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Abstract

The Heisenberg algebra is deformed with the set of parameters {q, l,λ} to generate
a new family of generalized coherent states respecting the Klauder criteria. In this
framework, the matrix elements of relevant operators are exactly computed. Then, a
proof on the sub-Poissonian character of the statistics of the main deformed states is
provided. This property is used to determine the induced generalized metric.
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1 Introduction

The Heisenberg algebra is generated by the the identity operator 1 and two mutually adjoint
operators, b and its Hermitian conjugate b† (also called annihilation and creation operators
in Physics literature), satisfying the commutation relations

[b, b†] = 1, [b, 1] = 0 = [b†, 1], (1.1)

where [A, B] = AB− BA. Defining the operator N := b†b, known as the number operator,
the commutation relations (1.1) induce the two following properties:

[N, b] = −b and [N, b†] = b†. (1.2)
∗E-mail address: desbuk@gmail.com
†E-mail address: norbert.hounkonnou@cipma.uac.bj or hounkonnou@yahoo.fr



(q; l,λ)-Deformed Heisenberg Algebra 39

Let F be a Fock space and {|n〉 | n ∈ N
⋃
{0}} be its orthonormal basis. The actions of b,

b† and N on F are given by

b|n〉 =
√

n|n−1〉, b†|n〉 =
√

n+1|n+1〉, and N|n〉 = n|n〉 (1.3)

where |0〉 is a normalized vacuum:

b|0〉 = 0, 〈0|0〉 = 1. (1.4)

From (1.3) the states |n〉 for n ≥ 1 are built as follows:

|n〉 =
1
√

n!
(b†)n|0〉, n = 1, 2, · · · (1.5)

satisfying the orthogonality and completeness conditions:

〈m|n〉 = δm,n,
∞∑

n=0

|n〉〈n| = 1. (1.6)

Definition 1.1. The normalized states |z〉 ∈ F for z ∈ C satisfying one of the following three
equivalent conditions:

(i)

b|z〉 = z|z〉, 〈z|z〉 = 1 (1.7)

or

(ii)

(∆Q)(∆P) =
~

2
(1.8)

where (∆X)2 := 〈z|X2−〈X〉2|z〉 with 〈X〉 := 〈z|X|z〉,

Q := (~/2mω)1/2 (b+b†), P := −i (m~ω/2)1/2 (b−b†)

or

(iii)

|z〉 = ezb†−z̄b|0〉 (1.9)

are called the coherent states (CS).

In the condition (ii),m stands for the particle mass; ω is the angular frequency. Explic-
itly, the canonical CS are computed as follows:

|z〉 = e−|z|
2/2

∞∑
n=0

zn

√
n!
|n〉 = e−|z|

2/2ezb† |0〉, z ∈ C. (1.10)



40 J. D. Bukweli-Kyemba and M. N. Hounkonnou

In (1.10) and (1.9) we use the famous elementary Baker-Campbell-Hausdorff formula

eA+B = e−
1
2 [A,B]eAeB (1.11)

whenever [A, [A,B]] = [B, [A,B]] = 0. The important feature of these coherent states resides
in the partition (resolution) of unity:∫

C

[d2z]
π
|z〉〈z| =

∞∑
n=0

|n〉〈n| = 1, (1.12)

where we have put [d2z] = d(Rez)d(Imz) for simplicity.

Definition 1.2. The unitary operator

D(z) := ezb†−z̄b, z ∈ C (1.13)

is called a coherent (displacement) operator.

From the property

D(z+w) = e−
1
2 (zw̄−z̄w)D(w)D(z), z, w ∈ C (1.14)

we infer the well-known commutation relation

D(z)D(w) = e(zw̄−z̄w)D(w)D(z). (1.15)

Coherent states were invented by Schrödinger in 1926 in the context of the quantum
harmonic oscillator. They were defined as minimum-uncertainty states that exhibit its
classical behavior [47]. In 1963, they have been simultaneous rediscovered by Glauber
[19, 20], Klauder [27, 28] and Sudarshan [48] in quantum optics of coherent light beams
emitted by lasers. Since there, they became very popular objects in mathematics (specially
in functional analysis, group theory and representations, geometric quantization, etc.), and
in nearly all branches of quantum physics (nuclear, atomic and solid state physics, statistical
mechanics, quantum electrodynamics, path integral, quantum field theory, etc.). For more
information we refer the reader to the references [2, 30, 41, 50].

