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Abstract

The definition of the coherence relations in non-abelian cohomology is a difficult
problem studied by many authors. The purpose of this paper is to simplify the solution
provided by the author which uses the notion of sequences of fibred categories and to
apply the resulting theory to higher divisors and Chow theory.

AMS Subject Classification: 18D05; 18D30.

Keywords: ADJM, gerbes, non-abelian cohomology, divisors.

1 Introduction

Non-Abelian cohomology has been created by Grothendieck and his collaborators with
the purpose of giving a geometric interpretation of characteristic classes. Let (C,J) be a
Grothendieck site, and L a sheaf defined on (C,J), we know that H0(X ,L) is the set of
global sections of L, and H1(X ,L) is the set of isomorphism classes of torsors bounded by
L. In [5], Giraud has defined the notion of gerbes bounded by a sheaf L, objects which are
classified by H2(X ,L). Many concrete problems have created the need to provide a geomet-
ric interpretation of higher cohomology classes. The main difficulties to solve this problem
are related to the combinatoric which arise when one try to define coherence relations for
n-gerbes, n > 2. In [17] is developed the notion of sequences of gerbes which provides a
partial answer by attaching to a sequence of fibred categories endowed with suitable proper-
ties a cohomology class, this construction can also be viewed as a geometric interpretation
of the connecting morphism in cohomology. Remark that this approach gives a complete
satisfaction in the geometric study of the Brauer group as shown in [14]. This theory has
been successfully applied in many areas, like in symplectic geometry, where it has enabled
to give new insights on quantization and symplectic fibrations. It has also been applied to
the study of moduli spaces in differential geometry [19].

The purpose of this paper is to simplify the notion of sequences of fibred categories
studied in [17] since the classifying classes here are easier to compute. The main tool used
here is the topos of the site of sheaves Sh(C,J) defined on the Grothendieck site (C,J).
In [7], Grothendieck defines on Sh(C,J) a Grothendieck topology, which can be used to
define notions of varieties and algebraic spaces for any Grothendieck site (see also [16]).
This topology allows us to define fibred categories on the basis (C,J) for which the objects
of the fibres are varieties, thus are naturally endowed with a Grothendieck topology; we
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study such 2-sequences of fibred categories, and apply our results to define and study higher
divisors in algebraic geometry.

Notations. In this paper all categories are stable by finite limits and colimits. Let C
be a category. We denote by C/X , the comma category of morphisms of C whose target is
X . Let Ui1 , ...,Uip be objects of C, we denote by Ui1...ip , the fiber product of Ui1 , ...,Uip over
the terminal object of C. Let p : F → C be a fibred category (see definition 1, paragraph
2), and a morphism hi1...ip : ei1...ip → e′i1...ip

between objects of the fibre FUi1...ip
, we denote

by h j1... jl
i1...ip

: e j1... jl
i1...ip

→ e′ j1... jl
i1...ip

the restriction of hi1...ip between the respective restrictions e j1... jl
i1...ip

and e′ j1... jl
i1...ip

of ei1...ip and e′i1...ip to Ui1..ip j1.. jl .

2 Grothendieck topologies, varieties and geometric spaces

Definition 2.1. Let C be a category, a sieve S defined on C, is a subclass of the class ob(C),
of objects of C such that: if X ∈ S, and Y → X is a morphism of C, then Y ∈ S.

A Grothendieck topology J, defined on the category C, is a correspondence which as-
signs to every object X of C, a non-empty class of sieves J(X) of C/X which satisfies the
following properties:

- Let S∈ J(Y ), and f : X →Y a morphism of C, the pullback S f = {h : Z → X , f ◦h∈ S}
is an element of J(X).

- A sieve S of C/Y is an element of J(Y ) if for every morphism f : X → Y , S f ∈ J(X).
A category equipped with a Grothendieck topology is called a site or a Grothendieck

site. We denote it by (C,J).

Definition 2.2. Let C be a category, a presheaf F on C is a functor F : C0 → Set, where
C0 is the opposite category of C, and Set the category of sets. We denote by PreSh(C) the
category of presheaves defined on the category C.

A presheaf on the Grothendieck site (C,J) is called a sheaf if and only if for every object
X of C, and every element S of J(X), LimY→X∈SF(Y ) = F(X).

Let C be a site, a trivial sheaf F defined on C, is a sheaf F such that there exists a set E
such that for every object X of C, F(X) = E, and the restriction maps are the identity of E.

We denote by Sh(C,J) the category of sheaves defined on the Grothendieck site (C,J).
We have an full embedding C → PreSh(C) defined by the Yoneda embedding which asso-
ciates to the object X of C, the presheaf hX defined by hX(Z) = HomC(Z,X). We say that
the topology is subcanonical if the presheaf hX is a sheaf for every X ∈C. In the sequel, we
will consider only subcanonical topologies. If there is no confusion, we will often denote
hX by X .

Example 2.3. Let Op be the category whose objects are open subsets of Rn,n ∈ N, and
whose morphisms are local homeomorphisms; for every object X of Op, an element of
J(X) is a family of local homeomorphisms (hi : Ui → X)i∈I such that

S
i∈I h(Ui) = X . Every

topological space T defines a sheaf hT of Op by assigning to X the set of continuous maps:
hT (X) = Hom(X ,T ).

