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Abstract

In this paper, we prove the following: assume that either (i) T ∗ is w-hyponormal
and S is w-hyponormal such that ker(T ∗) ⊂ ker(T ) and ker(S ) ⊂ ker(S ∗) or (ii) T ∗ is
p-hyponormal or log-hyponormal and S is w-hyponormal such that ker(S ) ⊂ ker(S ∗)
or (iii) T ∗ is an injective w-hyponormal and S is a dominant holds. Then the pair (T,S )
satisfy Fuglede-Putnam theorem. Also, other related results are given.
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1 Introduction

For complex infinite dimensional Hilbert spaces H and K ,L (H ), L (K ) and L (H ,K )
denote the set of bounded linear operators on H , the set of bounded linear operators on
K and the set of bounded linear operators from H to K , respectively. An operator
T ∈ L (H ) is called positive (in symbol T ≥ 0 ) if 〈T x, x〉 ≥ 0 for all x ∈H . An opera-
tor T ∈L (H ) is called normal if T ∗T = TT ∗. Following [24, 28], an operator T ∈L (H )
is called dominant if

<(T −λ) ⊂<(T −λ)∗ for all λ ∈ C.

This condition is equivalent to the existence of a positive constant Mλ for each λ ∈ C such
that

(T −λ)(T −λ)∗ ≤ Mλ(T −λ)∗(T −λ).

If there exists a constant M such that Mλ ≤ M for all λ ∈ C, then T is called M-hyponormal,
and if M = 1, T is hyponormal. Hence the following inclusion relations hold:

{Normal } ⊂
{
Hyponormal

}
⊂

{
M-hyponormal

}
⊂ {Dominant } .
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According to [1, 3, 11], an operator T ∈ L (H ) is called p-hyponormal for p ∈ (0,1]
if |T |2p ≥ |T ∗|2p, when p = 1, T is called hyponormal, when p = 1

2 , T is called semi-
hyponormal. An operator T ∈ L (H ) is called log-hyponormal if T is invertible and
log(T ∗T ) ≥ log(TT ∗). And T ∈ L (H ) is called paranormal if

∥∥∥T 2x
∥∥∥ ≥ ‖T x‖2 for every

unit vector x ∈H .
In order to discuss the relations between paranormal and p-hyponormal and log-hyponormal

operators, Furuta el al. [12] introduced a class A defined by |T 2| ≥ |T |2 and they showed
that class A is a subclass of paranormal and contains p-hyponormal and log-hyponormal
operators. Class A operators have been studied by many researchers, for example [12, 10].
Fujii et al. [10] introduced a new class A(t, s) of operators: For t > 0 and s > 0 an operator
T belongs to class A(s, t) if it satisfies an operator inequality(

|T ∗|t|T |2s|T ∗|t
) t

t+s
≥ |T ∗|2t.

Recall from [2] that an operator T ∈L (H ) is called w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|,
where T̃ = |T |

1
2 U |T |

1
2 is the Aluthge transformation. As a generalization of w-hyponormal

and class A(s, t), Ito [15] introduced a class of operators called wA(s, t): For t > 0 and s > 0
an operator T belongs to class wA(s, t) if it satisfies an operator inequality(

|T ∗|t|T |2s|T |t
) t

t+s
≥ |T ∗|2t.

and
|T |2s ≥

(
|T |s|T ∗|2t|T |s

) s
s+t .

In [14], they showed that class w-hyponormal coincides with class wA( 1
2 ,

1
2 ), class A coin-

cides with class wA(1,1) and class A(s, t) coincides with class wA(s, t) for each s > 0, and
t > 0. Inclusion relations among these classes are known as follows:{

hyponormal operators
}
⊂

{
p-hyponormal operators for 0 < p ≤ 1

}
⊂

{
class A(s, t) operators for s, t ∈ [0,1]

}
=

{
class wA(s, t) operators for s, t ∈ [0,1]

}
⊂

{
class A operators

}
⊂

{
paranormal operators

}
.