The vast field covered by coherent states motivated their generalizations to other fami-
lies of states deducible from noncanonical operators and satisfying not necessarily all above
mentioned properties.

The first class of generalizations, based on the equivalent conditions given in Definition
1.1, include:
a) The approach by Barut and Girardello [8] considering coherent states as eigenstates of
the annihilation operator. This approach was unsuccessful because of its drawbacks from
both mathematical and physics point of view as detailed in [18, 41].
b) The approach based on the minimum-uncertainty states, i.e. essentially on the original
motivation of Schrödinger in his construction of wavepackets which follow the motion of a
classical particle while retaining their shapes. This was the basis for building the intelligent
coherent states for various dynamical systems [4, 5, 38, 39, 40]. Nevertheless, as has been
emphasized by Zhang et al [50], such a generalization has several limitations.
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c) The approach related to the unitary representation of the group generated by the creation
and annihilation operators. In two papers by Klauder [27, 28] devoted to a set of continu-
ous states, one finds the basic ideas of coherent states construction for arbitrary Lie groups,
which have been exploited by Gilmore [17] and Perelomov [41, 42] to formulate a general
and complete formalism of building coherent states for various deformations of the Heisen-
berg group with properties similar to those of the harmonic oscillator. The key result of this
development was the intimate connection of the coherent states with the dynamical group
of a given physical system.

Two other generalizations complete this first class of generalizations: (i) the covariant
coherent states introduced in Ref. [2], considered as a generalization of Gilmore-Perelomov
formalism in the sense that the CS are built from more general groups (homogeneous
spaces), and (ii) the nonlinear coherent states related to nonlinear algebras. Even though
nonlinear coherent states have been used to analyze some quantum mechanical systems as
the motion of a trapped ion [24, 36], they are not merely mathematical objects. They were
defined as right eigenstates of a generalized annihilation operator [35, 36].

The second class of generalizations is essentially based on the overcompleteness prop-
erty of coherent states. This property was the raison d’être of the mathematically oriented
construction of generalized coherent states by Ali et al [3, 2] or of the ones with physical
orientations [14, 15, 31]. Numerous publications continue to appear using this property, see
for example [13, 22, 23, 43] and references therein. The overcompleteness property is the
most important criteria to be satisfied by CS as required by Klauder’s criteria [31].

To end this quick overview, let us mention the generalization performed through the
so-called coherent state map, elaborated by Odzijewicz [44] in 1998 and generalized in
[21]. It is now known that the coherent state map may be used as a tool for the geometric
quantization à la Kostant-Souriau [44]. See the works by Kirillov [26] and Kostant [34] for
details on geometric quantization.

Definition 1.3. We call deformed Heisenberg algebra, an associative algebra generated by
the set of operators {1, a, a†, N} satisfying the relations

[N, a†] = a†, [N, a] = −a, (1.16)

such that there exists a non-negative analytic function ϕ, called the structure function, defin-
ing the operator products a†a and aa† in the following way:

a†a := ϕ(N), aa† := ϕ(N +1), (1.17)

where N is a self-adjoint operator, a and its Hermitian conjugate a† denote the deformed
annihilation and creation operators, respectively.

The function ϕ, encoding all required information, for instance, in the construction of
irreducible representations of the algebra, remains the main task to solve when one deals
with such deformed algebra (1.16). Different approaches for its determination are spread
in the literature. See [7, 11, 12, 33, 37] and references therein. More importantly, as it
will be shown in the sequel, the structure function will be the key for the unification of the
coherent state construction methods from generalized algebras, respecting Klauder criteria.
Note that the method put forward by Klauder [31] is based on an appropriate choice of a
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set of strictly positive parameters. In the present paper, such a set of positive parameters is
determined by the structure function.

The paper is organized as follows. In Section 2, the deformed Heisenberg algebra is
described and the structure function is deduced. The spectrum of the associated deformed
oscillator is computed. The Section 3 is devoted to the construction of the deformed coher-
ent states using the Klauder approach. In section 4, quantum statistics and geometry of the
deformed coherent states are investigated. Concluding remarks end the paper in Section 5.

