Some Discrete Fractional Inequalities of Chebyshev Type

MARTIN BOHNER*
Missouri S\&T, Department of Mathematics and Statistics, Rolla, MO 65409-0020, USA

Rui A. C. Ferreira ${ }^{\dagger}$
Lusophone University of Humanities and Technologies, Department of Mathematics, 1749-024 Lisbon, Portugal

Abstract

Using the discrete fractional sum operator, we establish some inequalities of Chebyshev type.

AMS Subject Classification: 26D15; 39A12; 26A33.
Keywords: Discrete fractional calculus, Chebyshev-type inequalities.

1 Introduction

In 1882, Chebyshev proved the following result [3]:
Let f and g be two integrable functions in $[0,1]$. If both functions are simultaneously increasing or decreasing for the same values of x in $[0,1]$, then

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

If one function is increasing and the other decreasing for the same values of x in $[0,1]$, then

$$
\int_{0}^{1} f(x) g(x) d x \leq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

Since then, continuous and discrete generalizations and extensions of such inequalities have appeared in the literature (see [2, 8] and references therein). In 2009, Belarbi and Dahmani [1] proved that

$$
\begin{equation*}
\left(I^{\alpha} f g\right)(t) \geq \frac{\Gamma(\alpha+1)}{t^{\alpha}}\left(I^{\alpha} f\right)(t)\left(I^{\alpha} g\right)(t), \quad t>0, \quad \alpha>0 \tag{1.1}
\end{equation*}
$$

[^0]where I^{α} is the Riemann-Liouville fractional integral operator of order $\alpha \geq 0$ [6], and f and g are two synchronous functions (cf. Definition 2.5 below). Moreover, much more recently, a q-analogue of inequality (1.1) has appeared in the literature [7].

It is our aim with this paper to establish a discrete version of inequality (1.1) as well as some other related results. We will do this by using the discrete fractional sum operator defined by Miller and Ross [5] in 1989.

This paper is organized as follows: in Section 2 we provide the reader fundamental concepts and results needed throughout the paper. In Section 3 we state and prove our main achievements.

2 Preliminaries on Discrete Fractional Calculus

In this section we introduce the reader to basic concepts and results about discrete fractional calculus.

The power function is defined by

$$
x^{(y)}=\frac{\Gamma(x+1)}{\Gamma(x+1-y)}, \text { for } x, x-y \in \mathbb{R} \backslash\left(\mathbb{Z} \backslash \mathbb{N}_{0}\right)
$$

Remark 2.1. Using the properties of the Gamma function, it is easily seen that for $x \geq y \geq 0$, we get $x^{(y)} \geq 0$.

For $a \in \mathbb{R}$ and $0<\alpha \leq 1$, we define the set $\mathbb{N}_{a}^{\alpha}=\{a+\alpha, a+\alpha+1, a+\alpha+2, \ldots\}$. Also, we use the notation $\sigma(s)=s+1$ for the shift operator and $(\Delta f)(t)=f(t+1)-f(t)$ for the forward difference operator.

For a function $f: \mathbb{N}_{a}^{0} \rightarrow \mathbb{R}$, the discrete fractional sum of order $\alpha \geq 0$ is defined as

$$
\begin{aligned}
\left({ }_{a} \Delta^{0} f\right)(t) & =f(t), \quad t \in \mathbb{N}_{a}^{0} \\
\left({ }_{a} \Delta^{-\alpha} f\right)(t) & =\frac{1}{\Gamma(\alpha)} \sum_{s=a}^{t-\alpha}(t-\sigma(s))^{(\alpha-1)} f(s), \quad t \in \mathbb{N}_{a}^{\alpha}, \alpha>0
\end{aligned}
$$

