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Abstract

New estimates are obtained for the d—operator on non—Stein domains in C" and the
results are applied to the Corona problem in Carleman algebras on those domains.
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1 Introduction

Let Q be an open subset of a complex manifold X, and let p be a non—negative function on
Q. Denote by A, (©) the (Carleman) algebra of all holomorphic functions f in  such that
for some positive constants ¢ and c¢;

|f(2)| < crexp(c2p(z)), z € Q. (1.1

In [3] where X = C" and Q is pseudoconvex, and in [2] where X is a complex manifold
and Q is a relatively compact Stein open subset, a condition is given on p such that a given
finite set fi,..., fv € A, () generates A, (Q) if and only if

1A+ L@+ +]|fn(z)| > crexp(—c2p(2), z€ Q (1.2)

for some constants ¢; > 0,cp > 0.

Both in [2] and [3] Q was Stein. As is always the case, it is natural to ask whether the
condition of Steinness can be dropped. We show here that it can, if Q is a domain in C" and
we modify the condition in [2] and [3] to the following Condition(H):

e p is a non-negative upper semicontinuous function on Q;
e all polynomials belong to A, (Q); and

e there exist positive constants K7, ..., Ky such that z € Q and |z —&| <
exp(—Kip(z) —Kz) = & € Qand p(§) < Kzp(z) + Ky.
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The only difference between the condition in [3] and the Condition(H) here is the re-
placement of “plurisubharmonic” with “upper semicontinuous”. Note that if Q is an arbi-
trary domain in C", and d(z) denotes the distance from z € Q to the complement of Q in
C", p(z) =log1/d(z) satisfies Condition (H) on Q.

If Q is a domain in C" and p satisfies Condition (H) on Q, then we have (as in [3]) the
following two lemmas.

Lemma 1.1. If f € A, (Q) it follows that g% €A4,(Q),1<j<n

Lemma 1.2. If f is holomorphic in Q, then f € A, (Q) if and only if for some K > 0

[ 17Pexp (2K p(2) d < e,

where d\ denotes Lebesgue measure.
Our main Theorem is therefore the following

Theorem 1.3. Let Q be a domain in C" and p a function on Q satisfying Condition (H).
Then a finite set of functions in A, (Q), fi,..., fn generates A, (Q) if and only if (1.2) is
valid.

To prove this theorem we follow the homological argument given in [3] almost word

for word, using Lemmas 1.1 and 1.2 and LP—Carleman estimates for the d—operator on Q,
which we establish in the next section.

2 LP—Carleman Estimates for the o—operator

For 1 < p < oo, let L{’r 4 (U) denote the space of forms of type (r,q) with coefficients in
L7 (U),
/ /
=YY fisdd naz 2.1)

l=r|/|=q

where Y/ means that the summation is performed only over strictly increasing multi—indices,

I=(it,....ir), ] = (j1,-- - Jg) dd = dzi, N+~ Ndz;,dZ =dzj, -~ Ndzj,,

and U is open in C".
The norm of the (r,¢)—form in (2.1) is defined by

1/p
/ /
HfHL;;q)(U)Z{ZZHfullip(y)} , 1<p<eo
’ I J

Let B,(&,z) be the Bochner—Martinelli-Koppelman kernel of degree (0,¢) in z and de-
gree (n,n—q— 1) in &, so that, with B = |§ —z|*,

By(&,2) = (_l()zifyl)/z <”; 1) prapa (32:p) A (308) @2
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for0 < g <n.
An upper semicontinuous function ¢ is said to be admissible in an open set U in C", if
for every coefficient b,(&,z) of B4(€,z),0 < g <n,

/ |bg(&,2)[ e @ dM(z) < C, / |bg(&,2)| e @ dNE) < C 2.3)
U U

where C > 0 is a constant and A is Lebesgue measure.
For an upper semicontinuous @, we define L” (U, ) where U is open in C" by

LV (U,) = {g is measurable on U : / lg|” e Pdh < oo} , 2.4
U

1/p
12l o = { / !glpe‘pdl} |

L(pr 2 (U, @) is the space of (r,q)—forms with coefficients in L” (U, @), and if f is as in (2.1),

1 < p < oo, and

1/p
1Al e = {ZZ Hmumw}

1<p<oo.
Our second main result is

Theorem 2.1. Let Q be a domain in C" and let f € L (0.g+1) (Q,Q) be d—closed, 1 < p < oo

and © an upper semicontinuous function admissible in Q. Then there is u € L(po.q) (Q,0)
such that ou = f and
ey, @e <8Iflzr

where d is independent of f.

To prove Theorem 2.1 we need a lemma about Sobolev Space estimates for the o—
operator on bounded domains in C" with boundaries of Lebesgue measure zero. Accord-
ingly, let W!! (U) be the space of functions which together with their distributional deriva-
tives of order one are in L! (U), with the usual norm, and W(lrj;) (U) is the space of (r,q)-

forms with coefficients in W!! (U). We then have

Lemma 2. 2 Let Q be a bounded domain in C" with boundary of Lebesgue measure zero.
Let f € W ) (Q) be 0—closed. Then there is a u € W( g (Q) such that du = f.