2 (q; l,λ)-deformed Heisenberg algebra

Consider now the following (q; l,λ)-deformed Heisenberg algebra generated by operators
N, a, a† satisfying

[N, a] = −a, [N, a†] = a†, (2.1)

with the operator products

aa†−a†a = l2q−N+λ−1. (2.2)

One can readily check that the commutator [., .] of operators is antisymmetric and satisfies
the Jacobi identity conferring a Lie algebra structure to the (q; l,λ)-deformed Heisenberg
algebra. This algebra plays an important role in mathematical sciences in general, and, in
particular, in mathematical physics. In a notable work [25], similar associative algebra has
been investigated by Kalnins et al under the form:

[H, E+] = E+ [H, E−] = −E−
[E+, E−] = −q−HE [E, E±] = 0 = [E, H], (2.3)

where q is a real number such that 0 < q < 1. These authors showed that the elements C =
qq−HE+ (q−1)E+E− and E lie in the center of this algebra. It admits a class of irreducible
representations for C = l2I and E = l2qλ−1I, where l and λ are real numbers with l , 0.

The (q; l,λ)-deformed Heisenberg algebra (2.1) is a generalized algebra in the sense
that it can generate a series of existing algebras as particular cases. For instance, even the
generalization of the Quesne-algebra performed in [22, 46] can be deduced from (2.1) by
setting l = 1 and λ = 0.

In the sequel, we consider the Fock space of the Bose oscillator constructed as follows.
From the vacuum vector |0〉 defined by a|0〉 = 0, the normalized vectors |n〉 for n ≥ 1, i.e.
eigenvectors of the operator N, are obtained as |n〉 = Cn(a†)n|0〉, where Cn stands for some
normalization constant to be determined.

Proposition 2.1. The structure function of the (q; l,λ)-deformed Heisenberg algebra (2.1)−
(2.2) is given by

ϕ(n) = l2qλ
1−q−n

q−1
= l2qλ−n[n]q, q > 0, (2.4)

where [n]q =
1−qn

1−q , with 0 < q < 1 or 1 < q, is the qn− factors (also known as q-deformed
numbers in Physics literature [16]).
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Proof: From the definition (1.17), a†a = ϕ(N) and aa† = ϕ(N+1). Thus, (2.2) is written
as

ϕ(N +1)−ϕ(N) = l2q−N+λ−1.

Applying this relation to the vectors |n〉, we obtain the recurrence relation

ϕ(n+1)−ϕ(n) = l2qλ−n−1, ∀n ∈ N

from which we deduce

ϕ(n) = ϕ(0)+ l2qλ
1−q−n

q−1
.

Since, in particular, ϕ(N)|0〉 = a†a|0〉 = 0 implies ϕ(0)|0〉 = 0, we have ϕ(0) = 0. Then (2.4)
follows. The structure function is also a strictly increasing function for x ∈ R since

dϕ(x)
dx
= l2qλ−x lnq

q−1
> 0, for q > 0.

Since ϕ(0) = 0, it follows that ϕ(x) ≥ 0 for any real x > 0 and in particular ϕ(n) ≥ 0, ∀n ≥ 0.
�

Proposition 2.2. The orthonormalized basis of the Fock space F is given by

|n〉 =
qn(n+1)/4√
(l2qλ)n[n]q!

(a†)n|0〉, n = 0, 1, 2, ... (2.5)

where [0]q! := 1 and [n]q! := [n]q[n−1]q...[1]q.
Moreover, the action of the operators a, a†, N, a†a and aa† on the vectors |n〉 for n ≥ 1 are
given by

a|n〉 =
√

l2qλ−n[n]q|n−1〉, (2.6)

a†|n〉 =
√

l2qλ−n−1[n+1]q|n+1〉, (2.7)

N|n〉 = n|n〉, (2.8)

a†a|n〉 = l2qλ−n[n]q|n〉, (2.9)

aa†|n〉 = l2qλ−n−1[n+1]q|n〉. (2.10)

Proof: To determine the constant of normalization Cn, we set

1 =: 〈n|n〉 = |Cn|
2〈0|an(a†)n|0〉 = |Cn|

2ϕ(n)ϕ(n−1)...ϕ(1)〈0|0〉

leading to Cn =
qn(n+1)/4
√

(l2qλ)n[n]q!
. Replacing Cn by its value in the definition of |n〉 given above

yields (2.5). The orthogonality of the vectors |n〉 is a direct consequence of a|0〉 = 0. The
rest of the proof is obtained from (2.5) using (2.1), (2.2) and (2.4). �

Theorem 2.3. The operators (a + a†) and i(a − a†), defined on the Fock space F , are
bounded and, consequently, self-adjoint if q > 1. If q < 1, they are not self-adjoint.
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Proof: The matrix elements of the operator (a+a†) on the basis |n〉 are given by