A pair (T,S ) is said to have the Fuglede-Putnam property if T ∗X = XS ∗ whenever T X =
XS for every X ∈L (K ,H ). The Fuglede-Putnam theorem is well-known in the operator
theory. It asserts that for any normal operators T and S , the pair (T,S ) has the Fuglede-
Putnam property. There exist many generalization of this theorem which most of them go
into relaxing the normality of T and S , see [4, 5, 8, 9, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30,
31] and references therein. The two next lemmas are concerned with the Fuglede-Putnam
theorem and we need them in the future.

Lemma 1.1. ([30]) Let T ∈ L (H ) and S ∈ L (K ). Then the following assertions are
equivalent.

(i) The pair (T,S ) has the Fuglede-Putnam property.
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(ii) If T X = S X, then <(X) reduces T , ker(X)⊥ reduces S , and T |
<(X), S |ker(X)⊥ are uni-

tarily equivalent normal operators.

Lemma 1.2. ([16]) Let T ∈ L (H ) and S ∗ ∈ L (K ) be either log-hyponormal or p-
hyponormal operators. Then the pair (T,S ) has the Fuglede-Putnam property.

2 Complementary Results

In this section, we present some results that will be needed in the section which follows.

Lemma 2.1. ( [13]) If A,B ∈L (H ) satisfy A ≥ 0 and ‖B‖ ≤ 1, then

(B∗AB)α ≥ B∗AαB for all α ∈ (0,1].

Lemma 2.2. Let A,B and C be positive operators. Then(
B

1
2 AB

1
2

)α
≥ Band B ≥C =⇒

(
C

1
2 AC

1
2

)α
≥C, for all 0 < α ≤ 1.

Proof. There exists an operator X such that

C
1
2 = B

1
2 X = X∗B

1
2 and ‖X‖ ≤ 1

by Douglas theorem [7]. Then with C
1
2 = B

1
2 X we have(

C
1
2 AC

1
2

)α
=

(
X∗B

1
2 AB

1
2 X

)α
≥ X∗

(
B

1
2 AB

1
2

)α
X ≥ X∗BX =C

by Lemma 2.1. �

Theorem 2.3. Let 0 < s, t ≤ 1. Let T ∈ L (H ) be a class A(s, t) operator and M be its
invariant subspace. Then the restriction T |M of T to M is also class A(s, t) operator.

Proof. Let P be the projection onto M , and T1 = T P. Then

|T1|
2s = (P|T |2P)s ≥ P|T |2sP

by Lemma 2.1, so that |T ∗1 |
t|T1|

2s|T ∗1 |
t ≥ |T ∗1 |

t|T |2s|T ∗1 |
t. And also,

|T ∗1 |
2t = (T PT ∗)t ≤ (TT ∗)t = |T ∗|2t

by Löwner-Heinz theorem [23]. Since T belongs to class A(s, t), we have(
|T ∗|t|T |2s|T |t

) t
t+s
≥ |T ∗|2t,

it follows from Lemma 2.2 that (
|T ∗1 |

t|T |2s|T ∗1 |
t
) t

t+s
≥ |T ∗1 |

2t,

and so (
|T ∗1 |

t|T1|
2s|T ∗1 |

t
) t

t+s
≥ |T ∗1 |

2t, (2.1)

by Löwner-Heinz theorem. That is, the restriction T |M of T to M is class A(s, t) operator.
�
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Since class A(s, t) operators coincides with class wA(s, t) for each s > 0 and t > 0, we
have the following corollary.

Corollary 2.4. Let 0 < s, t ≤ 1. Let T ∈L (H ) be a class wA(s, t) operator and M be its
invariant subspace. Then the restriction T |M of T to M is also class wA(s, t) operator.

Since class wA( 1
2 ,

1
2 ) operators coincides with class w-hyponormal operators, we have

the following corollary.