Example 2.4. Let A f f be the category of affine schemes: it is the category opposite to the
category of commutative rings with a unit. We endow A f f with the etale topology. For
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every object X of A f f , an element of J(X) is a finite family of etale morphisms (hi : Ui →
X)i∈I such that

S
i∈I h(Ui) = X . Every scheme S defines a sheaf hS of A f f by assigning to

X the set of morphisms of schemes: hS(X) = Hom(X ,S). See [8], VIII. proposition 5.1.

Definition 2.5. Let (C,J) be a site, we say that the morphism F → G between elements
of Sh(C,J) is a covering morphism if and only if for every object X in C, and every mor-
phism X →G, the canonical projection X ×G F → X is a covering sieve of X ; the family of
morphisms (Fi → G)i∈I is a covering family of G if and only if the morphism

S
i∈I Fi → G

is a covering morphism, see [7], p 251-252. These covering families define on Sh(C,J) a
Grothendieck topology (See [7] proposition 5.4 p. 254).

Definition 2.6. Let C be a category, a monomorphism of C is a morphism f : X → Y , such
that for every object Z of C, The map Hom(Z,X) → Hom(Z,Y ) which sends the element
h ∈ Hom(Z,X) to f ◦h is injective.

Suppose that (C,J) is a site, denote by e the final object of Sh(C,J). The object X of C
is an open subset of e if and only if there exists a monomorphism i : X → e (see [1] p. 20
and [7] definition 8.3 p. 421). The morphism i is called an open immersion

The object U of C/X is an open subset of X , if and only if it is an open subset of the
final object of C/X for the induced topology.

Definition 2.7. Let (C,J) be a site, we suppose that for every object X of C, every open
subset f : U → X , of C/X is contained in a sieve of X , a geometric space (See also [16]) is
a sheaf F of (C,J) which satisfies such that there exists a family (Ui)i∈I of objects of C and
a sieve p :

S
i∈I Ui → F of F , for the Grothendieck topology on Sh(C,J).

The family (Ui)i∈I is called an atlas.
Let pi : Ui → F be the composition of the canonical embedding Ui →

S
i∈I Ui and p. If

for every i, the map pi is an open immersion, then F is called a variety.

Example 2.8. A geometric space F in Op is defined by a sheaf F on Op, and a covering
morphism p :

S
i∈I Ui → F . In particular a topological manifold is a geometric space, a more

carefully investigation shows that it is a variety (see [16]).

Example 2.9. A geometric space F in A f f is defined by a sheaf F on A f f , and a covering
morphism p :

S
i∈I Ui = Spec(Ai)→ F . In particular a scheme is a geometric space, a more

careful investigation shows that it is a variety.

Let F , be a geometric space, suppose that the covering p :
S

i∈I Ui → F is 1-connected;
(this is equivalent to saying that for every i ∈ I, every sheaf on Ui is trivial). The pullback
Fi of F by pi is trivial. Let F j

i be the pullback of Fi on Ui ×F U j by the projection Ui ×F

U j →Ui. There exists an isomorphism gi j : F i
j → F j

i . The morphism ci jk = g j
kig

k
i jg

i
jk is an

automorphism of F i j
k , the restriction of Fk to Ui×F U j ×F Uk which can be identified with

an automorphism of F(Ui ×F U j ×F Uk). We call a 2-cocycle a family ci jk which verifies
the relation: c j

iklg
i j
lkcl

i jkgi j
kl = ck

i jlc
i
jkl .

Suppose that F is a variety; recall that i.e that Ui → F is an open immersion for every i.
Thus Fi is the restriction of F to Ui. Let hi : Fi → Ei, the trivialization of the restriction of F
on Ui, on Ui×F U j, we can define the map h j

i
−1
◦ hi

j which is an automorphism of Ei j, the
fibre of the restriction of F to Ui×F U j. We have the relation: c j

ik = ck
i jc

i
jk
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Let C be a category, X ,P objects of C, a P-point of X (see [1] p. 17, or [7] p. 385) is a
morphism x : P→ X .

In a category stable by finite limits, and colimits, a group object (See [1] p.35) is defined
by:

- An object G endowed with a morphism p : G×G → G called the product, which is
associative,

- The neutral element, which is a global point, that is a morphism e : 1 → G, (where 1
is the final object).

- The inverse is a morphism i : G→ G.
This data must satisfy the following conditions:
Let x,y : P → G be two P-points of G, by the universal property of the product, x and y

define a morphism (x,y) : P→G×G, we write p◦ (x,y) = xy, we must have x(yz) = (xy)z.
Let i(x) be the point i ◦ x, the fact that i is the inverse map is equivalent to saying

that p(x, i(x)) is the composition of the unique map pP : P → 1 with e, we must also have
p(x,e◦ pP) = p(e◦ pP,x) = x.

An action of the group object G on X is defined by a morphism A : G×X → X . The
universal property of the product and the action induces a morphism: hT,X : Hom(T,G)×
Hom(T,X)→ Hom(T,X); for every points g,g′ : T → G, and x : T → X , (gg′)x = g(g′x).
The action is free if and only if for every T -point, g of G, hT,X(g, .) is injective. Remark
that by using the Yoneda embedding, if hG is a group object of Sh(C,J), then G is also a
group object of C.

