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Abstract

Using the discrete fractional sum operator, we establish some inequalities of Cheby-
shev type.
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1 Introduction

In 1882, Chebyshev proved the following result [3]:

Let f and g be two integrable functions in [0,1]. If both functions are simulta-
neously increasing or decreasing for the same values of x in [0,1], thenZ 1

0
f (x)g(x)dx≥

Z 1

0
f (x)dx

Z 1

0
g(x)dx.

If one function is increasing and the other decreasing for the same values of x
in [0,1], then Z 1

0
f (x)g(x)dx≤

Z 1

0
f (x)dx

Z 1

0
g(x)dx.

Since then, continuous and discrete generalizations and extensions of such inequalities
have appeared in the literature (see [2, 8] and references therein). In 2009, Belarbi and
Dahmani [1] proved that

(Iα f g)(t)≥ Γ(α+1)
tα

(Iα f )(t)(Iαg)(t), t > 0, α > 0, (1.1)
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where Iα is the Riemann–Liouville fractional integral operator of order α≥ 0 [6], and f and
g are two synchronous functions (cf. Definition 2.5 below). Moreover, much more recently,
a q-analogue of inequality (1.1) has appeared in the literature [7].

It is our aim with this paper to establish a discrete version of inequality (1.1) as well
as some other related results. We will do this by using the discrete fractional sum operator
defined by Miller and Ross [5] in 1989.

This paper is organized as follows: in Section 2 we provide the reader fundamental
concepts and results needed throughout the paper. In Section 3 we state and prove our main
achievements.

2 Preliminaries on Discrete Fractional Calculus

In this section we introduce the reader to basic concepts and results about discrete fractional
calculus.

The power function is defined by

x(y) =
Γ(x+1)

Γ(x+1− y)
, for x,x− y ∈ R\(Z\N0).

Remark 2.1. Using the properties of the Gamma function, it is easily seen that for x≥ y≥ 0,
we get x(y) ≥ 0.

For a∈R and 0 < α≤ 1, we define the set Nα
a = {a+α,a+α+1,a+α+2, . . .}. Also,

we use the notation σ(s) = s+1 for the shift operator and (∆ f )(t) = f (t +1)− f (t) for the
forward difference operator.

For a function f : N0
a → R, the discrete fractional sum of order α≥ 0 is defined as

(a∆
0 f )(t) = f (t), t ∈ N0

a,

(a∆
−α f )(t) =

1
Γ(α)

t−α

∑
s=a

(t−σ(s))(α−1) f (s), t ∈ Nα
a , α > 0.

Remark 2.2. Note that the operator a∆−α with α > 0 maps functions defined on N0
a to

functions defined on Nα
a . Also observe that if α = 1, we get the summation operator

(a∆
−1 f )(t) =

t−1

∑
s=a

f (s).

The following result will be used in the sequel.

Lemma 2.3 (See [4, Corollary 10]). If a ∈ R and µ,µ+ν ∈ R\{. . . ,−2,−1}, then(
a∆

−ν (s−a+µ)(µ)
)

(t) =
Γ(µ+1)

Γ(µ+ν+1)
(t−a+µ)(µ+ν) , t ∈ Nν

a.

Remark 2.4. The function t → (t − a)(α) defined on Nα
a , a ∈ R and α ≥ 0, is increasing.

Indeed, we have that ∆(t−a)(α) = α(t−a)(α−1) and (t−a)(α−1) ≥ 0.

Definition 2.5. Two functions f and g are called synchronous, respectively asynchronous,
on N0

a if for all τ,s ∈ N0
a, we have ( f (τ)− f (s))(g(τ)− g(s)) ≥ 0, respectively ( f (τ)−

f (s))(g(τ)−g(s))≤ 0.
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3 Discrete Fractional Inequalities

We start by proving the main result of this paper.

Theorem 3.1. If α > 0 and f ,g are two synchronous functions on N0
a, then

(
a∆

−α f g
)
(t)≥ Γ(α+1)

(t−a)(α)

(
a∆

−α f
)
(t)
(

a∆
−αg
)
(t), t ∈ Nα

a . (3.1)

Proof. Since the functions f and g are synchronous on N0
a, then for all τ,s ∈ N0

a, we have

( f (τ)− f (s))(g(τ)−g(s))≥ 0,

i.e.,
f (τ)g(τ)+ f (s)g(s)≥ f (τ)g(s)+ f (s)g(τ). (3.2)

Now, multiplying both sides of (3.2) by (t−σ(τ))(α−1)

Γ(α) , t ∈Nα
a and τ ∈ {a,a+1, . . . , t−α}, we

get

(t−σ(τ))(α−1)

Γ(α)
f (τ)g(τ)+

(t−σ(τ))(α−1)

Γ(α)
f (s)g(s)

≥ (t−σ(τ))(α−1)

Γ(α)
f (τ)g(s)+

(t−σ(τ))(α−1)

Γ(α)
f (s)g(τ). (3.3)

Now, summing both sides of (3.3) for τ ∈ {a,a+1, . . . , t−α}, we obtain(
a∆

−α f g
)
(t)+ f (s)g(s)