Corollary 2.5. Let T ∈ L (H ). If T is w-hyponormal operator and M be its invariant
subspace. Then the restriction T |M of T to M is also w-hyponormal operator.

Lemma 2.6. Let 0 < s, t ≤ 1. Let T ∈ L (H ) belongs to class wA(s, t) and T = U |T | be
the polar decomposition of T . If M is an invariant subspace of T and T |M is an injective
normal operator, then the generalized Aluthge transformation has the form T̃s,t = N ⊕R on
H =M ⊕M ⊥, where N is a normal operator on M .

Proof. First, we show that if T is a class wA(s, t), then the generalized Aluthge transforma-
tion T̃s,t has the form T̃s,t = N ⊕R. Since T is a class wA(s, t), it follows from [15] that T̃s,t

is a p-hyponormal operator, where p =
min {s, t}

s+ t
. By Lemma 5 and Lemma 11 of [31], T̃s,t

has the form
(

N S
0 R

)
on H =M ⊕M ⊥, where N is normal and<(S ) ⊂ ker(N). Then

T̃ ∗s,tT̃s,t =

(
|N|2 0

0 |S |2+ |R|2

)
T̃s,tT̃ ∗s,t =

(
|N|2+ |S ∗|2 S R∗

RS ∗ |R∗|2

)

Put (T̃s,tT̃ ∗s,t)
p =

(
X Y
Y∗ Z

)
. Then the p-hyponormality of T̃s,t implies that

(T̃ ∗s,tT̃s,t)p =

(
|N|2p 0

0 (|S |2+ |R|2)p

)
≥

(
X Y
Y∗ Z

)
= (T̃s,tT̃ ∗s,t)

p.

We have<(Y) ⊂<(X
1
2 ) by Lemma 9 of [31] and<(X

1
2 ) ⊂<(|N|p) by Lemma 8 of [31].

Hence we have<(X)∪<(Y) ⊂<(X
1
2 ) ⊂<(|N|p). Put (T̃s,tT̃ ∗s,t)

1−p =

(
A B
B∗ C

)
. Hence

T̃s,tT̃ ∗s,t = (T̃s,tT̃ ∗s,t)
p(T̃s,tT̃ ∗s,t)

1−p =

(
X Y
Y∗ Z

)(
A B
B∗ C

)
.

This implies that |N|2+S S ∗ = XA+YB∗. Therefore,

<(S S ∗) ⊂<(|N|2)+<(X)+<(Y) ⊂<(|N|p) ⊂<(N),

while,<(S S ∗) ⊂ <(S ) ⊂ ker(N). This shows that<(S S ∗) = {0} and therefore S = 0. That
is, T̃s,t = N ⊕R.

�
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Lemma 2.7. Let T ∈L (H ) be w-hyponormal operator and T =U |T | be the polar decom-
position of T . If M is an invariant subspace of T and T |M is an injective normal operator,
then M reduces T .

Proof. Since T is w-hyponormal operator

|T̃ ∗| ≤ |T | ≤ |T̃ |.

Hence we have
|N| ⊕ |R∗| ≤ |T | ≤ |N| ⊕ |R|,

by assumption. This implies that |T | is of the form |N| ⊕ L for some positive operator L.

Let U =
(

U11 U12
U21 U22

)
be the matrix representation of U with respect to the decomposition

H =M ⊕M ⊥. Then the definition T̃ = |T |
1
2 U |T |

1
2 means that(

N 0
0 R

)
=

 |N| 12 0
0 L

1
2

( U11 U12
U21 U22

) |N| 12 0
0 Lr 1

2

 .
Hence we have

N = |N|
1
2 U11|N|

1
2 , (2.2)

|N|
1
2 U12L

1
2 = 0, (2.3)

L
1
2 U21|N|

1
2 = 0. (2.4)

Since ker(U) = ker(T ) = ker(|T |), we have

ker(N) ⊂ ker(U11), ker(N) ⊂ ker(U21), (2.5)

ker(L) ⊂ ker(U12), ker(N) ⊂ ker(U22). (2.6)

Let N = V |N| be the polar decomposition of N. Then <(U11 −V) ⊂ ker(N). Hence for
arbitrary x ∈ <(N), we have

‖x‖2 ≥ ‖V x‖2+ ‖U11−V‖2 , by Pythagoras’s theorem,

= ‖x‖2+ ‖U11−V‖2 , since V is unitary on<(N).

