# Positive Solutions for a System of Periodic Neutral Delay Difference Equations 

Ernest Yankson*<br>Department of Mathematics and Statistics<br>University of Cape Coast<br>Cape Coast, Ghana


#### Abstract

In this article we consider the existence of positive solutions of a system of periodic neutral difference equations. The main tool employed is the Krasnosel'skii's fixed point theorem for the sum of a completely continuous operator and a contraction.


AMS Subject Classification: 39A10; 39A12.
Keywords: Krasnosel'skii, neutral, positive periodic solutions.

## 1 Introduction

Let $\mathbb{R}$ denote the real numbers, $\mathbb{Z}$ the integers, $\mathbb{Z}_{-}$the negative integers, $\mathbb{Z}^{+}$the non-negative integers, and $T \geq 1$ is an integer. In this paper we consider the system of neutral difference equations

$$
\begin{align*}
x(n+1)= & A(n) x(n)+C(n) \Delta x(n-\tau(n))+g(n, x(n-\tau(n)))  \tag{1.1}\\
& x(n)=x(n+T)
\end{align*}
$$

where $A(n)=\operatorname{diag}\left[a_{1}(n), a_{2}(n), \ldots, a_{k}(n)\right], a_{j}$ is $T$-periodic, $C(n)=\operatorname{diag}\left[c_{1}(n)\right.$, $\left.c_{2}(n), \ldots, c_{k}(n)\right], c_{j}$ is $T$-periodic, $\tau(n)$ is $T$-periodic, $g: \mathbb{Z} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is continuous in $x$ and $g(n, x)$ is $T$-periodic in $n$ and $x$, whenever $x$ is $T$-periodic. Let $P_{T}$ be the set of all real $T$-periodic sequences $\phi: \mathbb{Z} \rightarrow \mathbb{R}^{k}$. Endowed with the maximum norm $\|\phi\|=\max _{\theta \in \mathbb{Z}} \sum_{j=1}^{k}\left|\phi_{j}(\theta)\right|$ where $\phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right)^{t}, P_{T}$ is a Banach space. Here $t$ stands for the transpose.

The study of positive periodic solutions of differential and difference equations has gained the attention of many researchers in recent times: see $[1]-[3],[6],[7]$ and references therein.
We are motivated by the work of Raffoul and the present author in [7] where the scalar difference equation

$$
\begin{equation*}
x(n+1)=a(n) x(n)+c \Delta x(n-\tau)+g(n, x(n-\tau)), \tag{1.2}
\end{equation*}
$$

*E-mail address: ernestoyank@yahoo.com
with a constant delay $\tau$ was considered.
In this research we generalize (1.2) to systems with functional delay.
Let $\mathbb{R}_{+}=[0,+\infty)$, for each $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{t} \in \mathbb{R}^{k}$, the norm of $x$ is defined as $|x|=\sum_{j=1}^{k}\left|x_{j}\right| . \mathbb{R}_{+}^{k}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{t} \in \mathbb{R}^{k}: x_{j} \geq 0, j=1,2, \ldots, k\right\}$. Also, we denote $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)^{t}$, where $t$ stands for transpose. We say that $x$ is "positive" whenever $x \in \mathbb{R}_{+}^{k}$. In this paper we use Krasnosel'skii's fixed point theorem for the sum of a completely continuous operator and a contraction to obtain sufficient conditions for the existence of positive periodic solutions for (1.1).
In this paper we make the following assumptions.
(H1) There exist a constant $\sigma_{j}>0$ such that $\sigma_{j}<c_{j}(n), j=1, \ldots, k$, for all $n \in[0, T-1]$.
(H2) $0<a_{j}(n)<1$ for all $n \in[0, T-1], j=1, \ldots, k$.
(H3) There exist constants $\alpha_{j}$, such that $\left\|c_{j}\right\| \leq \alpha_{j} \leq 1, j=1,2, \ldots, k$.
The rest of the paper is organized as follows. In section 2, we introduce our notation in this paper and state without proof Krasnosel'skii's theorem. In section 3 , we state and prove our main results.

