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Abstract

In this article we consider the existence of positive solutions of a system
of periodic neutral difference equations. The main tool employed is the Kras-
nosel’skii’s fixed point theorem for the sum of a completely continuous operator
and a contraction.

AMS Subject Classification: 39A10; 39A12.

Keywords: Krasnosel’skii, neutral, positive periodic solutions.

1 Introduction

Let R denote the real numbers, Z the integers, Z− the negative integers, Z+ the
non-negative integers, and T ≥ 1 is an integer. In this paper we consider the system
of neutral difference equations

x(n+ 1) = A(n)x(n) + C(n)∆x(n− τ(n)) + g(n, x(n− τ(n))), (1.1)
x(n) = x(n+ T ),

where A(n) = diag[a1(n), a2(n), ..., ak(n)], aj is T -periodic, C(n) = diag[c1(n),
c2(n), ..., ck(n)], cj is T -periodic, τ(n) is T -periodic, g : Z× Rk → Rk is continuous
in x and g(n, x) is T -periodic in n and x, whenever x is T -periodic. Let PT be the
set of all real T -periodic sequences φ : Z → Rk. Endowed with the maximum norm
||φ|| = maxθ∈Z

∑k
j=1 |φj(θ)| where φ = (φ1, φ2, ..., φk)t, PT is a Banach space. Here

t stands for the transpose.
The study of positive periodic solutions of differential and difference equations

has gained the attention of many researchers in recent times: see [1]-[3],[6],[7] and
references therein.
We are motivated by the work of Raffoul and the present author in [7] where the
scalar difference equation

x(n+ 1) = a(n)x(n) + c∆x(n− τ) + g(n, x(n− τ)), (1.2)
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with a constant delay τ was considered.
In this research we generalize (1.2) to systems with functional delay.
Let R+ = [0,+∞), for each x = (x1, x2, ..., xk)t ∈ Rk, the norm of x is defined as
|x| =

∑k
j=1 |xj |. Rk

+ = {(x1, x2, ..., xk)t ∈ Rk : xj ≥ 0, j = 1, 2, ..., k}. Also, we
denote g = (g1, g2, ..., gk)t, where t stands for transpose. We say that x is ”positive”
whenever x ∈ Rk

+. In this paper we use Krasnosel’skii’s fixed point theorem for
the sum of a completely continuous operator and a contraction to obtain sufficient
conditions for the existence of positive periodic solutions for (1.1).
In this paper we make the following assumptions.

(H1) There exist a constant σj > 0 such that σj < cj(n), j = 1, ..., k, for all
n ∈ [0, T − 1].

(H2) 0 < aj(n) < 1 for all n ∈ [0, T − 1], j = 1, ..., k.

(H3) There exist constants αj , such that ||cj || ≤ αj ≤ 1, j = 1, 2, ..., k.

The rest of the paper is organized as follows. In section 2, we introduce our
notation in this paper and state without proof Krasnosel’skii’s theorem. In section
3, we state and prove our main results.

2 Preliminaries

We begin this section by introducing some notations. Let

Gj(n, u) =
∏n+T−1

s=u+1 aj(s)

1−
∏n+T−1

s=n aj(s)
, u ∈ [n, n+ T − 1]. (2.1)

Note that the denominator in Gj(n, u) is not zero since 0 < aj(n) < 1 for n ∈
[0, T − 1].

Define

G(n, u) = diag[G1(n, u), G2(n, u), ..., Gk(n, u)]. (2.2)

It is clear that G(n, u) = G(n+ T, u+ T ) for all (n, u) ∈ Z2. Also, let

qj := min{Gj(n, u) : n ≥ 0, u ≤ T} = Gj(n, n) > 0, j = 1, ..., k. (2.3)

Qj := max{Gj(n, u) : n ≥ 0, u ≤ T} = Gj(n, n+ T − 1)
= Gj(0, T − 1) > 0, j = 1, ..., k. (2.4)

Set q = min1≤j≤k qj and Q = max1≤j≤k Qj . We next state below Krasnosel’skii’s
theorem and refer to [5] for the proof.

Theorem 2.1. (Krasnosel’skii) Let M be a closed convex nonempty subset of a
Banach space (B, ||.||). Suppose that A and B map M into B such that
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(i) A is completely continuous,

(ii) B is a contraction mapping.

(iii) x, y ∈ M, implies Ax+By ∈ M.

Then there exists z ∈ M with z = Az +Bz.

