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Abstract

In this paper some random fixed point theorems with PPF dependence are proved
for random operators in separable Banach spaces with different domain and range
spaces. The obtained abstract results are applied to prove PPF dependence existence
results for first order periodic boundary value problems for functional random differ-
ential equations.
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1 Introduction

The study of random fixed point theorems in abstract spaces is initiated by Spacek [12] and
Hans [9] and are the stochastic generalizations of the classical fixed point theorems in sepa-
rable Banach spaces. The research along this line gained momentum after the publication of
the article by Bharucha-Reid [2] and the monograph Bharucha-Reid [3] since then several
random fixed point theorems have been proved in the literature. It is worthwhile to mention
that these randoms fixed point theorems are useful in proving the existence results for ran-
dom solutions of nonlinear random equations in separable Banach spaces. The details of
∗E-mail address: bcdhage@yahoo.co.in
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this aspect along with some nice applications to random differential equations appear in an
interesting paper of Itoh [10]. The common assumption among all these random fixed point
theorems is that the operators in question map abstract spaces into itself, i.e. the domain and
the range of the operators are the same. To the best of our knowledge, there is no discussion
so far concerning the random fixed point theorems for the operators with different domains
and the range spaces. The classical or deterministic fixed point theorems for the operators
with respect to domain and range spaces are not same studied in Bernfield et al. [1], Drici
et al. [7], [8] and Dhage [4] are called fixed point theorems with PPF (past, present and
future) dependence because they are useful for proving the existence of solutions for cer-
tain functional differential equations which may depend upon the past, present and future
consideration. Some basic random fixed point theorems with PPF dependence for opera-
tors in separable Banach spaces was proved in Dhage [6], by using random contractions,
and applied them to prove the existence of PPF dependent random solutions of initial value
problems for functional random differential equations.

In this paper we supplement the results proved in Dhage [5], [6], by proving some new
random fixed point theorems with PPF dependence for the operators in separable Banach
spaces satisfying certain contraction conditions different than that given in Dhage [5], [6].
We apply the obtained new random fixed point theorems with PPF dependence to first order
periodic boundary value problems for functional random differential equations and hybrid
random functional differential equations.

The rest of the paper is organized as follows: In the following section we present some
of the basic terminologies that will be used in the subsequent development of this paper.
In Section 3 we prove the basic random fixed point theorems with PPF dependence and
in Section 4 we apply them to periodic boundary value problems for random functional
differential equations.

2 Preliminaries

Let (Ω,A) be a measurable space and let E be a separable Banach space with norm ‖ · ‖E .
We equip the Banach space E with a σ-algebra βE of Borel subsets of E so that (E,βE)
becomes a measurable space. A mapping x :Ω→ E is called measurable if

x−1(B) = {ω ∈Ω | x(ω) ∈ B} ∈ A (2.1)

for all Borel sets B ∈ βE .

A mapping Q :Ω×E→ E is called a random operator if Q(ω, x) is measurable in ω for
all x ∈ E. We also denote a random operator Q on E by Q(ω)x=Q(ω, x). A random operator
Q(ω) is called continuous on E if Q(ω, x) is continuous in x for each ω ∈Ω. Similarly, Q(ω)
is called compact on E if Q(ω,E) is relatively compact subset of E for each ω ∈Ω.

Given a closed and bounded interval I = [a,b] in R, the set of real numbers, for some
a,b ∈ R, a < b, let E0 = C(I,E) denote the Banach space of continuous E-valued functions
defined on I equipped with the supremum norm ‖ · ‖E0 defined by

‖x‖E0 = sup
t∈I
‖x(t)‖E . (2.2)
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For a fixed t ∈ I, a Razumikhin class of functions in E0 is defined as

Rc =
{
φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E

}
. (2.3)

The class Rc is algebraically closed with respect to difference if φ− ξ ∈ Rc whenever
φ,ξ ∈ Rc. Similarly, Rc is topologically closed if it is closed w.r.t. the topology on E0
generated by the norm ‖ · ‖E0 .

Let Q :Ω×E0→ E be a random operator. A measurable function ξ∗ :Ω→ E0 is called
a PPF dependent random fixed point of the random operator Q(ω) if

Q(ω,ξ∗(ω)) = ξ∗(c,ω)

for some c ∈ I. Any mathematical statement that guarantees the existence of PPF dependent
random fixed point of the random operator Q(ω) is a random fixed point theorem with PPF
dependence or a PPF dependent random fixed point theorem.

The following theorem is used often in the study of nonlinear discontinuous random
differential equations. We also need this result in the subsequent part of this paper.

Theorem 2.1 (Carathéodory). Let Q : Ω×E→ E be a mapping such that Q(ω, x) is mea-
surable in ω for each x ∈ E and Q(ω, x) is continuous in x for each ω ∈ Ω. Then the map
(ω, x) 7→ Q(ω, x) is jointly measurable.

The following definitions are introduced in Dhage [5].