Proposition 2.10. Let (C,J) be a site and G a group object of Sh(C,J) which acts freely on
the geometric space X, and such that for every object Y ∈C, the projection Y ×G → Y ∈
J(Y ) then, the sheaf hX/G is a geometric space.

Proof. Let (Ui)i∈I be an atlas of X ; Denote by p′i the composition of pi with the map X →
X/G (see definition 5 for pi). Then (Ui, p′i)i∈I defines an atlas of X/G. To show this, firstly
we consider an object Z of C, and a morphism h : hZ → X/G. The pullback of X → X/G by
h is hZ×hG; to show this, consider an element of Hom(T,Z)×Hom(T,X)/G Hom(T,X) which
is defined by an element u of Hom(T,Z), and an element v of Hom(T,X) which have the
same image in Hom(T,X)/G. The elements of Hom(T,Z)×Hom(T,X)/G Hom(T,X) whose
image by the first projection is u are of the form (u,gv),g ∈Hom(T,G). Since the action of
G is free, we deduce that hZ ×X/G hX = hZ ×hG. Since (Ui)i∈I is an atlas of X , the pullback
of hZ×G → X by

S
i∈I hUi → X is in J(Z×G), since the map Z×G→ Z ∈ J(Z). We deduce

that (Ui, p′i)i∈I is an atlas of X/G. �

3 Sheaves of categories, (2,2)-gerbes, (2,1)-gerbes, (1,2)-gerbes

Let (C,J) be a category equipped with a Grothendieck topology, and p : F →C a functor.
For every object X of C, we denote FX , the sub-category of F obtained by restricting to
objects x ∈ F such that p(x) = X , and to arrows mapped by p to the identity arrow of X .
A morphism h : x → x′ between objects of FX is an element of h ∈ HomF(x,x′), such that
p(h) = IdX . The category FX is called the fibre of X . Let f : X → Y be a morphism of C,
and x ∈ FX ,y ∈ FY . We denote by Hom f (x,y) the subset of the set of HomF(x,y) such that
for every element h ∈ Hom f (x,y), p(h) = f .
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Definition 3.1. The morphism h ∈ Hom f (x,y) is Cartesian if and only if for every element
z ∈ FX , the canonical map HomIdX (z,x) → Hom f (z,y) which sends l → h ◦ l is bijective.
We say that the category F is a fibred category over C, if and only if for every morphism
f : X →Y in C, and every element y∈ FY , there exists a Cartesian morphism c f : x→ y such
that p(c f ) = f .

Example 3.2. The forgetful functor C/X →C, which sends Y → X to Y , is Cartesian ( i.e
takes Cartesian morphisms to Cartesian morphisms), as well as its restriction to any sieve
of X .

Let p : F → C and p′ : F ′ → C be Cartesian functors, we denote by Cart(F,F ′) the
class of morphisms between F and F ′ such that for every element h ∈Cart(F,F ′), we have
p′ ◦h = p, and h sends Cartesian morphisms to Cartesian morphisms.

Definition 3.3. Let p : F →C be a Cartesian functor. We say that the pair (F, p) is a sheaf
of categories, if and only if:

- Let X be an object of C, for every sieve R∈ J(X), the forgetful functor Cart(E/X ,F)→
Cart(R,F) is an equivalence of categories.

We say that the sheaf of categories is connected if for every object X of C, there exists a
sieve R ∈ J(X), such that for every morphism Y → X ∈ R, FY is not empty, and the objects
of FY are isomorphic to each others. We are going to study only connected sheaves of
categories here.

Let f : X → Y be a morphism of C, and y an object of FY , a restriction map of f is a
Cartesian map c f : x → y, we say often that x is a restriction of y.

Suppose that the topology of C is generated by the family (Ui)i∈I (see [7] p. 221), we
can assume that for every i ∈ I, the object of the fibre of Ui are isomorphic to each other.
Choose an object xi ∈ FUi , on Ui j, there exists a morphism gi j : xi

j → x j
i ; the morphism

ci jk = g j
kig

k
i jg

i
jk is an automorphism of xi j

k . Which satisfies the relation:

c j
iklg

i j
lkcl

i jkgi j
kl = ck

i jlc
i
jkl

We have seen that geometric spaces satisfy the condition above, in fact, there are examples
of sheaves of categories.

Definition 3.4. A sheaf of categories on the Grothendieck site (C,J) is a gerbe, if and only
if there exists a sheaf L on (C,J) such that for every object x ∈ FX , AutIdX (x) ' L(U), and
this identification commutes with morphisms between objects and with restrictions. We say
that the sheaf of categories p : F →C is bounded by L, and L is its band.

Definition 3.5. Suppose that the site (C,J) has a final object e; a gerbe is trivial if and only
if it has a global section. This is equivalent to saying that the fibre Fe is not empty.

A global section is called a torsor; equivalently a torsor is a gerbe p : F →C such that
for every object X of C, the fibre FX contains a unique object.