〈m|(a+a†)|n〉 = xnδm,n−1+ xn+1δm,n+1,n, m = 0, 1, 2, · · · (2.11)

while the matrix elements of the operator i(a−a†) are given by

〈m|i(a−a†)|n〉 = ixnδm,n−1− ixn+1δm,n+1,n, m = 0, 1, 2, · · · (2.12)

where xn =
(
l2qλ−n[n]q

)1/2
. Besides, the operators (a+a†) and i(a−a†) can be represented

by the two following symmetric Jacobi matrices, respectively:
0 x1 0 0 0 · · ·

x1 0 x2 0 0 · · ·

0 x2 0 x3 0 · · ·
...
. . .
. . .
. . .
. . .
. . .

 (2.13)

and 
0 −ix1 0 0 0 · · ·

ix1 0 −ix2 0 0 · · ·

0 ix2 0 −ix3 0 · · ·
...

. . .
. . .

. . .
. . .
. . .

 (2.14)

Two situations deserve investigation:
• Suppose q > 1. Then,

|xn| =

(
l2qλ

q−1
qn−1

qn

)1/2

<

(
l2qλ

q−1

)1/2

, ∀n ≥ 1.

Therefore, the Jacobi matrices in (2.13) and (2.14) are bounded and self-adjoint (Theorem
1.2., Chapter VII in Ref. [9]). Thus, (a+ a†) and i(a− a†) are bounded and, consequently,
self-adjoint.
• Contrarily, if q < 1, then

lim
n→∞

xn = lim
n→∞

(
l2qλ

1−q−n

q−1

)1/2

=∞. (2.15)

Considering the series
∑∞

n=1 1/xn, we obtain

lim
n→∞

(
1/xn+1

1/xn

)
= lim

n→∞

(
1−q−n

1−q−n−1

)1/2

= q1/2 < 1.

This ratio test leads to the conclusion that the series
∑∞

n=1 1/xn converges. Moreover, 1−
2q+q2 = (1−q)2 ≥ 0 =⇒ q−1+q ≥ 2. Hence,

0 ≤
(

l2qλ

q−1

)2 (
1−q−n(q+q−1)+q−2n

)
≤

(
1−2q−n+q−2n

) ( l2qλ

q−1

)2
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⇔ 0 ≤
(
l2qλ

1−q−n+1

q−1

)(
l2qλ

1−q−n−1

q−1

)
≤

(
l2qλ

1−q−n

q−1

)2

⇔ 0 ≤
(
l2qλ

1−q−n+1

q−1

)1/2 (
l2qλ

1−q−n−1

q−1

)1/2

≤

(
l2qλ

1−q−n

q−1

)
⇔ 0 ≤ xn−1xn+1 ≤ x2

n.

Therefore, the Jacobi matrices in (2.13) and (2.14) are not self-adjoint (Theorem 1.5., Chap-
ter VII in Ref. [9]). �

Definition 2.4. The (q; l,λ)-deformed position, momentum and Hamiltonian operators de-
noted by Xl,λ,q, Pl,λ,q and Hl,λ,q, respectively, are defined as follows:

Xl,λ,q := (~/2mω)1/2 (a+a†),
Pl,λ,q := −i (m~ω/2)1/2 (a−a†)

Hl,λ,q :=
1

2m
(Pl,λ,q)2+

1
2

mω2(Xl,λ,q)2

=
~ω

2
(a†a+aa†). (2.16)

Proposition 2.5. The following system characterization holds:

• The vectors |n〉 are eigenvectors of the (q; l,λ)-deformed Hamiltonian with respect to
the eigenvalues

El,λ,q(n) =
~ω

2
l2qλ−n−1(q[n]q+ [n+1]q

)
. (2.17)

• The mean values of Xl,λ,q and Pl,λ,q in the states |n〉 are zero while their variances are
given by

(∆Xl,λ,q)2
n =

m~ω
2

l2qλ−n−1(q[n]q+ [n+1]q
)
, (2.18)

(∆Pl,λ,q)2
n =

~

2mω
l2qλ−n−1(q[n]q+ [n+1]q

)
, (2.19)

where (∆A)2
n = 〈A

2〉n−〈A〉2n with 〈A〉n = 〈n|A|n〉.