Definition 2.2. A random operator Q : Ω× E0 → E is called a random contraction if for
each ω ∈Ω,

‖Q(ω,ξ)−Q(ω,η)‖E ≤ λ(ω)‖ξ−η‖E0 (2.4)

for all ξ,η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 ≤ λ(ω) < 1 for all
ω ∈Ω.

Definition 2.3. A random operator Q :Ω×E0→ E is called a strong random contraction if
for a given c ∈ I and for each ω ∈Ω,

‖Q(ω,ξ)−Q(ω,η)‖E ≤ λ(ω)‖ξ(c,ω)−η(c,ω)‖E (2.5)

for all ξ,η ∈ E0, where λ : Ω→ R+ is a measurable function satisfying 0 ≤ λ(ω) < 1 for all
ω ∈Ω.

Note that every strong random contraction is random contraction, but the converse is
not true. Dhage proved in [5] a fundamental random fixed point theorem with PPF depen-
dence for random operators with different domain and range spaces which is further applied
to certain nonlinear functional random equations for proving the existence theorem for PPF
dependent random solutions. In the following section we prove some random fixed point
theorems with PPF dependence for random operators in separable Banach spaces satisfy-
ing certain contraction and compactness type conditions and then apply to some periodic
boundary value problems of first order functional random differential equations.
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3 PPF Dependent Random Fixed Point Theory

We need the following definitions in what follows.

Definition 3.1. A random operator Q : Ω×E0 → E is called a strong random contraction
of Kannan type if for each ω ∈Ω,

‖Q(ω,ξ)−Q(ω,η)‖E ≤ α(ω)
[
‖ξ(c)−Q(ω,ξ(ω))‖E + ‖η(c)−Q(ω,η(ω))‖E

]
for all ξ,η ∈ E0, where α : Ω→ R+ is a measurable function satisfying 0 ≤ α(ω) < 1/2 for
all ω ∈Ω.

Definition 3.2. A random operator Q : Ω×E0 → E is called a strong random contraction
of Riech type if for a given c ∈ I and for each ω ∈Ω,

‖Q(ω,ξ)−Q(ω,η)‖E ≤ α(ω) ‖ξ(c)−Q(ω,ξ(ω))‖E +β(ω)‖η(c)−Q(ω,η(ω))‖E
+γ(ω)‖ξ(c)−η(c)‖E

for all ξ,η ∈ E0, where α,β,γ : Ω→ R+ are measurable functions satisfying α(ω)+ β(ω)+
γ(ω) < 1 for all ω ∈Ω.

Definition 3.3. A random operator Q :Ω×E0→ E is called a random contraction of Riech
type if for a given c ∈ I and for each ω ∈Ω,

‖Q(ω,ξ)−Q(ω,η)‖E ≤ α(ω) ‖ξ(c)−Q(ω,ξ(ω))‖E +β(ω)‖η(c)−Q(ω,η(ω))‖E
+γ(ω)‖ξ−η‖E0

for all ξ,η ∈ E0, where α,β,γ : Ω→ R+ are measurable functions satisfying α(ω)+ β(ω)+
γ(ω) < 1 for all ω ∈Ω.

Our first random fixed point theorem with PPF dependence is the following result.

Theorem 3.4. Let (Ω,A) be a measurable space and let E be a separable Banach space. If
Q :Ω×E0→ E is a continuous random operator satisfying the condition of strong Kannan
type random contraction, then the following statements hold in E :

(a) If Rc is algebraically closed with respect to difference, then for a given ξ0 ∈ E0 and
for a given c ∈ I, every sequence {ξn(ω)} of measurable functions satisfying

Q(ω,ξn(ω)) = ξn+1(c,ω) (3.1)

and
‖ξn(ω)− ξn+1(ω)‖E0 = ‖ξn(c,ω)− ξn+1(c,ω)‖E (3.2)

converges to a PPF dependent random fixed point of the random operator Q(ω), i.e.
there is a measurable function ξ∗ :Ω→ E such that for each ω ∈Ω,

Q(ω,ξ∗(ω)) = Q(ω)ξ∗(ω) = ξ∗(c,ω).
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(b) Given ξ0,η0 ∈ E0, let {ξn(ω)} and {ηn(ω)} be the sequences of iterates of measurable
functions corresponding to ξ0 and η0 constructed as in (a). Then,

‖ξn(ω)−ηn(ω)‖E0 ≤
1

1−λ(ω)
[
‖ξ0− ξ1(ω)‖E0 + ‖ξ0− ξ1(ω)‖E0

]
+ ‖ξ0−η0‖E0 ,

where λ(ω) =
α(ω)

1−α(ω)
< 1 for all ω ∈Ω.

If, in particular, ξ0 = η0, and {ξn(ω)} , {ηn(ω)}, then

‖ξn(ω)−ηn(ω)‖E0 ≤
2

1−λ(ω)
‖ξ0− ξ1(ω)‖E0 .

