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Abstract

Using the Sasakian join construction with homology 3-spheres, we give a count-
ably infinite number of examples of Sasakian manifolds with perfect fundamental
group in all odd dimensions≥ 3. These have extremal Sasaki metrics with constant
scalar curvature. Moreover, we present further examples of both Sasaki-Einstein and
Sasaki-η-Einstein metrics.
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1 Introduction

Until recently, except for the rather obvious examples, little seemed to be known about
Sasakian manifolds with non-trivial fundamental group; see, however, [Che11]. In this
note we construct many examples of Sasakian manifolds with a perfect fundamental group.
The examples we present all have extremal Sasaki metrics (in the sense of Calabi), and
have constant scalar curvature. When the Sasaki cone has dimension greater than one,
the Openness Theorem of [BGS08] implies the existence of other extremal Sasaki metrics
which generally do not have constant scalar curvature. We leave for future work the explicit
construction of extremal non constant scalar curvature Sasaki metrics. Our main purpose
here is to prove the following theorems:
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Theorem 1.1. For each odd dimension≥ 3 there exists a countable infinity of Sasakian
manifolds with a perfect fundamentfinial group which admit Sasaki metrics with constant
scalar curvature. Furthermore, there is an infinite number of such Sasakian manifolds that
have the integral cohomology ring of S2×S2r+1.

Theorem 1.2. There exist a countably infinite number of aspherical contact 5-manifolds
with perfect fundamental group and the integral cohomology ring of S2 ×S3 that admit
Sasaki metrics with constant scalar curvature. Moreover, there are such manifolds that
admit a ray of Sasaki-η-Einstein metrics (hence, Lorentzian Sasaki-Einstein metrics).

The manifolds of Theorem1.2 differ from those of Theorem1.1 with r = 1 which are
not aspherical since they haveπ3 = Z.

Theorem 1.3. There exist negative Sasaki-η-Einstein (hence, Lorentzian Sasaki-Einstein)
7-manifolds with perfect fundamental group and arbitrary second Betti number≥ 1.

Theorem 1.4.Let N be a simply connected quasi-regular Sasaki-Einstein(2r +1)-dimensional
manifold with Fano index IF and orderυ. Then ifgcd(30IF ,υ) = 1, the join S3/I∗ ?1,IF N is
a smooth(2r + 3)-manifold with perfect fundamental group and admits a Sasaki-Einstein
metric. Such examples exist with rational cohomology ring of S2 ×S2r+1 for all r ≥ 1.
Moreover, S3/I∗ ?1,2 S3 is Sasaki-Einstein and has integral cohomology ring of S2×S3.

Many other examples of both Sasaki-Einstein and Sasaki-η-Einstein manifolds with
perfect fundamental group can be worked out by choosingN appropriately, as for exam-
ple in Chapters 11 and 13 of [BG08], and in particular the 5-dimensional Sasaki-Einstein
manifolds in [BGK05, Kol05, Kol07, BN10].

After presenting the necessary foundations in Sections2 and3, the proofs of Theorems
1.1-1.4are given, respectively, in Subsections5.1-5.4. The topological parts are presented
in Section4, and the geometrical parts in Section5.

2 Preliminaries on Sasakian Geometry

Here we give a brief review of Sasakian geometry referring to [BG08] for details and further
development. Sasakian geometry can be thought of roughly as the odd dimensional version
of Kählerian geometry. Its relation to contact geometry mimics the relation of Kähler ge-
ometry to symplectic geometry.

2.1 Sasakian Structures

A Sasakian structure on a smooth manifoldM of dimension 2n+ 1 consists of a contact
1-form η together with its Reeb vector fieldξ which satisfiesη(ξ) = 1 andξ dη = 0, an
endomorphism fieldΦ which annihilatesξ and defines a strictly pseudoconvex CR structure
(D,J) satisfyingD = kerη andJ = Φ|D, and finally a compatible Riemannian metricg
defined by the equation

g = dη◦ (Φ⊗1l)+η⊗η, (1)

such thatξ is a Killing vector field ofg. We denote such a Sasakian structure by the
quadrupleS = (ξ,η,Φ,g). Note that the Reeb vector fieldξ generates a one dimensional
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foliation Fξ of M whose transverse structure is Kähler with transverse K̈ahler formdη. The
transverse K̈ahler metric onD is gT = dη◦ (Φ⊗1l). There is a freedom of scaling, namely,
given a Sasakian structureS = (ξ,η,Φ,g) consider thetransverse homothetydefined by
sending the Sasakian structure to

S = (ξ,η,Φ,g) 7→ Sa = (a−1ξ,aη,Φ,ga) wherea∈R+ andga = ag+(a2−a)η⊗η. (2)

Sa is another Sasakian structure which generally is inequivalent toS; hence, Sasakian struc-
tures come in rays.

WhenM is compact the closure of any leaf ofFξ is a torusT of dimension at least one,
and the flow is conjugate to a linear flow on the torus (cf. Theorem 2.6.4 of [BG08]). This
implies that for a dense subset of Sasakian structuresS on a compact manifold the leaves
are all compact 1-dimensional manifolds, i.e circles. SuchS are known asquasiregularin
which case the foliationFξ comes from a locally free circle action. Assuming this circle
action is effective the isotropy subgroups are all finite cyclic groups, and the least common
multiple υ = υ(S) of theirs orders is an invariant of the Sasakian structureS, called the
order of S. Then the quotient spaceZ has the structure of a projective algebraic orbifold
with an induced K̈ahler formω such thatπ∗ω = dη whereπ is the quotient projection. The
isotropy subgroups of the local circle action onM give rise to the local uniformizing groups
of the orbifold. If the circles comprising the leaves ofFξ all have the same period,S is
said to beregular, and the quotient spaceZ is a smooth projective algebraic variety with
a trivial orbifold structure. A leaf ofFξ that is not quasi-regular is a copy ofR in which
caseFξ is said to beirregular. A theorem of Rukimbira [Ruk95] says that an irregular
Sasakian structure can be approximated by quasi-regular ones. A somewhat more general
case occurs if we drop the condition that(D,J) be a CR structure, but only consider a strictly
pseudoconvexalmostCR structure, that is, the almost complex structureJ is not necessarily
integrable. ThenS = (ξ,η,Φ,g) is called aK-contactstructure. A quasi-regular contact
structure is equivalent to having a compatible K-contact structure [Ruk95]. All K-contact
structures considered in this paper are Sasakian. The (almost) complex structureĴ onZ is
also related to the (almost) CR structureJ on M. For any foliate vector fieldX on M we
haveπ∗ΦX = Ĵπ∗X. We say thatJ = Φ|D is thehorizontal liftof Ĵ.