• The position-momentum uncertainty relation is given by

(∆Xl,λ,q)n(∆Pl,λ,q)n =
h
2

l2qλ−n−1(q[n]q+ [n+1]q
)

(2.20)

which is reduced, for the vacuum state, to the expression

(∆Xl,λ,q)0(∆Pl,λ,q)0 =
h
2

l2qλ−1. (2.21)

Proof: Indeed, using the result of the Proposition 2.2, we get

Hl,λ,q|n〉 =
~ω

2
(a†a+aa†)〉 =

~ω

2
l2qλ−n−1(q[n]q+ [n+1]q

)
|n〉.

The first two relations (2.11) and (2.12) in the proof of the previous Theorem 2.3 yield
〈n|(a+a†)|n〉= 0= 〈n|i(a−a†)|n〉 and 〈n|(a+a†)2|n〉= x2

n+ x2
n+1 = 〈n|i

2(a−a†)2|n〉. Therefore,
〈n|Xl,λ|n〉 = 0 = 〈n|Pl,λ|n〉, 〈n|X2

l,λ|n〉 =
m~ω

2 (x2
n + x2

n+1) and 〈n|P2
l,λ|n〉 =

~
2mω (x2

n + x2
n+1). The

rest of the proof is obtained replacing xn and xn+1 by their expressions. �
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3 Coherent states |z〉l,λ
Definition 3.1. The coherent states associated with the algebra (2.1)-(2.2) are defined as

|z〉l,λ :=N−1/2
l,λ (|z|2)

∞∑
n=0

qn(n+1)/4zn√
(l2qλ)n[n]q!

|n〉, z ∈ Dl,λ, (3.1)

where

Nl,λ(x) =
∞∑

n=0

qn(n+1)/2xn

(l2qλ)n[n]q!
=

∞∑
n=0

qn(n−1)/2

(q;q)n

(
(1−q)qx

l2qλ

)n

(3.2)

and

Dl,λ =
{
z ∈ C : |z|2 < Rl,λ

}
, with Rl,λ =

 ∞ if 0 < q < 1
l2qλ

q−1 if q > 1.
(3.3)

Rl,λ is the convergence radius of the series Nl,λ(x).
Remark that the q-deformed coherent states introduced in [46] are recovered as a par-

ticular case corresponding to l = 1 and λ = 0.
We now aim at showing that the coherent states (3.1) satisfy the Klauder’s criteria [30,

31]. To this end let us first prove the following lemma:

Lemma 3.2. If q > 1, then

Nl,λ(x)
Nl,λ(q−1x)

=
1

1− (q−1)x/(l2qλ)
, (3.4)

Nl,λ(x) =
1(

(q−1)x/(l2qλ);q−1)
∞

, (3.5)∫ Rl,λ

0
xn

(
Nl,λ(q−1x)

)−1
dl,λ

q x = (l2qλ)nq−n(n+1)/2[n]q!. (3.6)

Proof: We use the (q; l,λ)-derivative defined by

∂l,λ
q f (x) = l2qλ

f (x)− f (q−1x)
(q−1)x

(3.7)

to obtain

Nl,λ(x) = ∂l,λ
q Nl,λ(x) = l2qλ

Nl,λ(x)−Nl,λ(q−1x)
(q−1)x

which leads to (3.4) and

Nl,λ(x) =
Nl,λ(q−nx)∏n−1

k=0
(
1− (q−1)q−kx/(l2qλ)

) , n = 1, 2, ... (3.8)

Letting n to +∞ and taking into account the fact that Nl,λ(0) = 1 lead to (3.5).
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Next, we use the (q; l,λ)-integration given by∫ a

0
f (x)dl,λ

q x =
q−1
l2qλ

a
∞∑

k=0

q−k f (aq−k) (3.9)

to get ∫ Rl,λ

0
xn

(
Nl,λ(q−1x)

)−1
dl,λ

q x =

∞∑
k=0

q−(n+1)k (l2qλ)n

(q−1)n
(
q−(k+1);q−1)

∞

=
(l2qλ)n

(q−1)n
(
q−1;q−1)

∞

∞∑
k=0

q−(n+1)k(
q−1;q−1)

k

=
(l2qλ)n

(q−1)n

(
q−1;q−1)

∞(
q−(n+1);q−1)

∞

=
(l2qλ)n

(q−1)n
(
q−1;q−1)

n = (l2qλ)nq−n(n+1)/2[n]q!.

�

Proposition 3.3. The coherent states defined in (3.1)

(i) are normalized eigenvectors of the operator a with eigenvalue z, i.e.

a|z〉l,λ = z|z〉l,λ, l,λ〈z|z〉l,λ = 1; (3.10)

(ii) are not orthogonal to each other, i.e.

l,λ〈z1|z2〉l,λ , 0, when z1 , z2; (3.11)

(iii) are continuous in their labels z;

(iv) resolve the unity, i.e.