## 2 Preliminaries

We begin this section by introducing some notations. Let

$$
\begin{equation*}
G_{j}(n, u)=\frac{\prod_{s=u+1}^{n+T-1} a_{j}(s)}{1-\prod_{s=n}^{n+T-1} a_{j}(s)}, u \in[n, n+T-1] . \tag{2.1}
\end{equation*}
$$

Note that the denominator in $G_{j}(n, u)$ is not zero since $0<a_{j}(n)<1$ for $n \in$ $[0, T-1]$.

Define

$$
\begin{equation*}
G(n, u)=\operatorname{diag}\left[G_{1}(n, u), G_{2}(n, u), \ldots, G_{k}(n, u)\right] \tag{2.2}
\end{equation*}
$$

It is clear that $G(n, u)=G(n+T, u+T)$ for all $(n, u) \in \mathbb{Z}^{2}$. Also, let

$$
\begin{gather*}
q_{j}:=\min \left\{G_{j}(n, u): n \geq 0, u \leq T\right\}=G_{j}(n, n)>0, j=1, \ldots, k  \tag{2.3}\\
Q_{j}:=\max \left\{G_{j}(n, u): n \geq 0, u \leq T\right\}=G_{j}(n, n+T-1) \\
=G_{j}(0, T-1)>0, j=1, \ldots, k \tag{2.4}
\end{gather*}
$$

Set $q=\min _{1 \leq j \leq k} q_{j}$ and $Q=\max _{1 \leq j \leq k} Q_{j}$. We next state below Krasnosel'skii's theorem and refer to [5] for the proof.

Theorem 2.1. (Krasnosel'skii) Let $\mathbb{M}$ be a closed convex nonempty subset of a Banach space $(\mathbb{B},\|\cdot\|)$. Suppose that $A$ and $B$ map $\mathbb{M}$ into $\mathbb{B}$ such that
(i) A is completely continuous,
(ii) $B$ is a contraction mapping.
(iii) $x, y \in \mathbb{M}$, implies $A x+B y \in \mathbb{M}$.

Then there exists $z \in \mathbb{M}$ with $z=A z+B z$.

For the next lemma we consider

$$
\begin{equation*}
x_{j}(n+1)=a_{j}(n) x_{j}(n)+c_{j}(n) \Delta x_{j}(n-\tau(n))+g_{j}\left(n, x_{j}(n-\tau(n))\right), j=1, \ldots, k . \tag{2.5}
\end{equation*}
$$

Lemma 2.2. Suppose (H2) holds. Then $x_{j}(n) \in P_{T}$ is a solution of (2.5) if and only if

$$
\begin{align*}
x_{j}(n)= & c_{j}(n-1) x_{j}(n-\tau(n))+\sum_{u=n}^{n+T-1} G_{j}(n, u)\left[g_{j}\left(u, x_{j}(u-\tau(u))\right)\right. \\
& \left.-x_{j}(u-\tau(u)) \phi_{j}(u) a_{j}(u)\right] . \tag{2.6}
\end{align*}
$$

where $\phi_{j}(u)=c_{j}(u)-c_{j}(u-1)$.

Proof. Rewrite (2.5) as

$$
\begin{equation*}
\Delta\left[x_{j}(n) \prod_{s=0}^{n-1} a_{j}^{-1}(s)\right]=\left[c_{j}(n) \Delta x_{j}(n-\tau(n))+g_{j}\left(n, x_{j}(n-\tau(n))\right)\right] \prod_{s=0}^{n} a_{j}^{-1}(s) . \tag{2.7}
\end{equation*}
$$

Summing equation (2.7) from $n$ to $n+T-1$ we obtain

$$
\begin{aligned}
\sum_{u=n}^{n+T-1} \Delta\left[x_{j}(u) \prod_{s=0}^{u-1} a_{j}^{-1}(s)\right]= & \sum_{u=n}^{n+T-1}\left[c_{j}(u) \Delta x_{j}(u-\tau(u))\right. \\
& \left.+g_{j}\left(u, x_{j}(u-\tau(u))\right)\right] \prod_{s=0}^{u} a_{j}^{-1}(s) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& x(n+T) \prod_{s=0}^{n+T-1} a_{j}^{-1}(s)-x(n) \prod_{s=0}^{n-1} a_{j}^{-1}(s) \\
&= \sum_{u=n}^{n+T-1}\left[c_{j}(u) \Delta x_{j}(u-\tau(u))\right. \\
&\left.+g_{j}\left(u, x_{j}(u-\tau(u))\right)\right] \prod_{s=0}^{u} a_{j}^{-1}(s) .
\end{aligned}
$$