Definition 3.6. Let (C,J) be a Grothendieck site. Consider an object of Sh(C,J) which is
a variety X defined on (C,J). An n-sequence of fibred categories over X , is a sequence of
functors, pn : Fn → Fn−1...p1 : F1 →C/X = F0 which satisfies the following conditions:
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- The functors pl, l = 1, ..n are fibred categories.
- For every object U of Fl , the fibre Fl+1U is a category whose objects are varieties of C,

and its morphisms are morphisms of varieties over U (i.e on the site obtained by restricting
(C,J) to C/U)

To define the notion of n-sequence of gerbes, we are going to associate firstly, to an
automorphism above the identity of a gerbe bounded by a commutative sheaf, a 1-cocycle.
Let h be an automorphism above the identity of the gerbe p : F →C/X . Let (Ui)i∈I be 1-
connected cover of X recall that this is equivalent to saying that the restriction of every sheaf
to Ui is trivial. Let xi be an object of FUi , there exists an arrow li : xi → h(xi). Let ui j : xi

j → x j
i

be a connecting morphism, on Ui j we have the morphism h ji = li
j
−1 ◦ h(ui j)−1 ◦ l j

i ◦ ui j of
xi

j. The following computation show that hi
k juk jhk

jiu jk = h j
ki:

hi
k juk jhk

jiu jk = li j
k
−1

h(ui
k j)

−1lik
j ui

jkui
k jl

ik
j
−1h(uk

i j)
−1l jk

i uk
i ju

i
jk = li j

k
−1

h(ui
i ju

k
jk)

−1l jk
i uk

i ju
i
jk.

By writing that ci jk = u j
kiu

k
i ju

i
jk, we obtain:

hi
k juk jhk

jiu jk = li j
k
−1

h−1(u j
ikci jk)l

jk
i uikci jk. Since the group L is commutative and h com-

mutes with morphisms between objects, h−1(u j
ikci jk)l

jk
i uikci jk = c−1

i jk h−1(u j
ik)l

jk
i ci jkuik = h−1(u j

ik)l
jk
i uik.

This implies that hi
k juk jhk

jiu jk = h j
ki.

The cohomology (see S.G.A 4-2 for the definition of Ĉech cohomology on sites) class
of the cocycle that we have just defined does not depend of the choices made. Suppose that
we fix the xi, but replace li by l′i , then there exists ui ∈ L(Ui) such that l′i = uili, and hi j is
replaced by ui

j
−1hi ju

j
i .

Suppose that we replace xi by x′i, let vi : x′i → xi be a connecting morphism, h(vi)−1livi

is a connecting morphism l′i between x′i and h(x′i), u′i j = v j
i
−1

ui jvi
j is a connecting morphism

between x′j
i and x′i

j. We can write l′ij
−1

h−1(u′i j)l
′
i

ju′i j =

(h(vi
j)
−1li

jv
i
j)
−1h(v j

i
−1

ui jvi
j)
−1h(v j

i )
−1l j

i v j
i v j

i
−1

ui jvi
j = vi

j
−1hi jvi

j = hi j since the elements
of the band commute with morphisms between objects.

Definition 3.7. An n-sequence of fibred categories, pn : Fn → Fn−1...p1 : F1 →C/X = F0 is
a n-sequence of gerbes, if and only if:

- For every object U of Fn−2, and eU of Fn−1U , the fiber FneU is a gerbe bounded by a
sheaf LeU defined on C/eU .

- Let U be an object of Fl . There exists a cover (Ui)i∈I of U , such that for every object
ei,e′i of Fl+1Ui

, and there exists an isomorphism between Fl+2ei
and Fl+2e′i

.
- There exists a commutative sheaf L on C called the band such that the trivial automor-

phisms (those corresponding to trivial torsors) of FneU are the sections of L.

3.1 The classifying 4-cocycle

In the sequel, we will consider only 2-sequences of fibred categories that we call also (2,2)-
gerbes, the general situation will be studied in a forthcoming paper.

We are going to associate a 4-cocycle to a 2-sequence p2 : F2 → p1 : F1 → X bounded
by a sheaf of commutative groups L. Let (Ui)i∈I be a cover of X , and xi an object of F1Ui ,
we denote by gi j : xi

j → x j
i a connecting morphism. The morphism ci jk = g j

kig
k
i jg

i
jk is an
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automorphism of xi j
k . Let U be an object of C/xi j

k , for every object U ′ ∈ F2U we can lift
the pullback of ci jk by U → xk

i j, to a Cartesian morphism U” → U ′. If h′ : U ′ → V ′ is a
morphism above the morphism h : U → V → xi j

k between objects of C/xi j
k , we can lift the

pullback of h by ci jk to a morphism h” : U” → V ” in such a way that h” : U” → V ” → V ′

coincide with U”→ h′ : U ′→V ′. This shows that the correspondence which associates U”
to U ′ defines an automorphism c′i jk, of the gerbe F2xi j

k
. (See also Giraud [6] Scholie 1.6 p.3)

On Ui jkl , we have the morphisms ci
jkl,c

j
ikl,c

k
i jl,u

i j
lkcl

i jkui j
kl = c′i jk of xi jk

l . The automor-

phism c′li jk
−1

c j
ikl
−1

ck
i jlc

i
jkl is an automorphism above the identity of xi jk

l . We identify it

with an element ci jkl ∈C1(xi jk
l ,L) up to a coboundary. The cohomology class of the Ĉech

boundary ci jklm of ci jkl is trivial. Thus we can identify ci jklm with an element of L(Ui jklm)
The family ci jklm is the classifying 4-cocycle of the (2,2)-gerbe.