Remark 2.2. Note that the operator ${ }_{a} \Delta^{-\alpha}$ with $\alpha>0$ maps functions defined on \mathbb{N}_{a}^{0} to functions defined on \mathbb{N}_{a}^{α}. Also observe that if $\alpha=1$, we get the summation operator

$$
\left(a \Delta^{-1} f\right)(t)=\sum_{s=a}^{t-1} f(s)
$$

The following result will be used in the sequel.
Lemma 2.3 (See [4, Corollary 10]). If $a \in \mathbb{R}$ and $\mu, \mu+v \in \mathbb{R} \backslash\{\ldots,-2,-1\}$, then

$$
\left({ }_{a} \Delta^{-v}(s-a+\mu)^{(\mu)}\right)(t)=\frac{\Gamma(\mu+1)}{\Gamma(\mu+v+1)}(t-a+\mu)^{(\mu+v)}, \quad t \in \mathbb{N}_{a}^{v}
$$

Remark 2.4. The function $t \rightarrow(t-a)^{(\alpha)}$ defined on $\mathbb{N}_{a}^{\alpha}, a \in \mathbb{R}$ and $\alpha \geq 0$, is increasing. Indeed, we have that $\Delta(t-a)^{(\alpha)}=\alpha(t-a)^{(\alpha-1)}$ and $(t-a)^{(\alpha-1)} \geq 0$.
Definition 2.5. Two functions f and g are called synchronous, respectively asynchronous, on \mathbb{N}_{a}^{0} if for all $\tau, s \in \mathbb{N}_{a}^{0}$, we have $(f(\tau)-f(s))(g(\tau)-g(s)) \geq 0$, respectively $(f(\tau)-$ $f(s))(g(\tau)-g(s)) \leq 0$.

3 Discrete Fractional Inequalities

We start by proving the main result of this paper.
Theorem 3.1. If $\alpha>0$ and f, g are two synchronous functions on \mathbb{N}_{a}^{0}, then

$$
\begin{equation*}
\left({ }_{a} \Delta^{-\alpha} f g\right)(t) \geq \frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\left({ }_{a} \Delta^{-\alpha} f\right)(t)\left({ }_{a} \Delta^{-\alpha} g\right)(t), \quad t \in \mathbb{N}_{a}^{\alpha} . \tag{3.1}
\end{equation*}
$$

Proof. Since the functions f and g are synchronous on \mathbb{N}_{a}^{0}, then for all $\tau, s \in \mathbb{N}_{a}^{0}$, we have

$$
(f(\tau)-f(s))(g(\tau)-g(s)) \geq 0,
$$

i.e.,

$$
\begin{equation*}
f(\tau) g(\tau)+f(s) g(s) \geq f(\tau) g(s)+f(s) g(\tau) . \tag{3.2}
\end{equation*}
$$

Now, multiplying both sides of (3.2) by $\frac{(t-\sigma(\tau))^{(\alpha-1)}}{\Gamma(\alpha)}, t \in \mathbb{N}_{a}^{\alpha}$ and $\tau \in\{a, a+1, \ldots, t-\alpha\}$, we get

$$
\begin{align*}
\frac{(t-\sigma(\tau))^{(\alpha-1)}}{\Gamma(\alpha)} f(\tau) g(\tau)+ & \frac{(t-\sigma(\tau))^{(\alpha-1)}}{\Gamma(\alpha)} f(s) g(s) \\
& \geq \frac{(t-\sigma(\tau))^{(\alpha-1)}}{\Gamma(\alpha)} f(\tau) g(s)+\frac{(t-\sigma(\tau))^{(\alpha-1)}}{\Gamma(\alpha)} f(s) g(\tau) . \tag{3.3}
\end{align*}
$$

Now, summing both sides of (3.3) for $\tau \in\{a, a+1, \ldots, t-\alpha\}$, we obtain

$$
\begin{equation*}
\left({ }_{a} \Delta^{-\alpha} f g\right)(t)+f(s) g(s)\left({ }_{a} \Delta^{-\alpha} 1\right)(t) \geq g(s)\left({ }_{a} \Delta^{-\alpha} f\right)(t)+f(s)\left({ }_{a} \Delta^{-\alpha} g\right)(t) . \tag{3.4}
\end{equation*}
$$