1 =
∫

Dl,λ

dµl,λ(z̄,z)|z〉l,λl,λ〈z|, (3.12)

where

dµl,λ(z̄,z) =
1−q

l2qλ lnq−1

Nl,λ(z̄z)
Nl,λ(z̄z/q)

d2z
π
, if 0 < q < 1, (3.13)

and

dµ(z̄,z) =
1

2π
dl,λ

q x dθ

1− (q−1)x/(l2qλ)
, x = |z|2, θ = arg(z), (3.14)

with 0 < x < l2qλ

q−1 and 0 ≤ θ ≤ 2π for q > 1.
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Proof:
•Non orthogonality and normalizability

l,λ〈z1|z2〉l,λ =
Nl,λ(z̄1z2)(

Nl,λ(|z1|2)Nl,λ(|z2|2)
)1/2 , 0 (3.15)

imply that the coherent states are not orthogonal.
•Normalizability
From the above relation taking z1 = z2 = z we obtain l,λ〈z|z〉l,λ = 1. Also,

a|z〉l,λ = N
−1/2
l,λ (|z|2)

∞∑
n=0

qn(n+1)/4zn√
(l2qλ)n[n]q!

a|n〉

= N
−1/2
l,λ (|z|2)

∞∑
n=1

qn(n−1)/4zn√
(l2qλ)n−1[n−1]q!

|n−1〉

= zN−1/2
l,λ (|z|2)

∞∑
n=0

qn(n+1)/4zn√
(l2qλ)n[n]q!

|n〉.

•Continuity in the labels z

|||z1〉l,λ− |z2〉l,λ||
2 = 2

(
1−Rel,λ〈z1|z2〉l,λ

)
.

So, |||z1〉l,λ− |z2〉l,λ||
2→ 0 as |z1− z2| → 0, since l,λ〈z1|z2〉l,λ→ 1 as |z1− z2| → 0.

•Resolution of the unity
The computation of the RHS of (3.12) gives∫

Dl,λ

dµl,λ(z̄,z)|z〉l,λl,λ〈z| =
∑
n,m

|n〉〈m|
q[n(n+1)+m(m+1)]/4√
(l2qλ)n+m[n]q![m]q!

∫
Dl,λ

z̄nzm dµl,λ(z̄,z)
Nl,λ(|z|2)

. (3.16)

So, in order to satisfy (3.12) it is required∫
Dl,λ

z̄nzm dµl,λ(z̄,z)
Nl,λ(|z|2)

= δmn(l2qλ)nq−n(n+1)/2[n]q!, n, m = 0, 1, 2, ... (3.17)

Upon passing to polar coordinates, z =
√

x eiθ, dµl,λ(z̄,z) = dωl,λ(x)dθ where 0 ≤ θ ≤ 2π,
0 < x < Rl,λ and ωl,λ is a positive valued function, this is equivalent to the classical Stieltjes
power moment problem when 0 < q < 1 or the Hausdorff power moment problem when
q > 1 [1, 49]:∫ Rl,λ

0
xn 2π dωl,λ(x)

Nl,λ(x)
= (l2qλ)nq−n(n+1)/2[n]q!, n = 0, 1, 2, ... (3.18)

If 0 < q < 1, then we have the following Stieltjes power moment problem:∫ +∞

0
xn 2π dωl,λ(x)
Nl,λ(x)

= (l2qλ)nq−n(n+1)/2[n]q!, (3.19)
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or, equivalently, ∫ +∞

0
yn 2π dωl,λ(l2qλy)

Eq
(
(1−q)qy

) = q−n(n+1)/2[n]q!, (3.20)

where the change of variable y = x
l2qλ has been made. Atakishiyev and Atakishiyeva [6]

have proved that

gq(n) =
∫ +∞

0

yn−1dy
Eq((1−q)y)

=
lnq−1

1−q
q−n(n−1)/2[n−1]!q. (3.21)

Therefore we deduce

dωl,λ(l2qλy) =
1

2π
1−q
lnq−1

Eq((1−q)qy)dy
Eq((1−q)y)

or

dωl,λ(x) =
1

2π
1−q

l2qλ lnq−1

Eq((1−q)qx/(l2qλ))dx
Eq((1−q)x/(l2qλ))