3.2 (2,1)-gerbe, and (1,2)-gerbe

We will often need a particular 2-sequence of gerbes:

Definition 3.8. A gerbe-torsor or a (2,1)-gerbe is a (2,2)-gerbe p2 : F2 → p1 : F1 → X ,
which satisfies the following properties:

- For every object U of C/X , there exists a covering (Ui)i∈I of X such that for every
object eUi of F1Ui , the category F2eUi

is a trivial gerbe over eUi .
- There exists a sheaf L such for every global section V of F2eUi

, there exists an isomor-
phism between AuteUi

(V ), the group of automorphisms of V over the identity of eUi with
L(Ui), and this isomorphism commutes with morphisms between objects and with restric-
tions.

The classifying cocycle of a (2,1)-gerbe.
We are going to associate to a gerbe-torsor, a 3-cocycle defined as follows:
Let xi be an object of F1Ui , and ui j : xi

j → x j
i a morphism, we can define the cocyccle

ci jk = u j
kiu

k
i ju

i
jk of xi j

k . Since the gerbe F2xi j
k

is trivial, we can pick V , a global section over

xi j
k , in this situation, let c′i jk be a morphism of V above ci jk. The Ĉech coboundary of c′i jk

is an automorphism above the identity of xi jk
l that we identify with an element of L(Ui jkl).

The family of morphisms ci jkl defines a 3-cocycle which is L-valued.

Remark 3.9. Suppose that the cohomology class of ci jkl is zero, we can assume that ci jkl = 0.
This is equivalent to saying that c′i jk is the classifying cocycle of a gerbe p′ : F ′ → C/X ,
such that for every object U of C/X , the objects of F ′

U are torsors over eU , where eU is an
object of F1U . The classifying cocycle of the (2,1)-gerbe can be viewed as an obstruction
to obtain such a gerbe, that is, to reduce the trivial gerbe F2eU to a torsor.

There is a natural manner to associate to a (2,2)-gerbe p2 : F2 → p1 : F1 →C/X a (2,1)-
gerbe p′2 : F ′

2 → p1 : F1 →C/X defined as follows: Let U , be an object of C/X , and eU an
object of F1U , the trivial gerbe F ′

2eU
is the gerbe whose objects are the automorphisms of

F2eU above morphisms of eU . Remark that the classifying cocycle of this (2,1)-gerbe is the
class ci jkl that we have used to define the classifying cocycle of (p2, p1). Thus (p2, p1) is
trivial if and only if (p′2, p1) is trivial. This allows to interpret a (2,2)-gerbe as a geometric
obstruction.



72 A. Tsemo

Definition 3.10. A (1,2)-gerbe is a (2,2)-gerbe p2 : F2 → p1 : F1 →C, such that the gerbe
p1 : F1 →C is trivial.

The classifying 3-cocycle of a (1,2)-gerbe.
Suppose that the covering (Ui)i∈I is a good covering, and xi = F1Ui is isomorphic to the

trivial L(Ui)-torsor ti on Ui. Let hi : xi → ti be an isomorphism, consider the automorphism

ci j = h j
i
−1

hi
j of xi j. Let U be an object of C/xi j. We can lift ci

jk to an automorphism c′ijk of

F2xi jk . The Ĉech boundary of c′ijk is an automorphism of the gerbe F2xi jk above the identity
that we identify with an element of ci jk ∈C1(Ui jk,L) up to a coboundary. The cohomology
class of the boundary ci jkl of ci jk is trivial. We can thus identify ci jkl to an element of
L(Ui jkl). The family ci jkl is the classifying cocycle of the (1,2)-gerbe.

3.3 Examples: The lifting obstruction

Let (C,J) be a site, and 0 → L → M → N → 0 an exact sequence of commutative sheaves
defined on C. It defines the following exact sequence in cohomology:

Hn(X ,L)→ Hn(X ,M)→ Hn(X ,N)→ Hn+1(X ,L)

Let [cn] be an element of Hn(X ,N), represented by the n-cocycle cn of the sheaf N. A
natural problem is to find obstructions to lift the n-cocycle cn to a class in Hn(X ,M).

Recall the construction of the coboundary operator Hn(X ,N)→Hn+1(X ,L). Let (Ui)i∈I

be a good cover of (C,J), the restriction of M and N on Ui are trivial. This implies the
existence of a global section bn

i ∈ M(Ui1..in+1) over cn
i , the restriction of cn to Ui1..in+1 . We

can write the coboundary cn+1 of the chain bn
i it is an (n+1)-L-cocycle whose cohomology

class is the image of [cn] by the boundary operator. The cohomology classes of the (n+1)-
L-cocycles which are in the image of the connecting morphism Hn(X ,N) → Hn+1(X ,L)
are in bijection with the quotient of Hn(X ,N) by the image of the morphism Hn(X ,M)→
Hn(X ,N).