The flow of the Reeb vector fieldξ lies in the center of the automorphism group
Aut(S) of a Sasakian structureS = (ξ,η,Φ,g); hence, any Sasakian structure on a compact
(2n+ 1)-dimensional manifold has ak-dimensional torusTk in its automorphism group,
where 1≤ k ≤ n+ 1. The subsett+k of the Lie algebratk of this torus consisting of vec-
tor fieldsξ′ that satisfy the positivity conditionη(ξ′) > 0 everywhere onM forms a cone
called theSasaki cone[BGS08]. It provides ak-dimensional family of Sasakian struc-
tures associated withS all having the same underlying CR structure(D,J). There can be
many Sasaki cones associated with the same contact structureD as seen, for example, in
[Boy10, Boy11, BTF11, BTF12]. These give rise to bouquets of Sasaki cones which cor-
respond to distinct conjugacy classes of tori in the contactomorphism groupCon(D). For
more on the important infinite dimensional Fréchet Lie groupCon(D) we refer to Banyaga’s
seminal book [Ban97].

The conditions on the Riemannian curvature for Sasaki metrics have been very well
studied, and we refer to [Bla10, BG08] and references therein for details. It suffices here
to mention only some basic facts about the Ricci curvature andΦ sectional curvature of
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a Sasaki metric. LetS = (ξ,η,Φ,g) be a Sasakian structure on a(2n+ 1)-dimensional
manifold, then the Ricci curvature Ricg of g satisfies the identities

ξ Ricg = 2nη, Ricg|D×D = RicT −2g|D×D (3)

where RicT denotes the Ricci curvature of the transverse Kähler metric. One easily sees
from these equations that the corresponding scalar curvatures are related by

sg = sT −2n. (4)

If K is the ordinary Riemannian sectional curvature ofg, then theΦ sectional curvature
of g is defined byK(X,ΦX) whereX is any vector field. Sasaki metrics of constantΦ
sectional curvature are known asSasakian space forms. There are three types of Sasakian
space forms, those withK(X,ΦX) = c > −3,< −3 and= −3. Within each type differ-
ent constants are related by a transverse homothety. If we have a Sasakian space form of
constantΦ sectional curvaturec, then after a transverse homothety Equation (2), we ob-
tain a Sasakian space form of constantΦ sectional curvaturec′ = c+3

a − 3. They are the
analogs of constant holomorphic sectional curvature in complex geometry. Indeed, under
the Boothby-Wang correspondence constantΦ sectional curvaturec corresponds precisely
to constant holomorphic transverse sectional curvaturek = c+ 3. Assuming the Sasakian
manifold is simply connected, in the spherical or positive case (c > −3) the transverse
Kähler structure is that of complex projective spaceCPn; whereas, in the hyperbolic or
negative case (c < −3) the transverse K̈ahler structure is that of the complex hyperbolic
ball Bn. Finally we make note of the Ricci tensor for the transverse Kähler structures of
constant holomorphic sectional curvaturek, viz.

RicT =
n+1

2
kgT . (5)

2.2 The Join Construction

We shall make use of thejoin constructionfirst introduced in [BG00] in the context of
Sasaki-Einstein manifolds, and developed further for general Sasakian structures in [BGO07],
see also Section 7.6.2 of [BG08]. Products of K̈ahlerian manifolds are K̈ahler, but products
of Sasakian manifolds do not even have the correct dimension. Nevertheless, one can easily
construct new quasi-regular Sasakian manifolds from old quasi-regular ones by construct-
ing circle orbibundles over the product of Kähler orbifolds. LetMi for i = 1,2 be compact
quasi-regular contact manifolds with Reeb vector fieldsξi , respectively. These vector fields
generate locally free circle actions onMi and their quotients are symplectic orbifoldsZi .
Then the quotient of the productT2 = S1×S1 action onM1×M2 isZ1×Z2. Taking prim-
itive symplectic formsωi onZi we consider the symplectic formωk1,k2 = k1ω1 + k2ω2 on
Z1×Z2 wherek1,k2 are relatively prime positive integers. Then by the orbifold Boothby-
Wang construction [BG00] the total space of the principal circle orbibundle overZ1×Z2

corresponding to the cohomology class[ωk1,k2]∈H2(Z1×Z2,Z) has a natural quasi-regular
contact structure whose contact formηk1,k2 satisfiesdηk1,k2 = π∗ωk1,k2 whereπ is the nat-
ural orbibundle projection. Moreover, if the base spacesZi are complex orbifolds and the
ωi Kähler forms, the total space of this orbibundle, denoted byM1 ?k1,k2 M2, has a natural
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Sasakian structure. It is calledthe join of M1 andM2. Generally,M1 ?k1,k2 M2 is only an
orbifold; however, if gcd(υ1k2,υ2k1) = 1 it will be a smooth manifold, whereυi is the order
the Sasakian structures onMi . So ifMi has Sasakian structuresSi = (ξi ,ηi ,Φi ,gi) we obtain
a new Sasakian structureSk1,k2 onM1 ?k1,k2 M2 such that the following diagram

M1×M2

↘



y

πB M1 ?k1,k2 M2

↙
Z1×Z2

(6)

commutes. HereπB is the quotient projection of theT2 torus action, the southeast arrow
is the quotient projection by the circle action generated by the vector field1

2k1
ξ1 − 1

2k2
ξ2

and the southwest arrow is the quotient projection of the Reeb vector field1
2k1

ξ1 + 1
2k2

ξ2 of
M1 ?k1,k2 M2.

Although we are not able to distinguish diffeomorphism types ofM1?k1,k2 M2 generally,
we can distinguish contact structures by the first Chern classc1(D) of the contact bundle
D.

2.3 Extremal Sasakian Structures

Given a Sasakian structureS = (ξ,η,Φ,g) on a compact manifoldM2n+1 we deform the
contact 1-form byη 7→ η(t) = η + tζ whereζ is a basic 1-form with respect to the char-
acteristic foliationFξ defined by the Reeb vector fieldξ. Heret lies in a suitable interval
containing 0 and such thatη(t)∧dη(t) 6= 0. This gives rise to a family of Sasakian struc-
turesS(t) = (ξ,η(t),Φ(t),g(t)) that we denote byS(ξ, J̄) whereJ̄ is the induced complex
structure on the normal bundleν(Fξ) = TM/Lξ to the Reeb foliationFξ which satisfy
the initial conditionS(0) = S. On the spaceS(ξ, J̄) we consider the “energy functional”
E : S(ξ, J̄)−→R defined by

