SOME DISCRETE FRACTIONAL INEQUALITIES OF CHEBYSHEV TYPE

MARTIN BOHNER*

Missouri S&T, Department of Mathematics and Statistics, Rolla, MO 65409-0020, USA

RUI A. C. FERREIRA[†]

Lusophone University of Humanities and Technologies, Department of Mathematics, 1749-024 Lisbon, Portugal

Abstract

Using the discrete fractional sum operator, we establish some inequalities of Chebyshev type.

AMS Subject Classification: 26D15; 39A12; 26A33.

Keywords: Discrete fractional calculus, Chebyshev-type inequalities.

1 Introduction

In 1882, Chebyshev proved the following result [3]:

Let f and g be two integrable functions in [0, 1]. If both functions are simultaneously increasing or decreasing for the same values of x in [0, 1], then

$$\int_{0}^{1} f(x)g(x)dx \ge \int_{0}^{1} f(x)dx \int_{0}^{1} g(x)dx.$$

If one function is increasing and the other decreasing for the same values of x in [0, 1], then

$$\int_{0}^{1} f(x)g(x)dx \le \int_{0}^{1} f(x)dx \int_{0}^{1} g(x)dx.$$

Since then, continuous and discrete generalizations and extensions of such inequalities have appeared in the literature (see [2, 8] and references therein). In 2009, Belarbi and Dahmani [1] proved that

$$(I^{\alpha}fg)(t) \ge \frac{\Gamma(\alpha+1)}{t^{\alpha}}(I^{\alpha}f)(t)(I^{\alpha}g)(t), \quad t > 0, \quad \alpha > 0,$$
(1.1)

^{*}E-mail address: bohner@mst.edu

[†]E-mail address: ruiacferreira@ulusofona.pt

where I^{α} is the Riemann–Liouville fractional integral operator of order $\alpha \ge 0$ [6], and f and g are two synchronous functions (cf. Definition 2.5 below). Moreover, much more recently, a q-analogue of inequality (1.1) has appeared in the literature [7].

It is our aim with this paper to establish a discrete version of inequality (1.1) as well as some other related results. We will do this by using the discrete fractional sum operator defined by Miller and Ross [5] in 1989.

This paper is organized as follows: in Section 2 we provide the reader fundamental concepts and results needed throughout the paper. In Section 3 we state and prove our main achievements.

2 Preliminaries on Discrete Fractional Calculus

In this section we introduce the reader to basic concepts and results about discrete fractional calculus.

The power function is defined by

$$x^{(y)} = rac{\Gamma(x+1)}{\Gamma(x+1-y)}, ext{ for } x, x-y \in \mathbb{R} \setminus (\mathbb{Z} \setminus \mathbb{N}_0).$$

Remark 2.1. Using the properties of the Gamma function, it is easily seen that for $x \ge y \ge 0$, we get $x^{(y)} \ge 0$.

For $a \in \mathbb{R}$ and $0 < \alpha \le 1$, we define the set $\mathbb{N}_a^{\alpha} = \{a + \alpha, a + \alpha + 1, a + \alpha + 2, ...\}$. Also, we use the notation $\sigma(s) = s + 1$ for the shift operator and $(\Delta f)(t) = f(t+1) - f(t)$ for the forward difference operator.

For a function $f: \mathbb{N}_a^0 \to \mathbb{R}$, the discrete fractional sum of order $\alpha \ge 0$ is defined as

$$(_{a}\Delta^{0}f)(t) = f(t), \quad t \in \mathbb{N}_{a}^{0},$$
$$(_{a}\Delta^{-\alpha}f)(t) = \frac{1}{\Gamma(\alpha)}\sum_{s=a}^{t-\alpha}(t-\sigma(s))^{(\alpha-1)}f(s), \quad t \in \mathbb{N}_{a}^{\alpha}, \ \alpha > 0.$$

Remark 2.2. Note that the operator $_a\Delta^{-\alpha}$ with $\alpha > 0$ maps functions defined on \mathbb{N}_a^0 to functions defined on \mathbb{N}_a^{α} . Also observe that if $\alpha = 1$, we get the summation operator

$$(_{a}\Delta^{-1}f)(t) = \sum_{s=a}^{t-1} f(s).$$

The following result will be used in the sequel.