(
a∆

−α1
)
(t)≥ g(s)

(
a∆

−α f
)
(t)+ f (s)

(
a∆

−αg
)
(t). (3.4)

Multiplying both sides of (3.4) by (t−σ(s))(α−1)

Γ(α) , t ∈Nα
a and s∈ {a,a+1, . . . , t−α}, we obtain

(t−σ(s))(α−1)

Γ(α)
(

a∆
−α f g

)
(t)+

(t−σ(s))(α−1)

Γ(α)
f (s)g(s)

(
a∆

−α1
)
(t)

≥ (t−σ(s))(α−1)

Γ(α)
g(s)

(
a∆

−α f
)
(t)+

(t−σ(s))(α−1)

Γ(α)
f (s)

(
a∆

−αg
)
(t), (3.5)

and again, summing both sides of (3.5) for s ∈ {a,a+1, . . . , t−α}, we get(
a∆

−α1
)
(t)
(

a∆
−α f g

)
(t)+

(
a∆

−α f g
)
(t)
(

a∆
−α1
)
(t)

≥
(

a∆
−αg
)
(t)
(

a∆
−α f

)
(t)+

(
a∆

−α f
)
(t)
(

a∆
−αg
)
(t),

i.e., (
a∆

−α f
)
(t)
(

a∆
−αg
)
(t)≤

(
a∆

−α1
)
(t)
(

a∆
−α f g

)
(t)

=
(t−a)(α)

Γ(α+1)
(

a∆
−α f g

)
(t),

where we have used Lemma 2.3. This shows (3.1).
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Remark 3.2. The inequality sign in (3.1) is reversed if the functions are asynchronous on
N0

a.

Example 3.3. Let β≥ 0 and consider the functions fβ defined by

fβ(t) = (t +β)(β), t ∈ N0
0.

By Remark 2.4, it follows that fβ and fγ are synchronous functions for β,γ≥ 0. Therefore,
by Lemma 2.3 and Theorem 3.1, the inequality

(
0∆

−α fβ fγ

)
(t)≥ Γ(α+1)

t(α)

Γ(γ+1)
Γ(γ+α+1)

(t + γ)(γ+α) Γ(β+1)
Γ(β+α+1)

(t +β)(β+α)

holds for all t ∈ Nα
0 .

Theorem 3.4. If α,β > 0 and f ,g are two synchronous functions on N0
a, then

(t−a)(α)

Γ(α+1)

(
a∆

−β f g
)

(t)+
(t−a)(β)

Γ(β+1)
(

a∆
−α f g

)
(t)

≥
(

a∆
−α f

)
(t)
(

a∆
−βg
)

(t)+
(

a∆
−β f

)
(t)
(

a∆
−αg
)
(t), t ∈ Nα

a . (3.6)

Proof. Proceeding as in the proof of Theorem 3.1 and using inequality (3.4), we can write

(t−σ(s))(β−1)

Γ(β)
(

a∆
−α f g

)
(t)+

(t−σ(s))(β−1)

Γ(β)
f (s)g(s)

(
a∆

−α1
)
(t)

≥ (t−σ(s))(β−1)

Γ(β)
g(s)

(
a∆

−α f
)
(t)+

(t−σ(s))(β−1)

Γ(β)
f (s)

(
a∆

−αg
)
(t). (3.7)

Now, summing both sides of (3.7) for s ∈ {a,a + 1, . . . , t − β}, we obtain the desired in-
equality (3.6).

Remark 3.5. If we let α = β in Theorem 3.4, we obtain Theorem 3.1.

We end this manuscript with a generalization of Theorem 3.1.

Theorem 3.6. Assume that fi, 1≤ i≤ n, are n ∈ N functions on N0
a satisfying

k−1

∏
i=1

fi and fk are synchronous for all k ∈ {2, . . . ,n}, (3.8)

fi ≥ 0 for 3≤ i≤ n. (3.9)

Suppose that α > 0. Then, for all t ∈ Nα
a , we have(

a∆
−α

n

∏
i=1

fi

)
(t)≥

(
Γ(α+1)
(t−a)(α)

)n−1 n

∏
i=1

(
a∆

−α fi
)
(t). (3.10)
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Proof. In view of (3.8) and (3.9), we have(
a∆

−α
n

∏
i=1

fi

)
(t)≥ Γ(α+1)

(t−a)(α)

(
a∆

−α
n−1

∏
i=1

fi

)
(t)
(

a∆
−α fn

)
(t)

≥
(

Γ(α+1)
(t−a)(α)

)2
(

a∆
−α

n−2

∏
i=1

fi

)
(t)

n

∏
i=n−1

(
a∆

−α fk
)
(t)

...

≥
(

Γ(α+1)
(t−a)(α)

)n−1 n

∏
i=1

(
a∆

−α fi
)
(t),

where we repeatedly applied Theorem 3.1.

Remark 3.7. If the functions fi, 1 ≤ i ≤ n, in Theorem 3.6 are either all nonnegative in-
creasing or nonnegative decreasing, then both (3.8) and (3.9) are satisfied.
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