For the next lemma we consider

xj(n+ 1) = aj(n)xj(n) + cj(n)∆xj(n− τ(n)) + gj(n, xj(n− τ(n))), j = 1, ..., k.
(2.5)

Lemma 2.2. Suppose (H2) holds. Then xj(n) ∈ PT is a solution of (2.5) if and
only if

xj(n) = cj(n− 1)xj(n− τ(n)) +
n+T−1∑

u=n

Gj(n, u)
[
gj(u, xj(u− τ(u)))

−xj(u− τ(u))φj(u)aj(u)
]
. (2.6)

where φj(u) = cj(u)− cj(u− 1).

Proof. Rewrite (2.5) as

∆
[
xj(n)

n−1∏
s=0

a−1
j (s)

]
=

[
cj(n)∆xj(n− τ(n)) + gj(n, xj(n− τ(n)))

] n∏
s=0

a−1
j (s).

(2.7)

Summing equation (2.7) from n to n+ T − 1 we obtain

n+T−1∑
u=n

∆
[
xj(u)

u−1∏
s=0

a−1
j (s)

]
=

n+T−1∑
u=n

[
cj(u)∆xj(u− τ(u))

+ gj(u, xj(u− τ(u)))
] u∏

s=0

a−1
j (s).

Thus,

x(n+ T )
n+T−1∏

s=0

a−1
j (s)− x(n)

n−1∏
s=0

a−1
j (s)

=
n+T−1∑

u=n

[
cj(u)∆xj(u− τ(u))

+ gj(u, xj(u− τ(u)))
] u∏

s=0

a−1
j (s).
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Since x(n+ T ) = x(n), we obtain

x(n)
[ n+T−1∏

s=0

a−1
j (s)−

n−1∏
s=0

a−1
j (s)

]
=

n+T−1∑
u=n

[
cj(u)∆xj(u− τ(u))

+ gj(u, xj(u− τ(u)))
] u∏

s=0

a−1
j (s).

(2.8)

But

n+T−1∑
u=n

cj(u)∆xj(u− τ(u))
u∏

s=0

a−1
j (s)

= cj(n− 1)xj(n− τ(u))
[ n+T−1∏

s=0

a−1
j (s)

−
n−1∏
s=0

a−1
j (s)

]
−

n+T−1∑
u=n

xj(u− τ(u))∆
[
cj(u− 1)

u−1∏
s=0

a−1
j (s)

]
= cj(n− 1)xj(n− τ(u))

[ n+T−1∏
s=0

a−1
j (s)

−
n−1∏
s=0

a−1
j (s)

]
−

n+T−1∑
u=n

xj(u− τ(u))
[
cj(u)

−cj(u− 1)aj(u)
] u∏

s=0

a−1
j (s). (2.9)

Substituting (2.9) into (2.8) gives

x(n)
[ n+T−1∏

s=0

a−1
j (s)−

n−1∏
s=0

a−1
j (s)

]
= cj(n− 1)xj(n− τ(u))

[ n+T−1∏
s=0

a−1
j (s)

−
n−1∏
s=0

a−1
j (s)

]
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−
n+T−1∑

u=n

xj(u− τ(u))
[
cj(u)− cj(u− 1)aj(u)

] u∏
s=0

a−1
j (s)

+ gj(u, xj(u− τ(u)))
] u∏

s=0

a−1
j (s).

(2.10)

Dividing through by
[ ∏n+T−1

s=0 a−1
j (s)−

∏n−1
s=0 a

−1
j (s)

]
gives the desired result.

3 Main Results

In this section we obtain sufficient conditions for the existence of positive periodic
solutions for (1.1). For some nonnegative constant L and a positive constant J we
define the set

M =
{
φ ∈ PT : L ≤ ||φ|| ≤ J, with

L

k
≤ φj ≤

J

k
, j = 1, 2, ..., k.

}
, (3.1)

which is a closed convex and bounded subset of the Banach space PT . We also
assume that for all u ∈ Z and ρ ∈ M,

(1− σj)L
Tqjk

≤ gj(u, ρj , ρj)− ρjφj(u)aj(u) ≤
(1− αj)J
TQjk

. (3.2)

Define a mapping H : M → PT by

(Hx)(n) = C(n− 1)x(n− τ(n))

+
n+T−1∑

u=n

G(n, u)
[
g(u, x(u), x(u− τ(u)))− Φ(u)A(u)x(u− τ(u))

]
where Φ(u) =diag[φ1(u), ..., φk(u)].
We denote

(Hx) = (H1x1,H2x2, ...,Hkxk)t. (3.3)

It is clear that (Hx)(n + T ) = (Hx)(n). In order to apply Theorem 2.1 we will
construct two mappings of which one is a contraction and the other is compact.
Thus we define the map D : M → PT by

(Dϕ)(n) = C(n− 1)ϕ(n− τ(n)). (3.4)

We also define the map F : M → PT by

(Fϕ)(n) =
n+T−1∑

u=n

G(n, u)
[
g(u, ϕ(u), ϕ(u− τ(u)))− Φ(u)A(u)ϕ(u− τ(u))

]
.