Therefore, we obtain V = U11. Since

‖x‖2 = ‖Ux‖2+ ‖U21x‖2 = ‖x‖2+ ‖U21x‖2 for x ∈ <(N),

we have U21 = 0. Also, we see that<(U12) ⊂ ker(N) by (2.3) and (2.6). Hence,

T = U |T | =
(

U11 U12
0 U22

)(
|N| 0
0 L

)
=

(
N U12L
0 U22L

)
.

Since<(U12) ⊂ ker(N) = {0}, we have U12 = 0 and so T = N ⊕T1 on H =M ⊕M ⊥. That
is, M reduces T . �
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The following example shows that there exists a w-hyponormal operator T such that
T |M is quasinormal but M does not reduce T .

Example 2.8. Let T be a bilateral shift on `2(Z) defined by Ten = en+1 and M = ∨n≥0Cen.

Then T is unitary and T |M is isometry. However, M does not reduce T .

Lemma 2.9. Let 0 < s, t ≤ 1. Let T =
(

A S
0 B

)
be a class A(s, t) operator on H =M ⊕

M ⊥, where M is a T-invariant subspace such that the restriction A = T |M is an injective
normal operator. Then M reduces T .

Proof. Since T belongs to class A(s, t) and 0 < s, t ≤ 1, T belongs to class A. Let P be the
orthogonal projection onto M . Then we have(

A∗A 0
0 0

)
= PT ∗T P ≤ P|T 2|P (since T ∈ class A)

≤

(
(A∗2A2)

1
2 0

0 0

)
(by Lemma 2.1)

=

(
A∗A 0

0 0

)
(since A is normal).

Let |T 2| =

(
X Y
Y∗ Z

)
be the 2×2 matrix representation of |T 2| on H =M ⊕M ⊥. Then we

have X = A∗A by the equality above. Since |A2|2 = T ∗2T 2, we have(
X2+YY∗ XY +YZ

ZY∗+Y∗X Y∗Y +Z2

)
=

(
A∗2A2 A∗2AS

S ∗A∗A2 S ∗S +B∗2B2

)
,

and hence X2+YY∗ = A∗2A2 = (A∗A)2 = X2. This implies that Y = 0. Thus we have(
|A|4 0
0 Z2

)
= |T 2|2 = T ∗T ∗TT

=

(
A∗A∗AA A∗A∗(AS +S B)

(S ∗A∗+B∗S ∗)AA (AS +S B)∗(AS +S B)+B∗B∗BB

)
Since A is an injective normal operator, we have AS +S B = 0 and Z = |B2|. Now, since T is
a class A, we have

0 ≤ |T 2| − |T |2

=

(
0 −A∗S
−S ∗A −S ∗S + (|B2| − |B|2)

)
and hence A∗S = 0. Thus the range of S is included in ker(A∗) = ker(A) = {0} . Therefore,
S = 0 and so M reduces T . �

An operator X ∈L (K ,H ) is called quasiaffinity if X is both injective and has a dense
range. For T ∈ L (H ) and S ∈ L (K ), if there exist quasiaffinities X ∈ L (K ,H ) and
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Y ∈L (H ,K ) such that T X = XS and YT = S Y , then we say that T and S are quasisimi-
lar.

The operator T ∈L (H ) is said to be pure if there exists no non-trivial reducing sub-
space M of H such that the restriction of T to M is normal and is completely hyponormal
if it is pure.