E(g) =
∫

M
s2
gdμg, (7)

i.e. theL2-norm of the scalar curvaturesg of the Sasaki metricg. Critical pointsg of this
functional are calledextremal Sasaki metrics. Similar to the K̈ahlerian case, the Euler-
Lagrange equations for this functional says [BGS08] that g is critical if and only if the
gradient vector fieldJgradgsg is transversely holomorphic, so, in particular, Sasakian met-
rics with constant scalar curvature are extremal. Since the scalar curvaturesg is related to
the transverse scalar curvaturesT

g of the transverse K̈ahler metric bysg = sT
g −2n, a Sasaki

metric is extremal if and only if its transverse Kähler metric is extremal. Hence, in the
quasi-regular case, an extremal Kähler orbifold metric lifts to an extremal Sasaki metric,
and conversely an extremal Sasaki metric projects to an extremal Kähler orbifold metric.
Note that the deformationη 7→ η(t) = η + tζ not only deforms the contact form, but also
deforms the contact structureD to an equivalent, isotopic, contact structure. So when we
say that a contact structureD has an extremal representative, we mean so up to isotopy.
Deforming the K̈ahler form within its K̈ahler class corresponds to deforming the contact
structure within its isotopy class.
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As mentioned above Sasaki metrics of constant scalar curvature are a special case of
extremal Sasaki metrics. We shall abbreviate constant scalar curvature by CSC. A further
special case of interest are the so-called Sasaki-η-Einstein metrics, or simplyη-Einstein
(see for example [BGM06, BG08] and references therein). Recall that a Sasakian (or K-
contact) structureS = (ξ,η,Φ,g) is calledη-Einsteinif there are constantsa,b such that

Ricg = ag+bη⊗η (8)

where Ricg is the Ricci curvature ofg. The constantsa,b satisfya+b= 2n. The scalar cur-
vaturesg of anη-Einstein metric is constant. Indeed, if the manifold has dimension 2n+1,
then the scalar curvature satisfiessg = 2n(a+1). However, as we can easily see, not every
constant scalar curvature Sasaki metric isη-Einstein. In fact, many of the CSC Sasaki met-
rics that we construct have a diagonal Ricci tensor consisting of constant diagonal blocks.
Notice that ifb = 0 we obtain the more familiar Einstein metric, soη-Einstein is a general-
ization of Einstein. In this case the scalar curvaturesg = 2n(2n+1) and the transverse scalar
curvature issT = 4n(n+1). Moreover, it follows from Equation (3) that a Sasaki metricg
is η-Einstein if and only if the transverse Kähler metrich is Einstein. So one easily sees
that a transverse K̈ahler-Einstein metric is negative if and only ifa < −2, and positive if
and only ifa>−2. We refer to these as negative (positive)η-Einstein metrics, respectively.
Furthermore, given a positiveη-Einstein metric there is a transverse homothety whose re-
sulting metric is Sasaki-Einstein. Even more is true in dimension 3: a 3-dimensional Sasaki
metric isη-Einstein if and only if it has constantΦ sectional curvature [BGM06].

It is easy to see that any Sasakian structure gives rise naturally to a Sasaki metric with
a Lorentzian signature, see Section 11.8.1 in [BG08]. Moreover, in the Lorentzian signa-
ture, one can apply a transverse homothety to a negative Sasaki-η-Einstein metric to obtain
a Lorentzian Sasaki-Einstein metric. Thus, we can obtain many examples of Lorentzian
Sasaki-Einstein metrics [Gom11].

3 Seifert Fibered Homology3-Spheres

Homology spheres are by definition manifolds whose integral homology coincides with that
of a sphere. In dimension 3 this is equivalent to the fundamental group beingperfect, that is,
it coincides with its commutator subgroup. We want the homology 3-spheres that we con-
sider to admit a Sasakian structure; hence, they must be Seifert fibered homology spheres
with an effective fixed point free circle action. Here we give a brief review of such homol-
ogy 3-spheres following [Sav02, LR10] and the translation of [Sei33] in [ST80]. It is known
that the binary icosahedral groupI∗ is the only non-trivial finite perfect subgroup ofSU(2)
(see page 181 in [Wol67]). It is a double cover of the simple groupI of order 60, the icosa-
hedral group. Moreover, it follows from Perelman’s proof of the Poincaré conjecture that
up to diffeomorphism the only compact 3-manifold with a non-trivial finite perfect funda-
mental group is the celebrated Poincaré sphereS3/I∗. The remainder of the Seifert fibered
homology 3-spheres, except forS3, can be realized as a homogeneous space of the form
P̃SL(2,R)/Γ whereP̃SL(2,R) denotes the universal cover of the projective linear group
PSL(2,R), andΓ is a cocompact discrete subgroup of̃PSL(2,R) [NR78, RV81, LR10].
Hence,π1(M3) is infinite andM3 is aspherical. Recall that a manifoldM is asphericalif
πk(M) = 0 for all k > 1. Summarizing we have
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Proposition 3.1. Let M3 be a Seifert fibered homology 3-sphere which is not the standard
sphere nor the Poincaré sphere. Then M3 is aspherical and a homogeneous space of the
form P̃SL(2,R)/Γ for some cocompact infinite discrete subgroupΓ. Furthermore,π1(M3)
is infinite and perfect.

3.1 The Orbifold Base

We consider the homology 3-sphere as the Seifert bundleS1−−→M3−−→B whereB is an
orbifold. As will become evident below in all cases the base of the Seifert fibration is
S2 with an orbifold structure. We refer the reader to Chapter 4 of [BG08] for the basics
of orbifolds. In order to work with orbifold cohomology classes we consider Haefliger’s
[Hae84] classifying spaceBB of an orbifoldB. We represent the orbifoldB by a propeŕetale
Lie groupoidG (or any Morita equivalent Lie groupoid) and letBB denote the classifying
space ofG, then the integral orbifold cohomology groups and homotopy groups are defined
by Hi

orb(B,Z) = Hi(BB,Z) and πorb
i (B,Z) = πi(BB,Z), see Section 4.3 of [BG08] for

further details.
We have

Lemma 3.2. Let M3 be a Seifert fibered homology 3-sphere that is not the standard sphere
S3. Thenπorb

1 (B) is a quotient ofπ1(M3), and hence, perfect. If M3 is not the Poincaŕe
sphere, thenπorb

i (B) = 0 for i ≥ 2 andπorb
1 (B)≈ π1(M3)/Z. If M3 = S3/I∗, thenπorb

2 (B)≈
Z, πorb

i (B) ≈ πi(S3/I∗) ≈ πi(S3) for i ≥ 3, andπorb
1 (B) is I.