To prove Lemma 2.2 we need the Bochner—Martinelli-Koppelman formula:

Theorem 2.3. Let Q be any bounded domain in C" with C' boundary. For f € C(l0 2 (ﬁ)
0 < g <n, we have

fz)z/aQB /\f+/B Aa§f+a/3q1 IAfzEQ (25

where Bq(ﬁ,z) is as in (2.2). (For the proof see [1] page 266).
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Proof of Lemma 2.2. With Q and f as in Lemma 2.2, if
/B DAfzEQ, (2.6)

then ou = f:
Let f =Y/ f;d7Z’ be defined as zero outside Q and regularize f coefficientwise: f,, =
J

Y (f1)md?,

where (f;)C / Fr(z—&/m)w(E) dM(E)
= [ 1Ewm(z—8)drE)

and y € Cy’ (C"), [wdh =1,y > 0,suppy = {z € C" : [z] < 1}, and A is Lebesgue mea-
sure. Then HmeL(lo‘qul)(Cﬂ < HfHL(pO’qH)(C"wfm — fin L(lqu+1) (Q) as m — oo and f, is

d—closed in C".

Now let uy,(z) = Bq(-,z) A fm- (2.7)
Then from Theorem 2.3, we have ou,, = f,,, and since f,, — f in L( g+1) (Q), we have
Uy — uin L(O‘q)( ), and du = f. o

Proof of Theorem 2.1. We first assume that Q is bounded. It is clear that there is a se-
quence Q) CC Qp CC --- of bounded domains, each with boundary of Lebesgue mea-
sure zero, such that [J;_; Q, = Q. We construct a sequence of (0,q)—forms {u,}, , with
u, € L(%H) (Q,0),0u, = f in Q, and

o) SKIfllr

ol b @

(0)

where K is the same for all v,1 < p < oo. Let us regularize f as above. For v fixed, if m is

sufficiently large, f,, € Wo P (Q,) and 9f,, = 0 in Q,. For such an m (sufficiently large)
define
[ faing,
Em = 0 outside Q.,,.

Then from Lemma 2.2, if

—/ 2) A\ &ms

auv’m =g,inQ,

and since @ is admissible on Q,
||Mv?m||L<fz)’ Q,,0) KHfHL(pO +1) Q.9) "

Now it is clear that as m — o0, g, — fin L]
= fand

(0,g+1) () and u,,,, — some u, in L(lo.’q) (Q,),

luvllcp

b @ SKIfllz e (2.8)
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Define u, as zero outside Q,, then since Lg) 2 (Q, ) is reflexive, for 1 < p < oo, by the

Banach—Alaoglu Theorem, there is u in L(% 2 (Q, ) with
llzr e <y, 0 29)

(1 < p < o0), and a subsequence {uvx} of {u,} such that u,, — u weakly in L(pO.q) (Q,0) as

A — oo, In particular, uy, — u in the sense of distributions, as A — 0. Therefore du = f.

If Q is not bounded, we can find a sequence of bounded domains € CC Q; CC ---
exhausting Q and a sequences of (0,q)—forms {u,}, , as above, such that du, = f on Q,
and

Il @0 < KNz, 0 210

(0.9+1)
and KX is the same for all v.
Treating the sequence in (2.10) as the sequence in (2.8) was treated, we get an (0,q)-
form u € L(% 4 (Q,9) with du = f and

HMHL(% <KHf||L1; o (Q9)
m|
3 Proof of Theorem 1.3
The format of the proof is the same as that in [2]: Because of (1.1) and (1.2), where | f \2 =
|f1|2+'--+|fN 2. for each V= ‘ |2 there is K > 0 such that
/’Vj‘zexp(—ZKp)d}.<oo (3.1
Q
and it is clear that N
YVvifi=1. (3.2)
j=1

For non—negative integers s and r let L; denote the set of all differential forms % of type
(0,r) with values in A*CY, such that for some K > 0

/Q W2 exp (—2K p) d. < oo. (3.3)

This means that for each multi-index I = (iy,...,i;) of length |I| = s with indices be-
tween 1 and N inclusively, & has component /; which is a differential form of type (0,r)
such that &, is skew symmetric in / and

/Q |hy|*exp (—2K p) dA < oo. (3.4)

As in [3], 9 is an unbounded operator from Lj to L} and the interior product Py by
(fi,...,fy) maps L5 into L.

N
)=y hyfj, l=s. (3.5)
j=1
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If we define P;L? = 0, then clearly P]% = 0 and Py commutes with 9, so0 we have a double
complex. We now have (as in [3]) the following

Theorem 3.1. For every g € L} with g = Prg =0 one can find h € L5 so that oh=0and
Prh=g.

Now from (3.2) P;dV = oP;V = d(1) = 0, where V = (V},..., V), therefore by The-
orem 3.1 there exist w € L% with Prw = oV and ow = 0. Let k € L% solve ok = w and
set

h=V —Psk € L. (3.6)

Then oh = oV — Prw =0 and
Py(h) =PV =1 G.7

i.e. there exist i1, ...,hy € A,(Q) such that

N
Y nifi=1. (3.8)
j=1
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