Recall that every operator T ∈ L (H ) has a direct sum decomposition T = T1 ⊕ T2,

where T1 and T2 are normal and pure parts, respectively. Of course in the sum decomposi-
tion, either T1 or T2 may be absent.

The following lemma is due to Williams [33, Lemma 1.1].

Lemma 2.10. Let T ∈L (H ) and S ∈L (K ) be normal operators. It there exist injective
operators X ∈L (K ,H ) and Y ∈L (H ,K ) such that T X = XS and YT = S Y, then T
and S are unitarily equivalent.

Corollary 2.11. Let T ∈L (H ) be w-hyponormal operator. Then T = T1⊕T2 on the space
H = H1 ⊕H2, where T1 is normal and T2 is pure and w-hyponormal; i.e., T2 has no
invariant subspace M such that T2|M is normal.

The next lemma was proved for dominant operators in [28, Theorem 1], for p-hyponormal
operators in [17] and for log-hyponormal operators in [16, Lemma 3].

Lemma 2.12. Let T ∈L (H ) be w-hyponormal operator and let S ∈L (K ) be a normal
operator. If there exists an operator X ∈L (K ,H ) with dense range such that T X = XS ,
then T is normal.

Proof. First, we decompose T into normal and pure parts by T = T1 ⊕T2 with respect to a
decomposition H =H1⊕H2. Let T2 = U2|T2| be the polar decomposition of T2 and T̃2 =

|T2|
1
2 U2|T2|

1
2 . Let T̃2 = V2|T̃2| be the polar decomposition of T̃2 and T̂2 = |T̃2|

1
2 V2|T̃2|

1
2 . Since

T1 is normal, we have T̃ = T1 ⊕ T̃2 and T̂ = T1 ⊕ T̂2. Let W = |T̃2|
1
2 |T2|

1
2 . Since ker(|T2|) =

ker(T2) = {0} , by Corollary 2.11, |T2|
1
2 is a quasiaffinity. Hence T̂2 is injective and W is

a quasiaffinity such that T̂W = WT2. Let Y = IH1 ⊕W. Then T̂ is hyponormal and Y is a
quasiaffinity such that T̂Y = YT. Thus we have T̂ (YX) = (YX)S and YX has dense range.
Hence T̂ is normal, by [28, Theorem 1], and so T is normal by [6, Theorem 1]. �

3 The Fuglede-Putnam Theorem

In this section, we present some results concerning the Fuglede-Putnam theorem.

Theorem 3.1. Let T ∈L (H ) be w-hyponormal such that ker(T )⊂ ker(T ∗) and L ∈L (H )
be a self-adjoint which satisfies T L = LT ∗. Then T ∗L = LT.

Proof. We first show that if T L = LT ∗ = 0, then T ∗L = LT = 0. Since ker(T ) ⊂ ker(T ∗),
ker(T ) reduces T by [4], T L = 0 implies that <(L) ⊆ ker(T ) ⊂ ker(T ∗) and by taking the
orthogonal complement, we obtain<(T ) ⊂ ker(L). Hence we have T ∗L = LT = 0.

Next, we prove the case in which T L , 0. Since T is w-hyponormal, the Aluthge trans-
form T̃ of T is semi-hyponormal. Moreover, it satisfies

|T̃ | ≥ |T | ≥ |T̃ ∗|. (3.1)
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Put W = |T |
1
2 L|T |

1
2 . Then W is self-adjoint and satisfies

T̃W =WT̃ ∗. (3.2)

By the argument in the proof of Theorem 2 of [31], we have that the restriction T̃ |
<(W) of

T̃ to its invariant subspace<(W) is normal and

T̃ ∗W =WT̃ . (3.3)