Proof. Since in all casesπ2(M3) = 0 we have the homotopy exact sequence

0−−→πorb
2 (B)

ι
−−→Z

ψ
−−→π1(M

3)−−→πorb
1 (B)−−→{1} (9)

which proves the first statement. IfM3 is not the Poincaŕe sphere thenπ1(M3) is infinite,
so by Lemma 14.3.1 of [LR10] ψ is injective which proves the second statement. IfM3 is
the Poincaŕe sphere thenπ1(M3)≈ I∗ and Lemma 14.3.1 of [LR10] says thatB is S2. From
the exact sequence (9) and the fact thatπ1(M3) = I∗ we see thatπorb

1 (B) is eitherI∗ or I.
We claim that it must beI. The following argument is taken from [Zim11]. The orbifold
structure ofB is described by the branched coverS2−−→S2/G whereG is eitherI or I∗.
Now as we shall see shortly the Poincaré sphere can be represented by the linkL(2,3,5)
and the orbifold Riemann-Hurwitz formula is

χ(S2) = |G|
(
2−2g−∑

i

(1−
1
mi

)
)

whereχ is Euler characteristic andg is the genus of the Riemann surface, so we have
χ(S2) = 2, g = 0, and(m1,m2,m3) = (2,3,5). Thus, the formula gives|G| = 60, soG = I.
Then from the exact sequence (9) we see thatπorb

2 (B) ≈ Z and the mapι is multiplication
by 2.

In all cases in this paper the 2-dimensional orbifoldB is developable, that is, it is a
global quotient, namely,B = S2/πorb

1 (B).
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A result of Neumann and Raymond [NR78] says that up to orientation any Seifert
fibered homology 3-sphere can be realized as a link of complete intersections of gener-
alized Brieskorn manifolds [Ran75]. Moreover, it follows from Section 9.6 of [BG08] that
any such link admits a Sasakian structure. Seifert fibrations as complete intersections is
also treated in [Sav02, Loo84] as well as recently in Section 14.11 of [LR10].

3.2 Complete Intersections of Brieskorn Manifolds

Here we essentially follow Section 14.11 of [LR10]. Let a = (a0, ∙ ∙ ∙ ,an) be a sequence of
integers withai ≥ 2 and letC = (ci j ) be ann−1 by n+1 matrix of complex numbers. We
also assume that eachn−1 by n−1 minor determinant ofC is nonzero. Then the complex
variety

VC(a) = {z∈ Cn+1 | fi = ci0za0
0 + ∙ ∙ ∙+cinzan

n = 0, i = 0, ∙ ∙ ∙ ,n−2} (10)

is nonsingular away from the origin inCn+1, and the link

L(a) = VC(a)∩S2n+1 (11)

is a smooth 3-dimensional manifold which is independent ofC up to diffeomorphism. Note
thatVC has aC∗ action defined byz 7→ (λw0z0, ∙ ∙ ∙ ,λwnzn) with weights

wj =
lcm(a0, ∙ ∙ ∙ ,an)

aj
.

The unit circleS1 ⊂C∗ acts on the linkL(a) without fixed points, so it is a Seifert manifold.
The Seifert invariants are given on page 336 of [LR10]. The unnormalized invariants are

M = {o,g,0,0,s1(α0,β0), . . . ,sn(αn,βn}

where

α j =
lcm(a0, ∙ ∙ ∙ ,an)

lcm(a0, ∙ ∙ ∙ , âj , ∙ ∙ ∙ ,an)
, sj =

a0a1 ∙ ∙ ∙ âj ∙ ∙ ∙an

lcm(a0, ∙ ∙ ∙ , âj , ∙ ∙ ∙ ,an)

g =
1
2

(
2+(n−1)

a0a1 ∙ ∙ ∙an

lcm(a0, ∙ ∙ ∙ ,an)
−

n

∑
j=0

sj
)

andβ j andeare determined by

−e(M) =
n

∑
j=0

sj
β j

α j
=

a0a1 ∙ ∙ ∙an

lcm(a0, ∙ ∙ ∙ ,an)2 .

This last equation becomes
n

∑
j=0

β jwj = 1. (12)

Hereg is the genus of the base Riemann surface. Note that the varietyVC is not the most
general type of complete intersection even for dimension 3. Generally, complete intersec-
tions have a multidegreed = (d0, ∙ ∙ ∙ ,dn−2), but in our case here the degreesdi are all equal,
namelyd = lcm(a0, ∙ ∙ ∙ ,an). We define the weight vectorw = (w0, ∙ ∙ ∙ ,wn) and|w|= ∑ j wj .
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The linkL(a0, . . . ,an) is the total space of anS1 orbibundle over a projective algebraic orb-
ifold Z, ande(M) is the orbifold Euler number of the orbibundle. Note that the Euler
number of the orbifold canonical bundle of this orbifold isd−|w|

d . We now consider the
main case of our interest, namely, [NR78]

Lemma 3.3. The link L(a) is a homology 3-sphere if and only if the integers a0, . . . ,an are
pairwise relatively prime.

In this case the weights arewj = a0 ∙ ∙ ∙ âj ∙ ∙ ∙an and the degreed = a0 ∙ ∙ ∙an which satis-
fiesd = wjaj for all j. (This last equation holds in generally for Brieskorn manifolds). So
in the case of homology spheres we have

α j = aj , sj = 1, g = 0. −e(M) =
1

a0a1 ∙ ∙ ∙an
=

1
d
. (13)

The equation forβ j becomes
n

∑
j=0

β j

aj
=

1
a0a1 ∙ ∙ ∙an

.

As mentioned previously every Seifert fibered manifold that is an integer homology
sphere is diffeomorphic up to orientation to a Brieskorn complete intersectionL(a0, . . . ,an)
[NR78]. Furthermore, they are all homogeneous manifolds which except for the Poincaré
sphere have the form̃PSL(2,R)/Γ whereΓ is an infinite discrete group such that[Γ,Γ] = Γ.
The Poincaŕe sphere is represented bya = (2,3,5). It is the homogeneous spaceSU(2)/I∗

whereI∗ is the binary icosahedral group, a finite group of order 120. Conditions on the
Seifert invariants that a given Seifert manifold can be represented asP̃SL(2,R)/Γ where
Γ is a cocompact discrete subgroup of̃PSL(2,R) were given in [RV81]. Also the fact that
any complete intersection link of the form (11) is a homogeneous spacẽPSL(2,R)/Γ or
SU(2)/I∗ was proved in [Neu77].

Example 3.4. Whenn = 2 we have the Brieskorn 3-manifoldsL(a0,a1,a2) which were
treated extensively in [Mil75]. When n = 3 we can redefine the coordinates giving the
complete intersection

za0
0 +za1

1 +za2
2 +za3

3 = 0, c0za0
0 +c1za1

1 +c2za2
2 +c3za3

3 = 0.

The condition on the minor determinants isci 6= cj for all i 6= j = 0, ∙ ∙ ∙ ,3.