Since $x(n+T)=x(n)$, we obtain

$$
\begin{align*}
& x(n)\left[\prod_{s=0}^{n+T-1} a_{j}^{-1}(s)-\prod_{s=0}^{n-1} a_{j}^{-1}(s)\right] \\
&= \sum_{u=n}^{n+T-1}\left[c_{j}(u) \Delta x_{j}(u-\tau(u))\right. \\
&\left.+g_{j}\left(u, x_{j}(u-\tau(u))\right)\right] \prod_{s=0}^{u} a_{j}^{-1}(s) . \tag{2.8}
\end{align*}
$$

But

$$
\begin{align*}
\sum_{u=n}^{n+T-1} c_{j}(u) \Delta x_{j}(u-\tau(u)) \prod_{s=0}^{u} a_{j}^{-1}(s) & \\
= & c_{j}(n-1) x_{j}(n-\tau(u))\left[\prod_{s=0}^{n+T-1} a_{j}^{-1}(s)\right. \\
& \left.-\prod_{s=0}^{n-1} a_{j}^{-1}(s)\right] \\
& -\sum_{u=n}^{n+T-1} x_{j}(u-\tau(u)) \Delta\left[c_{j}(u-1) \prod_{s=0}^{u-1} a_{j}^{-1}(s)\right] \\
= & c_{j}(n-1) x_{j}(n-\tau(u))\left[\prod_{s=0}^{n+T-1} a_{j}^{-1}(s)\right. \\
& \left.-\prod_{s=0}^{n-1} a_{j}^{-1}(s)\right]-\sum_{u=n}^{n+T-1} x_{j}(u-\tau(u))\left[c_{j}(u)\right. \\
& \left.-c_{j}(u-1) a_{j}(u)\right] \prod_{s=0}^{u} a_{j}^{-1}(s) . \tag{2.9}
\end{align*}
$$

Substituting (2.9) into (2.8) gives

$$
\begin{aligned}
x(n)\left[\prod_{s=0}^{n+T-1} a_{j}^{-1}(s)-\prod_{s=0}^{n-1} a_{j}^{-1}(s)\right]= & c_{j}(n-1) x_{j}(n-\tau(u))\left[\prod_{s=0}^{n+T-1} a_{j}^{-1}(s)\right. \\
& \left.-\prod_{s=0}^{n-1} a_{j}^{-1}(s)\right]
\end{aligned}
$$

$$
\begin{align*}
& -\sum_{u=n}^{n+T-1} x_{j}(u-\tau(u))\left[c_{j}(u)-c_{j}(u-1) a_{j}(u)\right] \prod_{s=0}^{u} a_{j}^{-1}(s) \\
& \left.+g_{j}\left(u, x_{j}(u-\tau(u))\right)\right] \prod_{s=0}^{u} a_{j}^{-1}(s) \tag{2.10}
\end{align*}
$$

Dividing through by $\left[\prod_{s=0}^{n+T-1} a_{j}^{-1}(s)-\prod_{s=0}^{n-1} a_{j}^{-1}(s)\right]$ gives the desired result.

## 3 Main Results

In this section we obtain sufficient conditions for the existence of positive periodic solutions for (1.1). For some nonnegative constant $L$ and a positive constant $J$ we define the set

$$
\begin{equation*}
\mathbb{M}=\left\{\phi \in P_{T}: L \leq\|\phi\| \leq J, \text { with } \frac{L}{k} \leq \phi_{j} \leq \frac{J}{k}, j=1,2, \ldots, k .\right\}, \tag{3.1}
\end{equation*}
$$

which is a closed convex and bounded subset of the Banach space $P_{T}$. We also assume that for all $u \in \mathbb{Z}$ and $\rho \in \mathbb{M}$,

$$
\begin{equation*}
\frac{\left(1-\sigma_{j}\right) L}{T q_{j} k} \leq g_{j}\left(u, \rho_{j}, \rho_{j}\right)-\rho_{j} \phi_{j}(u) a_{j}(u) \leq \frac{\left(1-\alpha_{j}\right) J}{T Q_{j} k} . \tag{3.2}
\end{equation*}
$$