Lemma 2.3 (See [4, Corollary 10]). *If* $a \in \mathbb{R}$ and $\mu, \mu + \nu \in \mathbb{R} \setminus \{\dots, -2, -1\}$, then

$$\left(a\Delta^{-\nu}(s-a+\mu)^{(\mu)}\right)(t) = \frac{\Gamma(\mu+1)}{\Gamma(\mu+\nu+1)}\left(t-a+\mu\right)^{(\mu+\nu)}, \quad t \in \mathbb{N}_a^{\nu}$$

Remark 2.4. The function $t \to (t-a)^{(\alpha)}$ defined on \mathbb{N}_a^{α} , $a \in \mathbb{R}$ and $\alpha \ge 0$, is increasing. Indeed, we have that $\Delta(t-a)^{(\alpha)} = \alpha(t-a)^{(\alpha-1)}$ and $(t-a)^{(\alpha-1)} \ge 0$.

Definition 2.5. Two functions f and g are called synchronous, respectively asynchronous, on \mathbb{N}_a^0 if for all $\tau, s \in \mathbb{N}_a^0$, we have $(f(\tau) - f(s))(g(\tau) - g(s)) \ge 0$, respectively $(f(\tau) - f(s))(g(\tau) - g(s)) \le 0$.

3 Discrete Fractional Inequalities

We start by proving the main result of this paper.

Theorem 3.1. If $\alpha > 0$ and f, g are two synchronous functions on \mathbb{N}^0_a , then

$$\left(_{a}\Delta^{-\alpha}fg\right)(t) \geq \frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\left(_{a}\Delta^{-\alpha}f\right)(t)\left(_{a}\Delta^{-\alpha}g\right)(t), \quad t \in \mathbb{N}_{a}^{\alpha}.$$
(3.1)

Proof. Since the functions f and g are synchronous on \mathbb{N}_a^0 , then for all $\tau, s \in \mathbb{N}_a^0$, we have

$$(f(\tau) - f(s))(g(\tau) - g(s)) \ge 0,$$

i.e.,

$$f(\tau)g(\tau) + f(s)g(s) \ge f(\tau)g(s) + f(s)g(\tau).$$
(3.2)

Now, multiplying both sides of (3.2) by $\frac{(t-\sigma(\tau))^{(\alpha-1)}}{\Gamma(\alpha)}$, $t \in \mathbb{N}_a^{\alpha}$ and $\tau \in \{a, a+1, \dots, t-\alpha\}$, we get

$$\frac{(t - \sigma(\tau))^{(\alpha - 1)}}{\Gamma(\alpha)} f(\tau)g(\tau) + \frac{(t - \sigma(\tau))^{(\alpha - 1)}}{\Gamma(\alpha)} f(s)g(s) \\
\geq \frac{(t - \sigma(\tau))^{(\alpha - 1)}}{\Gamma(\alpha)} f(\tau)g(s) + \frac{(t - \sigma(\tau))^{(\alpha - 1)}}{\Gamma(\alpha)} f(s)g(\tau). \quad (3.3)$$

Now, summing both sides of (3.3) for $\tau \in \{a, a+1, \dots, t-\alpha\}$, we obtain

$$\left(_{a}\Delta^{-\alpha}fg\right)(t) + f(s)g(s)\left(_{a}\Delta^{-\alpha}1\right)(t) \ge g(s)\left(_{a}\Delta^{-\alpha}f\right)(t) + f(s)\left(_{a}\Delta^{-\alpha}g\right)(t).$$
(3.4)