3.3 Sasakian Structures on Homology Spheres

It follows from Proposition 9.6.1 of [BG08] that the linksL(a) admit a quasiregular Sasakian
structure induced from the Sasakian structure onS2n+1 as a complete intersection. Now
L(a) is the total space of anS1 orbibundle over a projective algebraic varietyZw of com-
plex dimension one, that is, a Riemann surface embedded as a complete intersection in the
weighted projective spaceCP(w). Given the form of the weights for homology spheres,
we see thatCP(w) is isomorphic as a projective variety toCPn andZw is isomorphic to
CP1 but with a non-trivial orbifold structure.

Recall from Definition 7.5.24 of [BG08] that a Sasakian structureS = (ξ,η,Φ,g) is
positive (negative)if the basic first Chern classcB

1(Fξ) can be represented by a positive
(negative) definite(1,1) form.
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Lemma 3.5. Let L(a) be a homology 3-sphere. Then except for the Poincaré sphere with
link L(2,3,5), the Sasakian structure on the link L(a) is negative. The Sasakian structure
on the Poincaŕe sphere L(2,3,5) is positive.

Proof. Note that the basic first Chern classcB
1(Fξ) is the pullback of the orbifold first Chern

class which is|w|−|d|
d times the area formα onCP1. Thus, we have

corb
1 (Zw) =

1
d

(
∑

j

wj − (n−1)a0 ∙ ∙ ∙an
)
α. (14)

If n= 2 then it is well known [Mil75] and easy to see thatL(2,3,5) is the only non-standard
homology sphere for whichc1 > 0. So we assume thatn≥ 3 and without loss of generality
we can assume thata0 < a1 < ∙ ∙ ∙ < an andaj ≥ 2. We then have

|d|− |w| = (n−1)a0 ∙ ∙ ∙an−∑
j

a0 ∙ ∙ ∙ âj ∙ ∙ ∙an

> (n−1)a0 ∙ ∙ ∙an− (n+1)a1 ∙ ∙ ∙an

=
(
(n−1)a0− (n+1)

)
a1 ∙ ∙ ∙an ≥ (n−3)a1 ∙ ∙ ∙an ≥ 0.

WhenM3 is a homology sphere with infinite fundamental group arising from the link
L(a), the baseB = B(a) is S2 with an orbifold structure consisting ofn+1 orbifold points.
So if M3 is not the Poincaŕe sphere, or equivalently thatπ1(M3) is infinite, there aren+1
singular orbits corresponding to settingzj = 0 wherej = 0, . . . ,n. The order of the isotropy
subgroup whenzj = 0 isaj , so the total order of the orbifold quotient isda = a0 ∙ ∙ ∙an which
coincides with the orderυ of the Sasakian structure.

We are now ready for Belgun’s theorem. The version given in Theorem 10.1.3 of
[BG08] is more convenient for our purposes, and we give only what we need here.

Theorem 3.6([Bel01]). Let M be a3-dimensional compact manifold admitting a Sasakian
structureS = (ξ,η,Φ,g). Then

1. If S is positive, M is spherical, and there is a Sasakian metric of constantΦ-sectional
curvature1 in the same deformation class as g.

2. If S is negative, M is of̃PSL(2,R) type, and there is a Sasakian metric of constant
Φ-sectional curvature−4 in the same deformation class as g.

In the positive case the metricg also has constant Riemannian sectional curvature 1.
Moreover, in case 1 of the theorem there is a ray of constantΦ sectional curvaturec with
c>−3 which corresponds to constant transverse holomophic sectional curvaturec+3> 0.
In case 2 there is a ray of constantΦ sectional curvaturec with c < −3 which corresponds
to constant transverse holomorphic sectional curvaturec+ 3 < 0. Except for the standard
sphere the automorphism group ofS is one dimensional consisting of the flow generated
by the Reeb vector field. Thus, the Sasaki cone is one dimensional for these structures.
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3.4 Orbifold K ähler-Einstein Metrics on Ba

It follows from Theorem3.6 and the orbifold Boothby-Wang Theorem [BG00] that Ba

admits a K̈ahler-Einstein orbifold metric. For example for the Poincaré sphere witha =
(2,3,5), the orbifold first Chern class of the base orbifoldBa is corb

1 (Ba) = 1
30α whereα

is primitive in H2(Ba,Z). So if p : BBa−−→Ba is the orbifold classifying map,p∗corb
1 is

primitive in H2
orb(Ba,Z). Moreover,corb

1 pulls back to an integer cohomology class onM3
a

which of course in our case is 0.
We want to emphasize, as mentioned previously, that the orbifold Kähler-Einstein met-

rics on Ba correspond to Sasaki-η-Einstein metrics onM3
a. In the positive case when

M3
a = S3/I∗ and a = (2,3,5), the positive K̈ahler-Einstein metric onB(2,3,5) with scalar

curvature 8 corresponds to the standard constant sectional curvature (andΦ sectional cur-
vature) 1 metric onS3/I∗. In the negative case the Kähler-Einstein metric onBa with scalar
curvature−2 corresponds to constantΦ sectional curvature−4 on M3

a. In both cases by
rescaling the K̈ahler-Einstein metric onBa, we obtain a ray of Sasaki-η-Einstein metrics on
M3

a with constantΦ sectional curvature.
In order to constructη-Einstein metrics on joins, we need to consider anindex. In

[BG00] we worked with positive Sasakian structure in which case we defined the Fano
index. For complete intersections it is|w| − |d|. However, here in all but one case, the
Sasakian structure is negative, so we define thecanonical indexas Ia = |d| − |w|. For
homology spheresM3

a, |d| = (n−1)a0 ∙ ∙ ∙an and|w| = ∑ j a0 ∙ ∙ ∙ âj ∙ ∙ ∙an.

4 The Join of an Homology 3-Sphere

Here we letM3
a be a homology sphere described by the linksL(a0, . . . ,an) of Section3.2

and we assume thatai ≥ 2 for all i, so that it is not the standard sphere. As seen in the
last sectionM3

a has a natural Sasakian structure of constantΦ sectional curvature, and we
can easily obtain higher dimensional Sasakian manifolds with perfect fundamental group
by applying the join construction.

4.1 The Topology ofM3
a ?k,l N with N Simply Connected

Theorem 4.1. Let N be a simply connected2r + 1-dimensional quasi-regular Sasakian
manifold of orderυ, and let M3

a be an homology sphere described in Section3.2, so
gcd{ai}= 1. If alsogcd(la0 ∙ ∙ ∙an,kυ)= 1 then the(k, l)-join M3

a?k,l N is a2r +3-dimensional
Sasakian manifold. Moreover, if M3a is not the Poincaŕe sphere we have

• M3
a ?k,l N has a perfect fundamental group isomorphic to a quotient ofπ1(M3

a).

• π1(M3
a ?k,l N) is aZl extension of the perfect groupπorb

1 (Ba) ≈ π1(M3
a)/Z.

• πi(M3
a ?k,l N) ≈ πi(N) for i ≥ 2.