=
1

2π
1−q

l2qλ lnq−1

Nl,λ(x)dx
Nl,λ(x/q)

. (3.22)

Hence

dµl,λ(z̄,z) =
1−q

l2qλ lnq−1

Nl,λ(z̄z)
Nl,λ(z̄z/q)

d2z
π
. (3.23)

In the opposite, if q > 1, then combining (3.18), (3.4) and (3.5) of the Lemma 3.2 we
get

dµ(z̄,z) =
1

2π
dl,λ

q x dθ

1− (q−1)x/(l2qλ)
, x = |z|2, θ = arg(z), (3.24)

where 0 < x < l2qλ

q−1 and 0 ≤ θ ≤ 2π. �

4 Statistics and geometry of coherent states |z〉l,λ
The conventional boson operators b and b† may be expressed in terms of the deformed
operators a and a† as

b = a

√
N
ϕ(N)

and b† =

√
N
ϕ(N)

a†, ϕ(N) , ϕ(0) (4.1)

and their actions on the states |n〉 are given by

b|n〉 =
√

n|n−1〉, and b†|n〉 =
√

n+1|n+1〉. (4.2)

Besides,

br |n〉 =

√
n!

(n− r)!
|n− r〉, 0 ≤ r ≤ n (4.3)

and

(b†)s|n〉 =

√
(n+ s)!

n!
|n+ s〉. (4.4)
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4.1 Quantum statistics of the coherent states |z〉l,λ

Proposition 4.1. The expectation value of monomials of boson creation and annihilation
operators b†, b in the coherent states |z〉l,λ are given by

〈(b†)sbr〉 =
z̄szr

Nl,λ(|z|2)

∞∑
n=0

√
q[(n+s)(n+s+1)+(n+r)(n+r+1)]/2(n+ r)!(n+ s)!

(l2qλ)(n+s)+(n+r)[n+ s]q![n+ r]q!
|z|2n

n!
, (4.5)

where s = 0, 1, 2, · · · and r = 0, 1, 2, · · · .
In particular,

〈(b†)rbr〉 =
xr

Nl,λ(x)

(
d
dx

)r

Nl,λ(x), x = |z|2, r = 0, 1, 2, · · · , (4.6)

and

〈N〉 = x
N ′l,λ(x)

Nl,λ(x)
, (4.7)

where N ′l,λ(x) denotes the derivative with respect to x.

Proof: Indeed, for s = 0, 1, 2, · · · and r = 0, 1, 2, · · · , we have

〈(b†)sbr〉 := l,λ〈z|(b†)sbr |z〉l,λ

=
1

Nl,λ(|z|2)

∞∑
m=0

∞∑
n=r

√
q[m(m+1)+n(n+1)]/2n!(n− r+ s)!

(l2qλ)m+n[m]q![n]q!(n− r)!(n− r)!
z̄mzn〈m|n+ s− r〉

=
1

Nl,λ(|z|2)

∞∑
n=r

√
q[(n+s−r)(n+s−r+1)+n(n+1)]/2n!(n− r+ s)!

(l2qλ)n+s−r+n[n+ s− r]q![n]q!(n− r)!(n− r)!
z̄n+s−rzn

=
z̄szr

Nl,λ(|z|2)

∞∑
n=0

√
q[(n+s)(n+s+1)+(n+r)(n+r+1)]/2(n+ r)!(n+ s)!

(l2qλ)(n+s)+(n+r)[n+ s]q![n+ r]q!
|z|2n

n!
,

In the special case s = r, we have

〈(b†)rbr〉 =
xr

Nl,λ(x)

∞∑
n=0

q(n+r)(n+r+1)/2(n+ r)!
(l2qλ)(n+r)[n+ r]q!

xn

n!

=
xr

Nl,λ(x)

∞∑
n=r

qn(n+1)/2(n)!
(l2qλ)(n)[n]q!

xn−r

(n− r)!

=
xr

Nl,λ(x)

(
d
dx

)r

Nl,λ(x), x = |z|2.

In particular

〈N〉 ≡ 〈b†b〉 = x
N ′l,λ(x)

Nl,λ(x)
.