Hence <(W) reduces T̃ , by Lemma 2.7, and so T̃ is of the form T̃ = N ⊕ S on <(W)⊕
ker(W), where N is normal. By Corollary 2.5 and Lemma 2.7, T = N ⊕ B, for some w-

hyponormal operator B. Let W =W1⊕0 and L =
(

L1 L2
L3 L4

)
on<(W)⊕ker(W). Then L2 =

L3 = 0 and L4 = 0 follows from the equality W = |T |
1
2 L|T |

1
2 . By assumption, NL1 = L1N∗,

we have N∗L1 = L1N by Fuglede-Putnam theorem and so T ∗L = LT. �

Example 3.2. Let H = ⊕∞n=0C
2 and define an operator R on H by

R(· · · ⊕ x−2⊕ x−1⊕ x(0)
0 ⊕ x1⊕ · · · ) = · · · ⊕Ax−2⊕Ax(0)

−1 ⊕Bx0⊕Bx1⊕ · · · ,

where A = 1
4

( 1
2

1
2

1
2

1
2

)
and B =

(
1 0
0 0

)
. Then R is w-hyponormal. Moreover, <(E) =

ker(R), E is not a self-adjoint and ker(R) , ker(R∗), where E is the Riesz idempotent with
respect to 0, see [32, Example 13]. Let T = R and L = P be the orthogonal projection onto
ker(T ). Then T is w-hyponormal operator and T L = 0 = LT ∗, but T ∗L , LT. Hence the
kernel condition ker(T ) ⊂ ker(T ∗) is necessary for Theorem 3.1.

Corollary 3.3. Let T ∈L (H ) be w-hyponormal such that ker(T ) ⊂ ker(T ∗). If X ∈L (H )
and T X = XT ∗, then T ∗X = XT.

Proof. Let X = L+ iK be the cartesian decomposition of X. Then we have T L = LT ∗ and
T K = KT ∗, by the assumption. By Theorem 3.1, we have T ∗L = LT and T ∗K = KT. This
implies that T ∗X = XT. �

If we use the 2×2 matrix trick, we easily deduce the following result.

Corollary 3.4. Let T ∗ ∈L (H ) be w-hyponormal and S ∈L (K ) be w-hyponormal with
ker(T ∗) ⊂ ker(T ) and ker(S ) ⊂ ker(S ∗). If X ∈L (H ,K ) and XT = S X, then XT ∗ = S ∗X.

Proof. Put A =
(

T ∗ 0
0 S

)
and B =

(
0 0
X 0

)
on H ⊕K . Then A is a w-hyponormal

operator on H ⊕K that satisfies BA∗ = AB and ker(A) ⊂ ker(A∗). Hence we have BA =
A∗B, by Corollary 3.3, and so XT ∗ = S ∗X. �

Example 3.5. Let S = T ∗ = R as in Example 3.2 and X = P be the orthogonal projection
onto ker(S ). Then S X = 0 = XT, but S ∗X = XT ∗. Hence the kernel condition is necessary
for Corollary 3.4.
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Theorem 3.6. Let T ∈ L (H ) be such that T ∗ is p-hyponormal or log-hyponormal. Let
S ∈L (K ) be w-hyponormal with ker(S ) ⊂ ker(S ∗). If XT = S X, for some X ∈L (H ,K ).
Then XT ∗ = S ∗X.

Proof. Let T ∗ be a p-hyponormal operator for p≥ 1
2 and let U |T | be the polar decomposition

of T . Then the Aluthge transform T̃ ∗ of T ∗ is hyponormal and satisfies

|T̃ ∗| ≥ |T |2 ≥ |T̃ |, (3.4)

X ′T̃ = S X ′, (3.5)

where X ′ = XU |T |
1
2 . Using the decompositions H = ker(X ′)⊥⊕ker(X ′) and K =<(X ′)⊕