The space H0(X ,N) classifies the global sections of the sheaf N, and H1(X ,L) the L-
torsors, we obtain that isomorphism classes L-torsors whose classifying cocycles are in the
image of the connecting morphism H0(X ,N)→ H1(X ,L) are in bijection with the quotient
of H0(X ,N) by the image of the morphism H0(X ,M)→ H0(X ,N).

If n = 1, H1(X ,N) classifies the torsors of the sheaf N, and H2(X ,L) the L-gerbes, we
obtain that isomorphism classes of L-gerbes whose classifying cocycles are in the image
of the connecting morphism H1(X ,N) → H2(X ,L) are in bijection with the quotient of
H1(X ,N) by the image of the morphism H1(X ,M)→ H1(X ,N).

Let pi
2 : F i

2 → pi
1 : F i

1 → C/X , i = 1,2 be two (2,1)-gerbes such that pi
1 is a gerbe

bounded by N, and (pi
1, pi

2) by L. We say that they are isomorphic if and only if their
respective 3-cohomology classes associated to these gerbes are equal.

Proposition 3.11. Let 0 → L → M → N → 0 be an exact sequence of sheaves defined on
the site (C,J). Suppose that the morphism of sheaves M → N has local sections. Then
the isomorphism classes of (2,1)-gerbes p2 : F2 → p1 : F1 →C/X such that p1 is a gerbe
bounded by L, and (p1, p2) by N, whose classifying cocycles are in the image of the con-
necting morphism l2 : H2(X ,N)→ H3(X ,L) are in bijection with the quotient of H2(X ,N)
by the image of the morphism H2(X ,M)→ H2(X ,N).
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Proof. We need only to construct for every cohomology class [c3] ∈ H3(X ,L) in the image
of the connecting morphism l2 : H2(X ,N)→H3(X ,L), a (2,1)-gerbe classified by [c3]. Set
[c3] = l2([c2]). Let p : F → C be an N-gerbe bounded by [c2]. By assumption, for every
object U of C, the objects of the fiber FU are N-torsors. Let eU be an object of FU , we
define F2eU to be the category whose objects are M-torsors pU : VU → eU whose quotient
by L is eU . A morphism between two objects of F2eU is a morphism of M-bundles which
projects to the identity of eU . If (Ui)i∈I is a good cover of C, and ei an object of FUi . The
objects of F2ei are isomorphic; they are trivial bundles since the map M → N has local
sections. The projection F2 → F1 is the projection which sends the M-bundle VU → eU to
eU , this projection is Cartesian. Let p : V ′

U ′ → eU ′ be an element of F2eU ′
, an f : eU → eU ′ a

morphism, the pullback of p by f is a Cartesian morphism above f . �

Remark 3.12. Let p : F →C/X and p′ : F ′→C/X two gerbes bounded by N, we can define
the summand F + F ′ of F and F ′: The objects of (F + F ′)U are sum of N-bundles eU and
e′U , where U is an object of C/X , and eU (resp. e′U ) an object an object of FU (resp. F ′

U ).
Consider the (2,1)-gerbes p2 : F2 → p1 : F1 →C/X and p′2 : F ′

2 → p′1 : F ′
1 →C/X whose

classifying cocycles are image of l2. Two such cocycles are isomorphic if and only if there
exists a N-gerbe F1” whose classifying cocycle is in the image of H2(X ,M) → H2(X ,N)
and such that F1 = F ′

1 +F”1.

4 Applications to algebraic geometry: Chow groups and higher
divisors

In the sequel, X will be a quasi-projective variety of dimension n defined on the field k,
LX the sheaf of non zero rational functions defined on X . We endow X with the Zariski
topology. Let U be an open subset of X , and f ∈ LX(U), we denote by ( f ) the principal
divisor associated to f . The multiplicative group LX(U) is a Z-group, for the action defined
by (a, f ) → f a,a ∈ Z, f ∈ LX(U). Let h be an element of Ll

X(U), h = (h1, ...,hl), where
hi = ai

bi
, i = 1, ..., l and ai,bi are regular functions. Denote by CH l

X(U) the linear subspace
generated by the set of irreducible closed subvarieties of U of codimension l which are local
complete intersections; we define chl(U) : Ll

X(U) → CH l
X(U) which sends h to the inter-

section product (a1− b1)...(al − bl) ∈CH l
X(U). Remark that the theorem 1 V.21 of Serre

[15] describes the elements of the image of chl(U) as complete intersections codimension
l subvarieties, since it implies that if a component of (ai−bi) and a component of (a j−b j)
do not intersect properly, their coefficient in (ai−bi).(a j−b j) is zero.

The map chl(U) is l-multilinear for the multiplicative structure, it thus factors by a linear
map ch′l(U) : LX(U)⊗l → CH l

X(U) which factors by the quotient map L⊗l
X (U) → Ml

X(U),
where Ml

X(U) is the symmetric functions in l-variables on LX(U) for the multiplicative
structure, that is is the quotient of Ll⊗

X (U) by its subset generated by elements (x1 ⊗ ..⊗
xl)−σ(x1⊗ ..⊗ xl),σ ∈ Sl . Since the element of CHX(U) are local complete intersections,
for each integer l, we have an exact sequence of sheaves:

(1) 1→ ZX(l)→Ml
X →CH l

X → 1.
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Where ZX(l) is the kernel of the morphism Ml
X →CH l

X ; we deduce the existence of the
following exact sequence in cohomology:

(2) H p(X ,ZX(l))→ H p(X ,Ml
X)→ H p(X ,CH l

X)→ H p+1(X ,ZX
X (l)).