�
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The probability of finding n quanta in the deformed state |z〉l,λ is given by

Pl,λ(n) := |〈n|z〉l,λ|2 =
qn(n+1)/2xn

(l2qλ)n[n]q!Nl,λ(x)
. (4.8)

The Mendel parameter measuring the deviation from the Poisson statistics is defined by
the quantity

Ql,λ :=
〈N2〉− 〈N〉2−〈N〉

〈N〉
. (4.9)

Let us evaluate it explicitly. From the expectation value of the operator N2 = (b†)2b2 +N
provided by

〈N2〉 = x2
N ′′l,λ(x)

Nl,λ(x)
+ x
N ′l,λ(x)

Nl,λ(x)
, (4.10)

we readily deduce

Ql,λ = x

N ′′l,λ(x)

N ′l,λ(x)
−
N ′l,λ(x)

Nl,λ(x)

 . (4.11)

It is then worth noticing that for x << 1,

Ql,λ = −
q(1−q)

l2qλ(1+q)
x+o(x2) (4.12)

meaning that the Pl,λ(n) is a sub-Poissonian distribution [31].

4.2 Geometry of the states |z〉l,λ

The geometry of a quantum state space can be described by the corresponding metric tensor.
This real and positive definite metric is defined on the underlying manifold that the quan-
tum states form, or belong to, by calculating the distance function (line element) between
two quantum states. So, it is also known as a Fubini-Study metric of the ray space. The
knowledge of the quantum metric enables one to calculate quantum mechanical transition
probability and uncertainties

In the case q < 1, the map from z to |z〉l,λ defines a map from the space C of complex
numbers onto a continuous subset of unit vectors in Hilbert space and generates in the latter
a two-dimensional surface with the following Fubini-Study metric:

dσ2 := ||d|z〉l,λ||2− |l,λ〈z|d|z〉l,λ|2 (4.13)

Proposition 4.2. The above Fubini-Study metric is reduced to

dσ2 =Wl,λ(x)dz̄dz, (4.14)

where x = |z|2 and

Wl,λ(x) =
x
N ′l,λ(x)

Nl,λ(x)

′ = d
dx
〈N〉. (4.15)

In polar coordinates, z = reiθ,

dσ2 =Wl,λ(r2)(dr2+ r2dθ2). (4.16)
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Proof: Computing d|z〉l,λ by taking into account the fact that any change of the form
d|z〉l,λ = α|z〉l,λ, α ∈ C, has zero distance, we get

d|z〉l,λ =Nl,λ(|z|2)−1/2
∞∑

n=0

qn(n+1)/4nzn−1√
(l2qλ)n[n]q!

|n〉 dz.

Then,

||d|z〉l,λ||2 = Nl,λ(|z|2)−1
∞∑

n=0

qn(n+1)/2n2|z|2(n−1)

(l2qλ)n[n]q!
dz̄dz

= Nl,λ(|z|2)−1

 ∞∑
n=0

qn(n+1)/2n|z|2(n−1)

(l2qλ)n[n]q!

+|z|2
∞∑

n=0

qn(n+1)/2n(n−1)|z|2(n−2)

(l2qλ)n[n]q!

dz̄dz

= Nl,λ(x)−1
(
N ′l,λ(x)+ xN ′′l,λ(x)

)
dz̄dz

= Nl,λ(x)−1
(
xN ′l,λ(x)

)′
dz̄dz

and

|l,λ〈z|d|z〉l,λ|2 =

∣∣∣∣∣∣∣Nl,λ(|z|2)−1
∞∑

n=0

qn(n+1)/2n|z|2(n−1)

(l2qλ)n[n]q!
z̄dz

∣∣∣∣∣∣∣
2

= xNl,λ(x)−2
(
N ′l,λ(x)

)2
dz̄dz.

Therefore,

dσ2 =

(
Nl,λ(x)−1

(
N ′l,λ(x)+ xN ′′l,λ(x)

)
− xNl,λ(x)−2

(
N ′l,λ(x)

)2
)
dz̄dz

=

x
N ′l,λ(x)

Nl,λ(x)

′ dz̄dz =
(

d
dx
〈N〉

)
dz̄dz.

�
For x << 1, we have

Wl,λ(x) =
q

l2qλ

[
1−

2q(1−q)
l2qλ(1+q)

x+o(x2)
]
. (4.17)

5 Concluding remark

In the present work, we have deformed the Heisenberg algebra with the set of parame-
ters {q, l,λ} to generate a new family of generalized coherent states respecting the Klauder
criteria. In this framework, the matrix elements of relevant operators have been exactly
computed and investigated from functional analysis point of view. Then, relevant statisti-
cal properties have been examined. Besides, a proof on the sub-Poissonian character of the
statistics of the main deformed states has been provided. This property has been finally used
to determine the induced generalized metric, characterizing the geometry of the considered
system.
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