Define a mapping $H: \mathbb{M} \rightarrow P_{T}$ by

$$
\begin{aligned}
(H x)(n)= & C(n-1) x(n-\tau(n)) \\
& +\sum_{u=n}^{n+T-1} G(n, u)[g(u, x(u), x(u-\tau(u)))-\Phi(u) A(u) x(u-\tau(u))]
\end{aligned}
$$

where $\Phi(u)=\operatorname{diag}\left[\phi_{1}(u), \ldots, \phi_{k}(u)\right]$.
We denote

$$
\begin{equation*}
(H x)=\left(H_{1} x_{1}, H_{2} x_{2}, \ldots, H_{k} x_{k}\right)^{t} . \tag{3.3}
\end{equation*}
$$

It is clear that $(H x)(n+T)=(H x)(n)$. In order to apply Theorem 2.1 we will construct two mappings of which one is a contraction and the other is compact. Thus we define the map $D: \mathbb{M} \rightarrow P_{T}$ by

$$
\begin{equation*}
(D \varphi)(n)=C(n-1) \varphi(n-\tau(n)) . \tag{3.4}
\end{equation*}
$$

We also define the map $F: \mathbb{M} \rightarrow P_{T}$ by

$$
\begin{equation*}
(F \varphi)(n)=\sum_{u=n}^{n+T-1} G(n, u)[g(u, \varphi(u), \varphi(u-\tau(u)))-\Phi(u) A(u) \varphi(u-\tau(u))] . \tag{3.5}
\end{equation*}
$$

Lemma 3.1. Suppose (H3) hold. Then the operator $D$ defined by (3.4) is a contraction.

Proof. Let $\varphi, \psi \in \mathbb{M}$ and $\alpha=\max _{1 \leq j \leq k} \alpha_{j}$. Then

$$
\|(D \varphi)-(D \psi)\|=\max _{n \in[0, T-1]} \sum_{j=1}^{k}\left|\left(D_{j} \varphi_{j}\right)(n)-\left(D_{j} \psi_{j}\right)(n)\right|
$$

But,

$$
\begin{aligned}
\left|\left(D_{j} \varphi_{j}\right)(n)-\left(D_{j} \psi_{j}\right)(n)\right| & =\left|c_{j}(n-1) \varphi_{j}(n)-c_{j}(n-1) \psi_{j}(n)\right| \\
& \leq \alpha_{j}\left\|\varphi_{j}-\psi_{j}\right\| .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\|(D \varphi)-(D \psi)\| & \leq \sum_{j=1}^{k} \alpha_{j}\left\|\varphi_{j}-\psi_{j}\right\| \\
& \leq \alpha\|\varphi-\psi\|
\end{aligned}
$$

This completes the proof of Lemma 3.1.
Lemma 3.2. Suppose that (H1), (H2), (H3) and (3.2) hold. Then the operator $F$ defined by (3.5) is completely continuous on $\mathbb{M}$.

Proof. For $n \in[0, T-1]$ and for $\varphi \in \mathbb{M}$, we have by (3.2) that

$$
\begin{aligned}
\left|\left(F_{j} \varphi_{j}\right)(n)\right| & \leq\left|\sum_{u=n}^{n+T-1} G_{j}(n, u)\left[g_{j}\left(u, \varphi_{j}(u-\tau(u))\right)-\varphi_{j}(u-g(u)) \phi_{j}(u) a_{j}(u)\right]\right| \\
& \leq Q_{j} T \frac{\left(1-\alpha_{j}\right) J}{T Q_{j} k} \\
& \leq \frac{\left(1-\alpha_{j}\right) J}{k}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\|(F \varphi)\| & \leq \sum_{j=1}^{k} \frac{\left(1-\alpha_{j}\right) J}{k} \\
& \leq\left(1-\alpha^{*}\right) J
\end{aligned}
$$

where $\alpha^{*}=\min _{1 \leq j \leq k} \alpha_{j}$. It therefore follows that

$$
\|(F \varphi)\| \leq J
$$

This shows that $F(\mathbb{M})$ is uniformly bounded. Due to the continuity of all terms, we have that $F$ is continuous.
Next we show that $F$ maps bounded subsets into compact sets. Let $S=\left\{\varphi \in P_{T}\right.$ : $\|\varphi\| \leq \mu\}$ and $Q=\{(F \varphi)(n): \varphi \in S\}$, then $S$ is a subset of $\mathbb{R}^{T k}$ which is closed and bounded and thus compact. As $F$ is continuous in $\varphi$, it maps compact sets into compact sets. Therefore $Q=F(S)$ is compact. This completes the proof.