<(X ′)⊥, we see that T̃ ,S and X ′ are of the form

T̃ =
(

T1 0
T2 T3

)
, S =

(
S 1 S 2
0 S 3

)
, X ′ =

(
X1 0
0 0

)
where T ∗1 is hyponormal, S 1 is w-hyponormal with ker(S 1) ⊂ ker(S ∗1) and X1 is a one-one
operator with dense range. Since X ′T̃ = S X ′, we have

X1T1 = S 1X1. (3.6)

Hence T1 and S 1 are normal by Theorem 3.6 of [4], so that T2 = 0, by Lemma 12 of
[31] and S 2 = 0 by Lemma 2.7. Then |T | = |T1| ⊕ P, for some positive operator P, by

(3.4) and U =
(

U1 U2
0 U3

)
by Lemma 13 of [31]. Let X =

(
X11 X12
X21 X22

)
be a 2×2 matrix

representation of X with respect to the decomposition H = ker(X ′)⊥ ⊕ ker(X ′) and K =

<(X ′)⊕<(X ′)⊥. Then X ′ = XU |T |
1
2 implies that X1 = X11U1|T1|

1
2 and hence ker(T1) ⊂

ker(X1) = {0} . This shows that T1 is one-one and hence it has dense range, so that U2 = 0
and T = T1⊕T4 for some hyponormal operator T ∗4 by [31, Lemma 13]. Since(

X1 0
0 0

)
= X ′ = XU |T |

1
2 =

(
X11 X12
X21 X22

) U1|T1|
1
2 0

0 U3|T4|
1
2


we deduce the following assertions.

X12U2|T4|
1
2 = 0; hence X12T3 = 0 because T4 = U3|T4.

X21U1|T1|
1
2 = 0; hence X12 = 0 because U1|T1|

1
2 has dense range.

X22U3|T4|
1
2 = 0; hence X22T3 = 0.

The assumption XT = S X tell us that,

X11T1 = S 1X11

X12T4 = S 1X12 = 0,

X22T4 = S 3X22 = 0.

Since T1 and S 1 are normal, we have X11T ∗1 = S ∗1X11, by Fuglede-Putnam theorem. The p-
hyponormality of T ∗4 shows that<(T ∗4 ) ⊂<(T4). Also, we have ker(S 3) ⊂ ker(S ∗3). Hence,
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we also have X12T ∗4 = S ∗1X12 = 0 and X22T ∗4 = S ∗3X22 = 0. This implies that XT ∗ = X11T ∗1 ⊕
0 = S ∗1X11⊕0 = S ∗X.

Next, we prove the case where T ∗ is p-hyponormal for 0 < p ≤ 1
2 . Let X ′ be as above.

Then T̃ ∗ is (p+ 1
2 )-hyponormal and satisfies X ′T̃ = S X ′. Use the same argument as above.

We obtain T̃ = T1⊕T3 on H = ker(X ′)⊥⊕ker(X ′) and S = S 1⊕S 3,where T1 is an injective
normal operator and S 1 is also normal. Hence we have T = T1⊕T4 for some p-hyponormal
T ∗4 , by Lemma 13 of [31]. Again using the same argument as above, we obtain X21 =

0,X11T ∗1 = S ∗1X11,X12T ∗4 = S ∗1X12 = 0 and X22T ∗4 = S ∗3X22 = 0. hence we have XT ∗ = S ∗X.
Finally, we assume that T ∗ is log-hyponormal. Let T̃ and X ′ be as above. Then X ′T̃ =

S X ′ and T̃ ∗ is semi-hyponormal and satisfies

|T̃ | ≤ |T | ≤ |T̃ ∗|.

By the same argument as above, we have T̃ = T1 ⊕ T3 on H = ker(X ′)⊥ ⊕ ker(X ′) and
S = S 1 ⊕ S 3 on K = <(X ′)⊕<(X ′)⊥, where T1 is an injective normal operator, S 1 is
normal, T ∗3 is invertible semi-hyponormal and S 3 is w-hyponormal with ker(S 3) ⊂ ker(S ∗2).
By Lemma 13 of [31], we have that T is of the form T = T1⊕T4, for some log-hyponormal

T ∗4 . Let X =
(

X11 X12
X21 X22

)
. Then X ′ = XU |T |

1
2 implies that X12 = 0,X21 = 0 and X22 = 0.