If M3
a is the Poincaŕe sphere S3/I∗, then

• If l is odd M3
a ?k,l N has a perfect fundamental group equal toI.

• If l is even M3
a ?k,l N has a perfect fundamental group equal to eitherI or I∗.
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• πi(M3
a ?k,l N) ≈ πi(S3)⊕πi(N) for all i ≥ 3.

Proof. The fact thatM3
a ?k,l N is a smooth Sasakian manifold of dimension 2r + 3 follows

from Proposition 7.6.6 of [BG08]. There are two relevant fibrations involving the join.
By Proposition 7.6.7 of [BG08] M3

a ?k,l N can be realized as aN/Zl -bundle over the base
orbifold Ba of M3

a, that is we have an orbifold fibration

N/Zl−−→M3
a ?k,l N−−→Ba (15)

whose long exact homotopy sequence is

0−−→π2(N)−−→π2(M
3
a ?k,l N)−−→πorb

2 (Ba)−−→Zl−−→π1(M
3
a ?k,l N)−−→πorb

1 (Ba)−−→1. (16)

On the other hand we have the circle bundle that defines the join, namely

S1−−→M3
a ×N−−→M3

a ?k,l N, (17)

which gives the long exact sequence

0−−→π2(M
3
a ×N)−−→π2(M

3
a ?k,l N)−−→Z−−→π1(M

3
a)−−→π1(M

3
a ?k,l N)−−→1. (18)

Since the quotient of a perfect group is perfect, this implies that in all cases the fundamental
group ofM3

a ?k,l N is perfect.
Now if M3

a is not the Poincaŕe sphere Lemma3.2says that fori ≥ 2, πorb
i (Ba) = 0 which

implies thatπ1(M3
a ?k,l N) is aZl extension ofπorb

1 (Ba). The second statement then follows
immediately. The third statement also follows from the exact homotopy sequence and the
fact thatπorb

i (Ba) = 0 for i ≥ 2.
When M3

a is the Poincaŕe sphereS3/I∗, the long exact homotopy sequence (16) be-
comes, again using Lemma3.2,

−−→π2(N)−−→π2(M
3
a ?k,l N)−−→Z−−→Zl−−→π1(M

3
a ?k,l N)−−→I−−→1. (19)

But also in this case the long exact homotopy sequence (18) gives

0−−→π2(N)−−→π2(M
3
a ?k,l N)−−→Z−−→I∗−−→π1(M

3
a ?k,l N)−−→1. (20)

From the exact sequence (20), π1(M3
a ?k,l N) is eitherI or I∗. But from (19) if l is odd, then

π1(M3
a ?k,l N) cannot beI∗ which proves the first statement of this case. However, ifl is

even,π1(M3
a ?k,l N) can be eitherI or I∗. The final statement follows from the homotopy

exact sequence of (17).

Also whenl is odd the map in (20)

π2(M
3
a ?k,l N)/π2(N) ≈Z−−→Z

is multiplication by 2; whereas, the similar map in (19) is multiplication byl .

Remark 4.1. Notice that for fixeda andυ, there are infinitely many(k, l) that satisfy the
smoothness conditiongcd(la0 ∙ ∙ ∙an,kυ) = 1.
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For cohomology we have

Lemma 4.2. Assume the hypothesis of Theorem4.1. Then H2(M3
a ?k,l N,Z) ≈ H2(N,Z)⊕

Z.

Proof. Now M3
a is a homology sphere, and by Theorem4.1M3

a ?k,l N has perfect fundamen-
tal group, so the Gysin sequence of the fibration (17) gives the short exact sequence

0−−→Z−−→H2(M3
a ?k,l N,Z)−−→H2(N,Z)−−→0

which splits sinceH2(N,Z) is free.

A special case of interest isN = S2r+1, the(2r +1)-sphere.

Proposition 4.3. Let M3
a be an homology 3-sphere. Then the join M3

a ?k,l S2r+1 has the
rational cohomology ring of S2×S2r+1 for all relatively prime positive integers k, l, and the
join M3

a ?k,1 S2r+1 has the integral cohomology ring of S2×S2r+1 for all positive integers
k. If r = 1, the join M3

a ?k,l S3 has the integral cohomology ring of S2×S3 for all relatively
prime positive integers k, l.

Proof. Our proof uses the spectral sequence method employed in [WZ90, BG00] (see also
Section 7.6.2 of [BG08]). The fibration (17) together with the torus bundle with total space
M3

a ×S2r+1 gives the commutative diagram of fibrations

M3
a ×S2r+1 −−−−→ M3

a ?k,1 S2r+1 −−−−→ BS1




y

=




y





y

ψ

M3
a ×S2r+1 −−−−→ BBa×CPr −−−−→ BS1×BS1

(21)

whereBG is the classifying space of a groupG or Haefliger’s classifying space [Hae84] of
an orbifold if G is an orbifold. Note that by definitionHi

orb(Ba,Z) = Hi(BBa,Z) and an
easy argument of the orbifold fibrationS1−→M3

a−→Ba shows thatH∗
orb(Ba,Z) = H∗(S2,Z).

So cohomologically,BBa is S2. We also note thatBS1 = CP∞ with cohomology ringZ[s]
with s∈ H2(CP∞,Z).

Now the mapψ is that induced by the inclusioneiθ 7→ (eil θ,e−ikθ). So writing

H∗(BS1×BS1,Z) = Z[s1,s2]

we see thatψ∗s1 = ls andψ∗s2 =−ks. TheE2 term of the Leray-Serre spectral sequence of
the top fibration of diagram (21) is Ep,q

2 = H p(BS1,Hq(M3
a×S2r+1,Z)). The non-zero terms

occur whenp is even, say 2p′, andq = 0,3,2r + 1,2r + 4. Let α,β denote the orientation
class ofM3

a,S
2r+1, respectively. The cohomology ring of the fiber isΛ[α,β], whereas, that

of the base isZ[s]. Then if r > 1 the differentiald4(α) = (ls)2, so we needl = 1 to avoid
torsion inH4 ≈ torsion inH3. Then by naturality we haved4(α⊗ s2p′) = s2p′+2, but then
d2r+2(β) = 0 andd2r+2(α∪ β) = s2 ⊗ β, so the classes that survive ares,β,β∪ s which
proves the result forr > 1.

Whenr = 1 we haved4(α) = l2s2 andd4(β) = k2s2 which implies that the primative
integral classk2α− l2β ∈ E0,3

2 survives, and this proves the result together with Poincaré
duality.
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4.2 The Topology ofM3
a ?k,l M3

b

Here we consider the join of two homology 3-spheres. We assume that gcd(da,db) = 1
which implies that at most one of them can be the Poincaré sphere. From the fibration (17)
with N replaced byM3

b we obtain

0−−→π2(M
3
a ×M3

b)−−→π2(M
3
a ?k,l M3

b)−−→Z−−→π1(M
3
a ×M3

b)−−→π1(M
3
a ?k,l M3

b)−−→1.