Multiplying both sides of (3.4) by $\frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)}, t \in \mathbb{N}_{a}^{\alpha}$ and $s \in\{a, a+1, \ldots, t-\alpha\}$, we obtain

$$
\begin{align*}
& \frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)}\left({ }_{a} \Delta^{-\alpha} f g\right)(t)+\frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)} f(s) g(s)\left({ }_{a} \Delta^{-\alpha} 1\right)(t) \\
& \quad \geq \frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)} g(s)\left({ }_{a} \Delta^{-\alpha} f\right)(t)+\frac{(t-\sigma(s))^{(\alpha-1)}}{\Gamma(\alpha)} f(s)\left({ }_{a} \Delta^{-\alpha} g\right)(t), \tag{3.5}
\end{align*}
$$

and again, summing both sides of (3.5) for $s \in\{a, a+1, \ldots, t-\alpha\}$, we get

$$
\begin{aligned}
&\left({ }_{a} \Delta^{-\alpha} 1\right)(t)\left({ }_{a} \Delta^{-\alpha} f g\right)(t)+\left({ }_{a} \Delta^{-\alpha} f g\right)(t)\left({ }_{a} \Delta^{-\alpha} 1\right)(t) \\
& \geq\left({ }_{a} \Delta^{-\alpha} g\right)(t)\left({ }_{a} \Delta^{-\alpha} f\right)(t)+\left({ }_{a} \Delta^{-\alpha} f\right)(t)\left({ }_{a} \Delta^{-\alpha} g\right)(t)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
\left({ }_{a} \Delta^{-\alpha} f\right)(t)\left({ }_{a} \Delta^{-\alpha} g\right)(t) & \leq\left({ }_{a} \Delta^{-\alpha} 1\right)(t)\left({ }_{a} \Delta^{-\alpha} f g\right)(t) \\
& =\frac{(t-a)^{(\alpha)}}{\Gamma(\alpha+1)}\left({ }_{a} \Delta^{-\alpha} f g\right)(t),
\end{aligned}
$$

where we have used Lemma 2.3. This shows (3.1).

Remark 3.2. The inequality sign in (3.1) is reversed if the functions are asynchronous on \mathbb{N}_{a}^{0}.

Example 3.3. Let $\beta \geq 0$ and consider the functions f_{β} defined by

$$
f_{\beta}(t)=(t+\beta)^{(\beta)}, \quad t \in \mathbb{N}_{0}^{0}
$$

By Remark 2.4, it follows that f_{β} and f_{γ} are synchronous functions for $\beta, \gamma \geq 0$. Therefore, by Lemma 2.3 and Theorem 3.1, the inequality

$$
\left({ }_{0} \Delta^{-\alpha} f_{\beta} f_{\gamma}\right)(t) \geq \frac{\Gamma(\alpha+1)}{t^{(\alpha)}} \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+\alpha+1)}(t+\gamma)^{(\gamma+\alpha)} \frac{\Gamma(\beta+1)}{\Gamma(\beta+\alpha+1)}(t+\beta)^{(\beta+\alpha)}
$$

holds for all $t \in \mathbb{N}_{0}^{\alpha}$.
Theorem 3.4. If $\alpha, \beta>0$ and f, g are two synchronous functions on \mathbb{N}_{a}^{0}, then

$$
\begin{align*}
& \frac{(t-a)^{(\alpha)}}{\Gamma(\alpha+1)}\left({ }_{a} \Delta^{-\beta} f g\right)(t)+\frac{(t-a)^{(\beta)}}{\Gamma(\beta+1)}\left({ }_{a} \Delta^{-\alpha} f g\right)(t) \\
& \quad \geq\left({ }_{a} \Delta^{-\alpha} f\right)(t)\left({ }_{a} \Delta^{-\beta} g\right)(t)+\left({ }_{a} \Delta^{-\beta} f\right)(t)\left({ }_{a} \Delta^{-\alpha} g\right)(t), \quad t \in \mathbb{N}_{a}^{\alpha} . \tag{3.6}
\end{align*}
$$

Proof. Proceeding as in the proof of Theorem 3.1 and using inequality (3.4), we can write

$$
\begin{align*}
& \frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)}\left({ }_{a} \Delta^{-\alpha} f g\right)(t)+\frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)} f(s) g(s)\left({ }_{a} \Delta^{-\alpha} 1\right)(t) \\
& \quad \geq \frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)} g(s)\left({ }_{a} \Delta^{-\alpha} f\right)(t)+\frac{(t-\sigma(s))^{(\beta-1)}}{\Gamma(\beta)} f(s)\left({ }_{a} \Delta^{-\alpha} g\right)(t) \tag{3.7}
\end{align*}
$$

Now, summing both sides of (3.7) for $s \in\{a, a+1, \ldots, t-\beta\}$, we obtain the desired inequality (3.6).