Multiplying both sides of (3.4) by $\frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)}$, $t \in \mathbb{N}_a^{\alpha}$ and $s \in \{a, a+1, \dots, t-\alpha\}$, we obtain

$$\frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)} \left(_{a}\Delta^{-\alpha}fg\right)(t) + \frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)}f(s)g(s)\left(_{a}\Delta^{-\alpha}1\right)(t) \\
\geq \frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)}g(s)\left(_{a}\Delta^{-\alpha}f\right)(t) + \frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)}f(s)\left(_{a}\Delta^{-\alpha}g\right)(t), \quad (3.5)$$

and again, summing both sides of (3.5) for $s \in \{a, a+1, \dots, t-\alpha\}$, we get

$$\begin{pmatrix} a\Delta^{-\alpha}1 \end{pmatrix}(t) \begin{pmatrix} a\Delta^{-\alpha}fg \end{pmatrix}(t) + \begin{pmatrix} a\Delta^{-\alpha}fg \end{pmatrix}(t) \begin{pmatrix} a\Delta^{-\alpha}1 \end{pmatrix}(t) \\ \geq \begin{pmatrix} a\Delta^{-\alpha}g \end{pmatrix}(t) \begin{pmatrix} a\Delta^{-\alpha}f \end{pmatrix}(t) + \begin{pmatrix} a\Delta^{-\alpha}f \end{pmatrix}(t) \begin{pmatrix} a\Delta^{-\alpha}g \end{pmatrix}(t),$$

i.e.,

$$\left({}_{a}\Delta^{-\alpha}f \right)(t) \left({}_{a}\Delta^{-\alpha}g \right)(t) \leq \left({}_{a}\Delta^{-\alpha}1 \right)(t) \left({}_{a}\Delta^{-\alpha}fg \right)(t)$$

$$= \frac{(t-a)^{(\alpha)}}{\Gamma(\alpha+1)} \left({}_{a}\Delta^{-\alpha}fg \right)(t),$$

where we have used Lemma 2.3. This shows (3.1).

Remark 3.2. The inequality sign in (3.1) is reversed if the functions are asynchronous on \mathbb{N}_a^0 .

Example 3.3. Let $\beta \ge 0$ and consider the functions f_{β} defined by

$$f_{\beta}(t) = (t+\beta)^{(\beta)}, \quad t \in \mathbb{N}_0^0.$$

By Remark 2.4, it follows that f_{β} and f_{γ} are synchronous functions for $\beta, \gamma \ge 0$. Therefore, by Lemma 2.3 and Theorem 3.1, the inequality

$$\left(_{0}\Delta^{-\alpha}f_{\beta}f_{\gamma}\right)(t) \geq \frac{\Gamma(\alpha+1)}{t^{(\alpha)}}\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+\alpha+1)}\left(t+\gamma\right)^{(\gamma+\alpha)}\frac{\Gamma(\beta+1)}{\Gamma(\beta+\alpha+1)}\left(t+\beta\right)^{(\beta+\alpha)}$$

holds for all $t \in \mathbb{N}_0^{\alpha}$.

Theorem 3.4. If $\alpha, \beta > 0$ and f, g are two synchronous functions on \mathbb{N}^0_a , then

$$\frac{(t-a)^{(\alpha)}}{\Gamma(\alpha+1)} \left({}_{a}\Delta^{-\beta}fg \right)(t) + \frac{(t-a)^{(\beta)}}{\Gamma(\beta+1)} \left({}_{a}\Delta^{-\alpha}fg \right)(t)
\geq \left({}_{a}\Delta^{-\alpha}f \right)(t) \left({}_{a}\Delta^{-\beta}g \right)(t) + \left({}_{a}\Delta^{-\beta}f \right)(t) \left({}_{a}\Delta^{-\alpha}g \right)(t), \quad t \in \mathbb{N}_{a}^{\alpha}.$$
(3.6)

Proof. Proceeding as in the proof of Theorem 3.1 and using inequality (3.4), we can write

$$\frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)} \left(_{a}\Delta^{-\alpha}fg\right)(t) + \frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)}f(s)g(s)\left(_{a}\Delta^{-\alpha}1\right)(t) \\
\geq \frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)}g(s)\left(_{a}\Delta^{-\alpha}f\right)(t) + \frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)}f(s)\left(_{a}\Delta^{-\alpha}g\right)(t). \quad (3.7)$$

Now, summing both sides of (3.7) for $s \in \{a, a + 1, ..., t - \beta\}$, we obtain the desired inequality (3.6).