NowM3
a×M3

b has perfect fundamental groupπ1(M3
a)×π1(M3

b), and if neither is the Poincaré
sphereM3

a ×M3
b is aspherical. Hence,π1(M3

a ?k,l M3
b) is perfect andπi(M3

a ?k,l M3
b) = 0 for

i ≥ 3. On the other hand, from the orbibundleS1−−→M3
a ?k,l M3

b−−→Ba×Bb we have

0−→π2(M
3
a?k,l M

3
b)−→πorb

2 (Ba)×πorb
2 (Bb)−→Z−→π1(M

3
a?k,l M

3
b)−→πorb

1 (Ba)×πorb
1 (Bb)−→1.

(22)
Now πorb

1 (Ba) andπorb
1 (Bb) vanish by Lemma3.2, soπ2(M3

a ?k,l M3
b) = 0 makingM3

a ?k,l M3
b

aspherical and its fundamental group is perfect, but not simple.
Concerning the cohomology ofM3

a ?k,l M3
b we have:

Proposition 4.4. For all relatively prime positive integers k, l the 5-manifold M3
a ?k,l M3

b has
the integral cohomology ring of S2×S3.

Proof. The proof is similar to ther = 1 case of Proposition4.3, so the details are left to the
reader.

Combining this theorem with the above analysis gives

Theorem 4.5. The 5-manifolds M3a ?k,l M3
b are aspherical with perfect fundamental group

and the integral cohomology ring of S2×S3.

4.3 Distinguishing Contact Structures

The crudest invariant of a contact structure is the first Chern classc1(D) of the contact
bundle; nevertheless, it can distinguish countably many contact structures in many cases. A
much more subtle contact invariant is the contact homology of Eliashberg, Giventhal, and
Hofer [EGH00] employed for example in [BP12]. However, in the present paper we cannot
even pin down the diffeomorphism type, so we only make use ofc1 to distinguish contact
structures.

Here we consider only a special case where given two base orbifoldsB1 andB2, we
assume thatp∗corb

1 (Bi) = −Iiαi whereIi is the canonical index1 of Bi andαi ∈ H2
orb(Bi ,Z)

is a generator. In this case we have

p∗corb
1 (B1×B2) = −I1α1− I2α2. (23)

Now consider theS1 bundle determined by the K̈ahler classk1α1 + k2α2 on B1×B2. Let
π : M1?k1,k2 M2−−→B1×B2 denote the bundle projection. By the join construction we know
thatπ∗(k1α1 +k2α2) = [dη] = 0. So there is a generatorγ ∈ H2(M1 ?k1,k2 M2,Z) such that

1Since we mainly deal with negative Sasakian structures, we use the canonical index instead of the Fano
index used in [BG00]. Of course, the Fano index is just the negative of the canonical index.
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π∗α1 = k2γ andπ∗α2 =−k1γ. Now the first Chern class of the contact bundle is the pullback
of the orbifold first Chern class onB1×B2, that is,

c1(D) = π∗corb
1 (B1×B2) = −I1π∗α1− I2π∗α2 = (I2k1− I1k2)γ. (24)

The mod 2 reduction ofc1(D) is a topological invariant, namely the second Stiefel-Whitney
classw2(M1 ?k1,k2 M2) ∈ H2(M1 ?k1,k2 M2,Z2). This allows us to distinguish different man-
ifolds with the same perfect fundamental group.

5 Extremal Sasaki Metrics on Joins of Homology Spheres

We shall always assume thatM3
a is an homology 3-sphere with constantΦ sectional curva-

ture either 1 or−4 and that it is not the standard sphere. So it is either the Poincaré sphere
with constant sectional curvature 1 or a negative homology sphere with constantΦ sectional
curvature−4.

Theorem 5.1. Let N be a simply connected quasi-regular Sasakian manifold of dimension
2r + 1 which fibers in the orbifold sense over a projective algebraic orbifoldZ with an
orbifold Kähler metric h of constant scalar curvature S. Letυ be the order of the Sasakian
structure on N and assume thatgcd(la0 ∙ ∙ ∙an,kυ) = 1. Then the join M3

a ?k,l N is a smooth
Sasakian manifold of dimension2r + 3 with perfect fundamental group and the induced
Sasakian structure has a ray of extremal CSC Sasaki metrics.

Proof. The proof easily follows from the join construction together with Theorem4.1.

WhenN has a Sasakian structure whose automorphism groupAut(S) has dimension
greater than 1, one can deform in the Sasaki cone to obtain new extremal Sasakian struc-
tures. Indeed, the Openness Theorem of [BGS08] guarentees the existence of an open set
of such extremal Sasaki metrics.

5.1 Extremal Sasakian metrics onM3
a ?k,l S2r+1

We can easily obtain constant scalar curvature Sasakian metrics on manifoldsM3
a ?k,l S2r+1

from the lift of the product K̈ahler orbifold metric onB(a)×CPr . Let us describe the
orbifold structure onB(a). As an algebraic variety it isCP1 with n+ 1 distinct marked
points. Thus, as an algebraic variety the productB(a)×CPr is CP1×CPr with a non-
trivial orbifold structure on the first factor described by branch divisorsΔ = ∑i Δi . On the
first factor we have an orbifold K̈ahler-Einstein metric with scalar curvature−2, and on
the second factor the standard Fubini-Study metric with constant scalar curvature 4r(r +1).
Since there are an infinite number of integersl ,k,a0, . . . ,an that satisfy gcd(la0 ∙ ∙ ∙an,k) = 1,
Theorems4.1and5.1, and the results of Section4.3 imply

Theorem 5.2. Let M3
a be a negative homology sphere and assume thatgcd(la0 ∙ ∙ ∙an,k) =

1. Then there is a countably infinite number of(2r + 3)-dimensional contact manifolds
M3

a ?k,l S2r+1 with a perfect fundamental group that admit a ray of extremal CSC Sasaki
metrics.