Remark 3.5. If we let $\alpha=\beta$ in Theorem 3.4, we obtain Theorem 3.1.
We end this manuscript with a generalization of Theorem 3.1.
Theorem 3.6. Assume that $f_{i}, 1 \leq i \leq n$, are $n \in \mathbb{N}$ functions on \mathbb{N}_{a}^{0} satisfying

$$
\begin{align*}
& \prod_{i=1}^{k-1} f_{i} \text { and } f_{k} \text { are synchronous for all } k \in\{2, \ldots, n\}, \tag{3.8}\\
& f_{i} \geq 0 \text { for } 3 \leq i \leq n \tag{3.9}
\end{align*}
$$

Suppose that $\alpha>0$. Then, for all $t \in \mathbb{N}_{a}^{\alpha}$, we have

$$
\begin{equation*}
\left({ }_{a} \Delta^{-\alpha} \prod_{i=1}^{n} f_{i}\right)(t) \geq\left(\frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\right)^{n-1} \prod_{i=1}^{n}\left(a \Delta^{-\alpha} f_{i}\right)(t) \tag{3.10}
\end{equation*}
$$

Proof. In view of (3.8) and (3.9), we have

$$
\begin{aligned}
\left({ }_{a} \Delta^{-\alpha} \prod_{i=1}^{n} f_{i}\right)(t) & \geq \frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\left(a^{-\alpha} \prod_{i=1}^{n-1} f_{i}\right)(t)\left(a \Delta^{-\alpha} f_{n}\right)(t) \\
& \geq\left(\frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\right)^{2}\left({ }_{a} \Delta^{-\alpha} \prod_{i=1}^{n-2} f_{i}\right)(t) \prod_{i=n-1}^{n}\left({ }_{a} \Delta^{-\alpha} f_{k}\right)(t) \\
& \vdots \\
& \geq\left(\frac{\Gamma(\alpha+1)}{(t-a)^{(\alpha)}}\right)^{n-1} \prod_{i=1}^{n}\left({ }_{a} \Delta^{-\alpha} f_{i}\right)(t),
\end{aligned}
$$

where we repeatedly applied Theorem 3.1.
Remark 3.7. If the functions $f_{i}, 1 \leq i \leq n$, in Theorem 3.6 are either all nonnegative increasing or nonnegative decreasing, then both (3.8) and (3.9) are satisfied.

Acknowledgments

The second author was supported by the Portuguese Foundation for Science and Technology (FCT) through the R\&D unit Center of Research and Development in Mathematics and Applications (CIDMA), while visiting the first author at Middle East Technical University (Ankara, Turkey).

References

[1] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 3, Article 86, 5 pp.
[2] M. Bohner and T. Matthews, The Grüss inequality on time scales. Commun. Math. Anal. 3 (2007), no. 1, 1-8 (electronic).
[3] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.
[4] R. A. C. Ferreira and D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math. 5 (2011), no. 1, 110-121.
[5] K. S. Miller and B. Ross, Fractional difference calculus, in Univalent functions, fractional calculus, and their applications (Kōriyama, 1988), 139-152, Horwood, Chichester, 1989.
[6] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
[7] H. Ögünmez and U. Mutlu Özkan, Fractional quantum integral inequalities, J. Inequal. Appl. 2011 (2011), Article ID 787939, 7 pages.
[8] C.-C. Yeh, F.-H. Wong and H.-J. Li, Čebyšev's inequality on time scales, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 1, Article 7, 10 pp. (electronic).

[^0]: *E-mail address: bohner@mst.edu
 ${ }^{\dagger}$ E-mail address: ruiacferreira@ulusofona.pt