The assumption XT = S X implies that X11T1 = S 1X11, hence X11T ∗1 = S ∗1X11 by Fuglede-
Putnam theorem. Thus we have XT ∗ = X11T ∗1 ⊕0 = S ∗1X11 ⊕0 = S ∗X. Therefore, the proof
of the theorem is achieved. �

Example 3.7. Let R be an operator such that ker(R) does not reduce R and let P be the
orthogonal projection onto ker(R). Then P does not commute with T ; otherwise <(R) =
ker(R) reduce T . Hence PR , 0 = RP. It is easy to see that RP = PR∗ = 0 but R∗P , PR(, 0)
because<(R∗P) ⊂<(R∗) ⊂ ker(R⊥) = I−P. If we put T = R, then the assertion of Theorem
3.1 does not hold for such T . Also, if we put T = R∗,S = I − P and X = P, then XT =
PR∗ = 0 = (I−P)P = S X. However, XT ∗ = PR , 0 = (I−P)P = S ∗X. Hence the assertion of
Theorem 3.6 does not hold for such T .

Theorem 3.8. Let T ∈ L (H ) be such that T ∗ is an injective w-hyponormal . Let S ∈
L (K ) be dominant. If XT = S X, for some X ∈L (H ,K ). Then XT ∗ = S ∗X.

Proof. Assume that T ∗ is an injective w-hyponormal and let U |T | be the polar decomposi-
tion of T . Let T̃ be the aluthge transform of T and X ′ = XU |T |

1
2 . Then X ′T̃ = S X ′ and T̃ ∗

is semi-hyponormal and satisfies
|T̃ | ≤ |T | ≤ |T̃ ∗|.

By the same argument in the proof of Theorem 3.6, we conclude that T̃ = T1 ⊕ T3 on
H = ker(X ′)⊥⊕ker(X ′) and S = S 1⊕S 3, where T1 is an injective normal operator and S 1
is also normal, T ∗3 is invertible w-hyponormal and S 3 is dominant. Hence by Lemma 2.7,
we have that T is of the form T = T1⊕T4 for some w-hyponormal T ∗4 . Let

X =
(

X11 X12
X21 X22

)
.
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Then X ′ = XU |T |
1
2 implies that X12 = 0,X21 = 0 and X22 = 0. The assumption XT = S X

implies that X11T1 = S 1X11, hence X11T ∗1 = S ∗1X11 by Fuglede-Putnam theorem. Thus we
have XT ∗ = X11T ∗1 ⊕0 = S ∗1X11⊕0 = S ∗X. Therefore, the proof of the theorem is achieved.

�

Example 3.9. Let T ∗ = R as in Example 3.2. Let X = P be the orthogonal projection onto
ker(T ∗) and S = I − P. Then S X = 0 = XT ∗, but 0 = S ∗X , XT ∗. Hence the injectivity
condition is necessary for Theorem 3.8.

Example 3.10. Let {en}
∞
n=−∞ be a complete orthonormal system for H . We denote the

orthogonal projection onto Cen by Pn. Let W be a weighted shift on H defined by

Wen =

{ √
2en+1, if n ≥ 0;

en+1, if n < 0.

Then W∗W −WW∗ = P0. Define an operator T on a Hilbert space K =H ⊕Ce0 by

T =
(

W P0
0 0

)
.

Then T is class A, see [31, Example 1]. It is easy to see that

ker(T ) = C(−e−1⊕ e0) and ker(T ∗) = {0}⊕Ce0.

Hence T does not reduces T and therefore the assertions of Theorems 3.8, 3.6 and Corol-
lary 3.4 are not necessarily true for class A operators.
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