Then Proposition4.3and Theorem5.2 immediately give Theorem1.1of the introduc-
tion.
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5.2 Extremal Sasakian metrics onM3
a ?k,l M3

b

Notice that since both homology 3-spheres have constantΦ-sectional curvature, the bases
have constant holomorphic sectional curve; hence, they both have CSC Kähler orbifold
metrics. So if gcd(la0 ∙ ∙ ∙an,kb0 ∙ ∙ ∙bn) = 1, the 5-manifoldM3

a ?k,l M3
b has a CSC Sasaki

metric. This includes the case when one of the homology 3-spheres is the Poincaré sphere.
When both homology 3-spheres are negative, we obtain Sasaki-η-Einstein metrics in

certain cases. In order to get such metrics we need to select theS1 orbibundle overBa×
Bb whose Euler class is proportional to the orbifold first Chern classcorb

1 (Ba ×Bb) with
negative proportionality constant. From Equation (14) we have with obvious notation

corb
1 (Ba×Bb) =

|wa|− |da|
da

α+
|wb|− |db|

db
β. (25)

So by Equation (24) to obtain a Sasaki-η-Einstein metric onM3
a ?k,l M3

b we needc1(D) =
π∗corb

1 (Ba×Bb) = 0, and we do this by choosingk= |da|−|wa|= Ia andl = |db|−|wb|= Ib
as long as they are relatively prime. As in [BG00] to handle the case when they are not
relatively prime, we define therelative indicesby

Ia =
Ia

gcd(Ia, Ib)
, Ib =

Ib
gcd(Ia, Ib)

.

Then gcd(Ia,Ib) = 1. So generally we obtain a Sasaki-η-Einstein metric onM3
a ?k,l M3

b by
choosingk = Ia andl = Ib. We also make note of the easily shown fact that gcd(da, Ia) = 1
for all a with theai pairwise relatively prime. This guarentees that as long as gcd(da,db) =
1, there is a Sasaki-η-Einstein metric onM3

a ?Ia,Ib M3
b. Summarizing we have

Theorem 5.3. Let M3
a and M3

b be negative homology 3-spheres with canonical indices Ia

and Ib, respectively. Then

1. If gcd(lda,kdb) = 1 the 5-dimensional contact manifold(M3
a ?k,l M3

b,D) with c1(D) =
(kIb − lIa)γ admits a CSC Sasaki metric.

2. If gcd(da,db)= 1, the 5-dimensional contact manifold(M3
a?Ia,Ib M3

b,D) with c1(D)=
0 admits a ray of negative Sasaki-η-Einstein metrics; hence, it also admits Lorentzian
Sasaki-Einstein metrics.

Since for fixeda andb there are a countably infinite number of relatively prime pairs
(k, l) that satisfy gcd(lda,kdb) = 1, there are a countably infinite number of such contact
5-manifolds.

Combining Theorems4.5and5.3proves Theorem1.2of the Introduction.

5.3 More Sasaki-η-Einstein Manifolds

It is now straightforward to construct higher dimensional examples ofη-Einstein and Lorentzian
Sasaki-Einstein metrics. Since as mentioned above gcd(da, Ia) = 1 = gcd(Ia,I), we have

Theorem 5.4. Let M3
a be a negative homology 3-sphere and let N be a simply connected

negative Sasakian manifold with canonical index I and orderυ. LetIa,I denote the relative
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canonical indices. Then ifgcd(daI,υ) = 1 the manifold M3
a ?Ia,I N has perfect fundamental

group and admits a ray of negative Sasaki-η-Einstein metrics, and hence, a Lorentzian
Sasaki-Einstein metric.

Proof of Theorem1.3. In order to prove Theorem1.3 we need to find simply connected
negative eta-Einstein 5-manifolds with arbitrary second Betti numberb2 that satisfy the
hypothesis of Theorem5.4. Then by Lemma4.2 we will have arbitraryb2(M3

a ?Ia,I N) =
b2(N) + 1 ≥ 1. In order to find suchN we make use of the work of Gomez [Gom11]
on negativeη-Einstein structures on arbitrary connected sums ofS2×S3. To exhaust all
connected sumsl(S2×S3) we divide the analysis into seven cases, two infinite series and
five sporatic cases. In each case we need only to check that gcd(I ,υ) = 1. Then we can
always finda such gcd(da,υ) = 1. The first series is given by the link of the hypersurface
z4
0+z8k+2

1 +z4k+1
2 z3+z2k+1

3 z2 = 0. Herek≥ 1 and the second Betti numberb2 is l = 2k+1.
One checks that this hasυ = 2(4k+ 1) and I = 16k(4k+ 1)− (4k+ 3)2. It follows that
gcd(I ,υ) = 1 in this case. The second series applies tob2 = k−1 with k≥ 9 and odd. Here
the hypersurface isz4

0 + z2
1 + zk

2 + zk
3 = 0 which hasI = k−8 andυ = 2k. One easily sees

that gcd(I ,υ) = 1 in this case. The remaining five cases arel = 0,1,2,4,6. The last two
are represented in [Gom11]; however, their weights and indices are quite large, but more
importantly, thel = 4 case has gcd(I ,υ) = 11, so the join will not be smooth. The casel = 6
in [Gom11] does satisfy this condition, so it can be used. Nevertheless, in the table below
we give simpler polynomials to cover these five sporatic cases. We used Orlik’s formula
(see Corollary 9.3.13 in [BG08]) with a Maple program to compute the second Betti number
b2. Note that they are not necessarily connected sums ofS2×S3, as there may be torsion in
H2(N,Z).

Sporatic Cases withI = 1

b2 w Polynomial
0 (5,6,6,8) z8

0 +z4
1 +z4

2 +z3
3

1 (2,4,6,11) z12
0 +z6

1 +z4
2 +z2

3z0

2 (6,7,28,42) z14
0 +z12

1 +z3
2 +z2

3
4 (4,5,20,30) z15

0 +z12
1 +z3

2 +z2
3

6 (3,4,12,16) z12
0 +z9

1 +z3
2 +z2

3z1

5.4 Sasaki-Einstein Metrics on Manifolds with Perfect Fundamental Group

Since the only positive homology 3-sphere with perfect fundamental group is the Poincaré
sphereS3/I∗, only joins withS3/I∗ can give Sasaki-Einstein metrics. Furthermore, since
from Belgun’s Theorem3.6 the positive case corresponds to the bi-invariant constant sec-
tional curvature 1 metric, these can all be obtained as quotients byI∗ of the join of the
standardS3 with any simply connected Sasaki-Einstein manifold. So we can consider all
the examples in [BG00] which involve a join ofS3 with a simply connected Sasaki-Einstein
manifold. We only need to choosek, l to obtain a monotoneS1 orbibundle, that is, its
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cohomology class is primitive and proportional to the first Chern class of the orbifold anti-
canonical bundleK−1

orb(Z) with Z = Z1×Z2. We also need to scale the orbifold Kähler
metrich onZ so that its scalar curvature is 4(n1 + n2)(n1 + n2 + 1) where the orbifoldZi

has complex dimensionni .
The Poincaŕe sphere can be represented by the link of the polynomialz5

0 +z3
1 +z2

2 with
weight vectorw = (6,10,15) and degreed = 30. It has Fano indexIF = |w|−d = 31−30=
1. So using Theorems4.1and4.3we obtain Theorem1.4of the Introduction.
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