Let p = 0,1,2,3, we define a p-gerbe bounded by the sheaf L, to be a global section of
L if p = 0, a L-bundle if p = 1, a L-gerbe if p = 2, and a (2,1)-L-gerbe if p = 3. In the
sequel p is an integer equal to 0,1 or 2. This restriction is due to the fact that for n > 3, we
cannot provide at this time a geometric interpretation of this notion.

Definition 4.1. (p, l)-Cartier divisor, is defined by a p-chain (Ui1..ip+1 , fi1..ip+1) of sections of
Ml

X such that the image of the Ĉech boundary d( fi1..ip+1)∈ ZX(l)(Ui1..ip+2). This boundary is
thus the classifying cocycle of a p +1-ZX(l)-gerbe A(p, l). To this gerbe, is associated the
p-gerbe B(p, l) bounded by Ml

X/ZX(l) whose classifying cocycle is defined by the classes
of fi1..ip+1 in Ml

X(Ui1..ip+1)/ZX(l)(Ui1..ip+1).

Proposition 4.2. Let X be a quasi-projective variety of dimension n defined on the field k,
the set isomorphism classes of (p, l)-Cartier divisors is the quotient of H p(X ,CH l

X) by the
image of the morphism hp,l : H p(X ,Ml

X)→ H p(X ,CH l
X) deduced from the exact sequence

(2).

Proof. The classifying cocycle of the (p+1)-gerbe A(p, l), is the image of the classifying
cocycle of B(p, l) by the connecting morphism H p(X ,Ml

X/ZX(l)) → H p+1(X ,ZX(l)). By
comparing (2) with the exact sequence H p(X ,ZX(l))→H p(X ,Ml

X)→H p(X ,Ml
X/ZX(l))→

H p+1(X ,ZX(l)) deduced from the exact sequence 1 → ZX(l) → Ml
X → Ml

X/Zl
X . We de-

duce that H p(X ,Ml
X/ZX(l)) is isomorphic to H p(X ,CH l

X). The isomorphism classes of
the (p, l)-Cartier divisors is the quotient H p(X ,CH l

X) by the image of the morphism hp,l :
H p(X ,Ml

X)→ H p(X ,CH l
X). �

Remark 4.3. The elements of H p(X ,CH l
X) are called (p, l)-Weil divisors. Two (p, l)-Weil

divisors DW and D′
W are equivalent if and only if DW −D′

W is an element of the image of
hp,l .

The (p + 1)-chain d( fi1..ip+1) is a boundary of elements of Ml
X . Thus correspond to a

trivial Ml
X bundle if p = 0, a trivial Ml

X -gerbe if p = 1, and a trivial Ml
X -2-gerbe if p = 2,

(See Brylinski-McLaughin [3] for the definition of 2-gerbe).
If p = 0, and l = 1 a (0,1)-Cartier (resp. a (0,1)-Weil divisor) divisor is nothing but

a Cartier divisor (resp. a Weil divisor) in the classical sense. Two (0,1)-Weil divisors are
equivalent if and only if they are equivalent in the classical sense.

More generally two (0, l)-divisors which are equivalent are rationally equivalent: this
follows from the following argument: let DW and D′

W be two Weil divisors, suppose that:
D′

W = DW +(a1)...(al), where ai,...,al are regular functions. Then D′
W −DW is a principal

divisor of (a1)...(al), it follows from Hartshorne [9] p. 426, that DW and D′
W are rationally

equivalent.
Suppose that X is an affine variety X ; since the sheaf of rational functions LX is constant,

we deduce that H p(X ,Ml
X) = 0, p > 0, and H0(X ,MX) = K(X) the field of rational functions

of X . This implies that H p(X ,CH l
X) = H p+1(X ,ZX(l)).
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Suppose that l = 1, then ZX(1) = O∗
X the sheaf of invertible regular functions, we have:

H0(X ,O∗
X) = O∗

X(X), H1(X ,O∗
X) = Pic(X) the Picard group of X , and H p(X ,O∗

X) = 0 if
p > 1.

4.1 The Cartier divisor associated to a local complete intersection subvariety

Let Y be a closed subvariety of the quasi-projective variety X of codimension l which is
a local complete intersection, consider an open cover (Ui)i∈I by affine subsets, such that
Ui ∩Y is the locus l functions ( f 1

i , ..., f l
i ) which defines the element Fi ∈ Ml

X(U) obtained
by projecting the image of ( f 1

i , ..., f l
i ). The element hi j = Fj−Fi is in Zl

X(Ui×X U j).

Proposition 4.4. The element hi j is a 1-Ĉech Zl
X cocycle. If Y is irreducible, then its coho-

mological class vanishes if and only if Y is a global intersection.