Remark 3.5. If we let $\alpha = \beta$ in Theorem 3.4, we obtain Theorem 3.1.

We end this manuscript with a generalization of Theorem 3.1.

Theorem 3.6. Assume that f_i , $1 \le i \le n$, are $n \in \mathbb{N}$ functions on \mathbb{N}^0_a satisfying

$$\prod_{i=1}^{k-1} f_i \text{ and } f_k \text{ are synchronous for all } k \in \{2, \dots, n\},$$
(3.8)

$$f_i \ge 0 \text{ for } 3 \le i \le n. \tag{3.9}$$

Suppose that $\alpha > 0$. Then, for all $t \in \mathbb{N}_a^{\alpha}$, we have

$$\left(a\Delta^{-\alpha}\prod_{i=1}^{n}f_{i}\right)(t) \geq \left(\frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\right)^{n-1}\prod_{i=1}^{n}\left(a\Delta^{-\alpha}f_{i}\right)(t).$$
(3.10)

Proof. In view of (3.8) and (3.9), we have

$$\begin{aligned} \left({}_{a}\Delta^{-\alpha}\prod_{i=1}^{n}f_{i}\right)(t) &\geq \frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\left({}_{a}\Delta^{-\alpha}\prod_{i=1}^{n-1}f_{i}\right)(t)\left({}_{a}\Delta^{-\alpha}f_{n}\right)(t) \\ &\geq \left(\frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\right)^{2}\left({}_{a}\Delta^{-\alpha}\prod_{i=1}^{n-2}f_{i}\right)(t)\prod_{i=n-1}^{n}\left({}_{a}\Delta^{-\alpha}f_{k}\right)(t) \\ &\vdots \\ &\geq \left(\frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\right)^{n-1}\prod_{i=1}^{n}\left({}_{a}\Delta^{-\alpha}f_{i}\right)(t), \end{aligned}$$

where we repeatedly applied Theorem 3.1.

Remark 3.7. If the functions f_i , $1 \le i \le n$, in Theorem 3.6 are either all nonnegative increasing or nonnegative decreasing, then both (3.8) and (3.9) are satisfied.

Acknowledgments

The second author was supported by the *Portuguese Foundation for Science and Technology* (FCT) through the R&D unit *Center of Research and Development in Mathematics and Applications* (CIDMA), while visiting the first author at Middle East Technical University (Ankara, Turkey).

References

- S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 3, Article 86, 5 pp.
- [2] M. Bohner and T. Matthews, The Grüss inequality on time scales. Commun. Math. Anal. 3 (2007), no. 1, 1–8 (electronic).
- [3] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov 2 (1882), 93–98.
- [4] R. A. C. Ferreira and D. F. M. Torres, Fractional *h*-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math. 5 (2011), no. 1, 110–121.
- [5] K. S. Miller and B. Ross, Fractional difference calculus, in Univalent functions, fractional calculus, and their applications (Kōriyama, 1988), 139–152, Horwood, Chichester, 1989.
- [6] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
- [7] H. Ögünmez and U. Mutlu Özkan, Fractional quantum integral inequalities, J. Inequal. Appl. 2011 (2011), Article ID 787939, 7 pages.

[8] C.-C. Yeh, F.-H. Wong and H.-J. Li, Čebyšev's inequality on time scales, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 1, Article 7, 10 pp. (electronic).