Theorem 3.3. Suppose that (H1),(H2), (H3) and (3.2) hold. Also suppose that the hypothesis of Lemma 3.2 also hold. Then equation (1.1) has a positive periodic solution.

Proof. Let $\varphi, \psi \in \mathbb{M}$. Then we have that

$$
\begin{aligned}
\left(D_{j} \varphi_{j}\right)(n)+\left(F_{j} \psi_{j}\right)(n)= & c_{j}(n-1) \varphi_{j}(n-\tau(n)) \\
& +\sum_{u=n}^{n+T-1} G_{j}(n, u)\left[g_{j}\left(u, \psi_{j}(u), \psi_{j}(u-\tau(u))\right)\right. \\
& \left.-\psi_{j}(u-\tau(u)) \phi_{j}(u) a_{j}(u)\right] \\
\leq & \frac{\alpha_{j} J}{k}+Q_{j} \sum_{u=n}^{n+T-1}\left[g_{j}\left(u, \psi_{j}(u), \psi_{j}(u-\tau(u))\right)\right. \\
& \left.-\psi_{j}(u-\tau(u)) \phi_{j}(u) a_{j}(u)\right] \\
\leq & \frac{\alpha_{j} J}{k}+\frac{Q_{j} T\left(1-\alpha_{j}\right) J}{T Q_{j} k}=\frac{J}{k} .
\end{aligned}
$$

Thus,

$$
\|(D \varphi)(n)+(F \psi)(n)\| \leq \sum_{j=1}^{k} \frac{J}{k}=J
$$

On the other hand,

$$
\begin{aligned}
\left(D_{j} \varphi_{j}\right)(n)+\left(F_{j} \psi_{j}\right)(n)= & c_{j}(n-1) \varphi_{j}(n-\tau(n)) \\
& +\sum_{u=n}^{n+T-1} G_{j}(n, u)\left[g_{j}\left(u, \psi_{j}(u), \psi_{j}(u-\tau(u))\right)\right. \\
& \left.-\psi_{j}(u-\tau(u)) \phi_{j}(u) a_{j}(u)\right] \\
\geq & \frac{\sigma_{j} L}{k}+q_{j} \sum_{u=n}^{n+T-1}\left[g_{j}\left(u, \psi_{j}(u), \psi_{j}(u-\tau(u))\right)\right. \\
& \left.-\psi_{j}(u-\tau(u)) \phi_{j}(u) a_{j}(u)\right] \\
\geq & \frac{\sigma_{j} L}{k}+\frac{q_{j} T\left(1-\sigma_{j}\right) L}{T q_{j} k}=\frac{L}{k} .
\end{aligned}
$$

Thus,

$$
\|(D \varphi)(n)+(F \psi)(n)\| \geq \sum_{j=1}^{k} \frac{L}{k}=L
$$

This shows that $(D \varphi)(n)+(F \psi)(n) \in \mathbb{M}$. Therefore by Theorem 2.1 equation (1.1) has a positive periodic solution in $\mathbb{M}$.

## References

[1] Y. Chen, New results on positive periodic solutions of a periodic integrodifferential competition system, Appl. Math. Comput. 153 (2) (2004), 557-565.
[2] F.D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput. 162 (3) (2005), 1279-1302.
[3] F.D. Chen, F.X. Lin, X.X. Chen, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput. 158 (1) (2004), 45-68.
[4] E.A. Coddington,N. Levinson,Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.
[5] M.A. Krasnosel'skiǐ, Some problems in nonlinear analysis, Amer. Math. Soc. Transl., Ser. 210 (1958), 345-409.
[6] Y.N. Raffoul, Positive periodic solutions in neutral nonlinear differential equations, Elect. Journ. of Qual. Th. of Diff. Eqns 16 (2007), 1-10.
[7] Y.N. Raffoul, E. Yankson, Positive periodic solutions in neutral delay differece equations, Advances in Dyn. Syst. and Appl. volume 5, 1, 123-130 (2010).
[8] D.R. Smart, Fixed Point Theorems. Cambridge University Press, 1980.

