer theories FH∗(M,Ω)

and FH∗(M,4;Ω). Since there is no holomorphic disc with non-positive Maslov number,

the compactification of the 0-dimensional “chimney” moduli spaces would not contain disc

bubblings. Similarly, we see that sphere bubblings can also be ruled out. It then follows

that the map A is well-defined.

3.3 Non-split loops

We showed that in Ω0Ham(M,Ω), there could be non-split loops, by computing directly

the corresponding Seidel elements in QH∗(M,Ω). For such loops, Proposition 3.1 does not

apply. On the other hand, let g ∈ Ω0Ham(M,Ω) be a non-split loop and g̃ be a lifting to

Ω̃0Ham(M,Ω), then it defines a Seidel element ΨM (̃g) ∈ FH∗(M,Ω). The Albers’ map [1]

A relates FH∗(M,Ω) and FH∗(M,4) when it’s well defined, in which case, we have

A ◦ΨM (̃g) = Ψ4(̃g) ∈ FH∗(M,4) and δ1 ◦A ◦ΨM (̃g) ∈ FH∗(X,ω)

Consider (X,ω) = (S 2 × S 2,ω0 ⊕ λω0) for λ ∈ (1,2] and compute δ1 ◦A ◦ΨM (̃g) for

a non-split loop g. Also recall that McDuff [4] showed that liftings of the loops in the

Hamiltonian group may be chosen such that

ΨX : π1Ham(X,ω)→ QH∗(X,ω) : α 7→ α̃ 7→ ΨX
α := ΨX(α̃)

is a group homomorphism. Let ψ = ΨM
S ′, i.e.

ψ =
[
(0111)− (1110)

]
e

1
2 (1000)+h[(0001)+(1000)]

To compute δ1 ◦A (ψ), we note first that δ1 ◦A is linear with respect to the identifications

of the Novikov rings. Consider the following Seidel elements of split loops:

ΨM
R1
= (0111)e

1
2 (1000) and ΨM

R2
= −(1110)e−

1
2 (0001)

then

δ1 ◦A ◦ΨM
R1
= δ1(Ψ4(R1)) = ΨX(r1) = (01)e

1
2

(10)

δ1 ◦A ◦ΨM

R2
= δ1(Ψ4(R2)) = ΨX(r2) = (10)e

1
2

(01)

where we use ri to denote the rotation of the i-th S 2 factor of X. In particular, we recall that

via the identifications of Novikov rings,

e
1
2 (1000) 7→ e

1
2 (10) and e−

1
2 (0001) 7→ e

1
2 (10)

It follows that

δ1 ◦A (ψ) = [(01)+ (10)]e
1
2 (10)+h[(10)−(01)] = ΨX(s)

where s represents the element of infinite order in π1Ham(X,ω). In summary, we showed

Proposition 3.3. Under δ1 ◦A the Seidel elements of the non-split loops in Ham(M,Ω)

constructed in [3] map to the Seidel elements of the loops of infinite order in Ham(X,ω). �
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