Proof. The Ĉech cocycle hi j is the boundary of the Ml
X 0-cocycle Fj −Fj, this implies that

(hi j)i, j∈I is a 1-Ĉech Zl
X -cocycle. Suppose that the class [hi j] of (hi j) vanishes, this implies

the existence of a 0-chain fi of ZX(l), such that hi j = f i
j − f j

i . The boundary of (Fi− fi) is
zero, this implies that Fi− fi is the restriction of a global section F of Ml

X ; we can suppose
that F is the class of (h1, ...hc) since Y is irreducible. This implies that Y is the locus of
h1, ...,hc. Conversely, suppose that Y is the complete intersection of ( f1, ..., fl). Then we
can take Fi to be the restriction to Ui of the projection of ( f1, ..., fl) to MX . This implies the
result. �

Example 4.5. Suppose that X = Spec(k), LX = k∗ the set of non zero elements of k, for
every element a ∈ k∗, (a) = 0. This implies that ZX(l) = k∗⊗l .

Suppose that X is a curve; if l > 1, CH l
X = 0.

Proposition 4.6. Let X = P2k there exists a non trivial ZX(2)-gerbe defined on X.

Proof. First we construct a non trivial element of H1(X ,CH2
X). We can cover X with the

three open subsets Ui = {[X1,X2,X3],Xi , 0}, i = 1,2,3. On Ui∩U j, ci j is the homogeneous
element whose i and j coordinates are 1, and the other is 0; it is the intersection of the lines
defined by Xi−X j and Xk,k , i, j. Since Ui jk = {[X1,X2,X3] : Xi , 0, i = 1,2,3}, it implies
that ck

i j = 0. Thus the family (ci j) defines a cocycle. This cocycle is not a boundary: Sup-
pose that there exists a chain (ci)i∈I such that ci j = ci

j− c j
i . Write ci = l1

i h1
i + ..+ l j1

i h ji
i , i =

1,2,3, l1
i , .., l ji

i ∈ Z,h
jn
i ∈Ui. Suppose that the second homogeneous coordinate of a compo-

nent h jl
1 is not zero, then its third homogeneous coordinate is not zero since c13 = c1

3− c3
1,

if its third homogeneous coordinate is not zero, then its second homogeneous coordinate is
not zero also. Since its first coordinate is not zero, we deduce that the coordinates of h jl

1 are
not zero, this argument implies that h jl

i ∈Ui jk, i = 1,2,3. This is in contradiction with the
fact that ci j = ci

j− c j
i . Thus the class (ci j)i, j∈I defines a non trivial ZP2k(2)-gerbe on P2k.

We have to show that the class c defined by (ci j)i, j∈I is not in the image of H1(X ,M2
X)→

H1(X ,CH2
X). Suppose it is in that image, and let h be an element in its preimage. We de-

note by hi j, the value of h on Ui j. Suppose i = 1, j = 2 we can represent it by a couple
( f12,g12),∈ L2

X such that the intersection of the divisors of f12 and g12 is [1,1,0]. Since
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on U123, we can write h3
12 as a combination of h2

13 and h1
23 by applying the cocycle condi-

tion, this combination can be written in U12, but this is impossible, since the locus of the
components of h13 and h23 does not contain in c12 �

4.2 The Étale topology

Suppose that X is an integral quasi-compact scheme equipped with the étale topology,
we denote respectively by UX and DivX the sheaves of non zero rational functions and
the quotient of UX by O∗

X , the sheaf of non zero regular functions defined on the étale
topology. Let ZX(1) be the kernel of the map UX →UX/O∗

X , we have an exact sequence:
Hn

et(X ,ZX(1))→ Hn
et(X ,UX)→ Hn

et(X ,DivX)→ Hn+1
et (X ,ZX(1)).

We can define the notion of p-Cartier étale gerbe to be the quotient of H p(X ,DivX) by
the image of the map H p(X ,UX)→H p(X ,DivX). It is shown that if p = 1, H1

et(X ,ZX(1)) =
HZar(X ,ZX(1)) = Pic(X). If X is smooth, then the sheaf of étale Cartier divisors can be
identified with the sheaf of Weil étale divisors whose sections are summands of irreducible
codimension 1 varieties. This implies that H i(X ,DivX) = ∑x∈X1 H i(k(x),Z), i = 1,2, where
X1 is a closed point of codimension 1, and k(x) its residue field. The Hilbert 90 theorem
implies that H1(k(x),Z) = 0. This implies that the 1-étale Cartier gerbes are trivial if X is
smooth.

4.3 The Brauer group

Let k be a field, the Brauer group of k is H2
et(Spec(k), k̄∗), where k̄ is the algebraic closure of

k. Let Gl(n, k̄) be the linear group of invertible n-matrices, and PGl(n, k̄) the correspond-
ing projective group. The exact sequence 1 → k̄∗ → Gl(n, k̄) → PGl(n, k̄) → 1, induces
an exact sequence Hn

et(Spec(k), k̄∗)→H p
et(Spec(k),Gl(n, k̄))→H p

et(Spec(k),PGl(n, k̄))→
H p+1

et (Spec(k), k̄∗). If p = 1, it is shown in Serre [14] (proposition 9. p. 166) that ev-
ery class in H2

et(Spec(k), k̄∗) is in the image of a morphism H1
et(Spec(k),PGl(n, k̄)) →

H2
et(Spec(k), k̄∗), for a given n, thus every element of the Brauer group is the classifying

cocycle of a gerbe, which is the geometric obstruction to lift a torsor on the étale topos
Spec(k).
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