(3.5)
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Lemma 3.1. Suppose (H3) hold. Then the operator D defined by (3.4) is a con-
traction.

Proof. Let ϕ,ψ ∈ M and α = max1≤j≤k αj . Then

||(Dϕ)− (Dψ)|| = max
n∈[0,T−1]

k∑
j=1

|(Djϕj)(n)− (Djψj)(n)|

But,

|(Djϕj)(n)− (Djψj)(n)| = |cj(n− 1)ϕj(n)− cj(n− 1)ψj(n)|
≤ αj ||ϕj − ψj ||.

Thus,

||(Dϕ)− (Dψ)|| ≤
k∑

j=1

αj ||ϕj − ψj ||

≤ α||ϕ− ψ||.

This completes the proof of Lemma 3.1.

Lemma 3.2. Suppose that (H1), (H2), (H3) and (3.2) hold. Then the operator F
defined by (3.5) is completely continuous on M.

Proof. For n ∈ [0, T − 1] and for ϕ ∈ M, we have by (3.2) that

|(Fjϕj)(n)| ≤
∣∣∣ n+T−1∑

u=n

Gj(n, u)
[
gj(u, ϕj(u− τ(u)))− ϕj(u− g(u))φj(u)aj(u)

]∣∣∣
≤ QjT

(1− αj)J
TQjk

≤ (1− αj)J
k

.

Thus,

||(Fϕ)|| ≤
k∑

j=1

(1− αj)J
k

≤ (1− α∗)J,

where α∗ = min1≤j≤k αj . It therefore follows that

||(Fϕ)|| ≤ J.
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This shows that F (M) is uniformly bounded. Due to the continuity of all terms, we
have that F is continuous.
Next we show that F maps bounded subsets into compact sets. Let S = { ϕ ∈ PT :
||ϕ|| ≤ µ} and Q = { (Fϕ)(n) : ϕ ∈ S}, then S is a subset of RTk which is closed
and bounded and thus compact. As F is continuous in ϕ, it maps compact sets into
compact sets. Therefore Q = F (S) is compact. This completes the proof.

Theorem 3.3. Suppose that (H1),(H2), (H3) and (3.2) hold. Also suppose that
the hypothesis of Lemma 3.2 also hold. Then equation (1.1) has a positive periodic
solution.

Proof. Let ϕ,ψ ∈ M. Then we have that

(Djϕj)(n) + (Fjψj)(n) = cj(n− 1)ϕj(n− τ(n))

+
n+T−1∑

u=n

Gj(n, u)
[
gj(u, ψj(u), ψj(u− τ(u)))

−ψj(u− τ(u))φj(u)aj(u)
]

≤ αjJ

k
+Qj

n+T−1∑
u=n

[
gj(u, ψj(u), ψj(u− τ(u)))

−ψj(u− τ(u))φj(u)aj(u)
]

≤ αjJ

k
+
QjT (1− αj)J

TQjk
=
J

k
.

Thus,

||(Dϕ)(n) + (Fψ)(n)|| ≤
k∑

j=1

J

k
= J.

On the other hand,

(Djϕj)(n) + (Fjψj)(n) = cj(n− 1)ϕj(n− τ(n))

+
n+T−1∑

u=n

Gj(n, u)
[
gj(u, ψj(u), ψj(u− τ(u)))

−ψj(u− τ(u))φj(u)aj(u)
]

≥ σjL

k
+ qj

n+T−1∑
u=n

[
gj(u, ψj(u), ψj(u− τ(u)))

−ψj(u− τ(u))φj(u)aj(u)
]

≥ σjL

k
+
qjT (1− σj)L

Tqjk
=
L

k
.
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Thus,

||(Dϕ)(n) + (Fψ)(n)|| ≥
k∑

j=1

L

k
= L.

This shows that (Dϕ)(n) + (Fψ)(n) ∈ M. Therefore by Theorem 2.1 equation (1.1)
has a positive periodic solution in M.
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