(c) Finally, if Rc is topologically closed, then for a given ξ0 ∈ E0, every sequence {ξn(ω)}
of iterates of Q(ω) constructed as in (a), converges to a unique PPF dependent ran-
dom fixed point ξ∗(ω) of Q(ω), i.e. there is a unique measurable function ξ∗ :Ω→ E0
such that Q(ω,ξ∗(ω)) = ξ∗(c,ω) for all ω ∈Ω.

Proof. Let ξ0 ∈ E0 be arbitrary. By hypothesis, Q(ω,ξ0) ∈ E. Suppose that Q(ω,ξ0) =
x1(ω), where the function x1 : Ω→ E is measurable. Choose a measurable function ξ1 :
Ω→ E0 such that x1(ω) = ξ1(c,ω) and that

‖ξ1(c,ω)− ξ0(c)‖E = ‖ξ1(ω)− ξ0‖E0 .

Define a sequence {ξn(ω)} of measurable functions from Ω into E0 inductively so that

Q(ω,ξn(ω)) = ξn+1(c,ω)

and
‖ξn+1(c,ω)− ξn(c,ω)‖E = ‖ξn+1(ω)− ξn(ω)‖E0

for all ω ∈Ω.

We claim that {ξn(ω)} is a Cauchy sequence in E0. Now for any n ∈ N we have the
following estimate for each fixed ω ∈Ω,

‖ξn(ω)− ξn+1(ω)‖E0 = ‖ξn(c,ω)− ξn+1(c,ω)‖E
= ‖Q(ω,ξn−1(ω))−Q(ω,ξn(ω))‖E0

≤ α(ω)[‖ξn−1(c,ω)−Q(ω,ξn−1(ω))‖E + ‖ξn(c,ω)−Q(ω,ξn(ω))‖E]

≤ α(ω)[‖ξn−1(c,ω)− ξn(c,ω)‖E + ‖ξn(c)(ω)− ξn+1(c,ω)‖E]

≤ α(ω)‖ξn−1(ω)− ξn(ω)‖E0 +α(ω)‖ξn(ω)− ξn+1(ω)‖E0 .

From the above inequality, it follows that

‖ξn(ω)− ξn+1(ω)‖E0 ≤ λ(ω)‖ξn−1(ω)− ξn(ω)‖E0

for all n = 1,2, . . . , where λ(ω) =
α(ω)

1−α(ω)
< 1 for all ω ∈Ω.

By induction,
‖ξn(ω)− ξn+1(ω)|E0 ≤ λ

n(ω)‖ξ0− ξ1(ω)‖E0
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for all n = 1,2, . . . .

If m > n, by triangle inequality, we obtain

‖ξm(ω)− ξn(ω)‖E0 ≤ ‖ξn(ω)− ξn+1(ω)‖E0 + · · ·+ ‖ξm−1(ω)− ξm(ω)‖E0

≤ λn(ω)‖ξ0− ξ1(ω)‖E0 + · · ·+λ
m−1(ω)‖ξ0− ξ1(ω)‖E0

=
[
λn(ω)+ · · ·+λm−1(ω)

]
‖ξ0− ξ1(ω)‖E0

=

(
λn(ω)

1−λ(ω)

)
‖ξ0− ξ1(ω)‖E0 .

Hence, lim
m,n→0

‖ξn(ω)− ξm(ω)‖E0 → 0. This shows that {ξn(ω)} is a Cauchy sequence of

measurable functions onΩ into E0. Since E0 is complete and separable Banach space, there
is a measurable function ξ∗ :Ω→ E0 such that lim

n→∞
ξn(ω) = ξ∗(ω) for all ω ∈Ω. Now, from

(2.3) it follows that {ξn(c,ω)} is Cauchy and hence converges to a point ξ∗(c,ω) in view of
completeness of E.

It remains to prove that ξ∗ is a PPF dependence fixed point of Q(ω). From continuity of
the random operator Q(ω) it follows that

Q(ω,ξ∗(ω)) = Q
(
ω, lim

n→∞
ξn(ω)

)
= lim

n→∞
Q(ω,ξn(ω))

= lim
n→∞
ξn+1(c,ω)

= ξ∗(c,ω)

for allω ∈Ω. Hence ξ∗ is a random fixed point with PPF dependence of the random operator
Q(ω) on E0.

(b) Now, let {ξn(ω)} and {ηn(ω)} be any two sequences of measurable functions as con-
structed in (a). Then for each ω ∈Ω,

‖ξn(ω)−ηn(ω)‖E0 ≤ ‖ξn(ω)− ξn−1(ω)‖E0 + ‖ξn−1(ω)−ηn−1(ω)‖E0 + ‖ηn−1(ω)−ηn(ω)‖E0

≤ λn−1(ω)
[
‖ξ0− ξ1(ω)‖E0 + ‖η0−η1(ω)‖E0

]
+ ‖ξn−1(ω)−ηn−1(ω)‖E0 .

Therefore, by induction,

‖ξn(ω)−ηn(ω)‖E0 ≤ λ
n−1(ω)

[
‖ξ0− ξ1(ω)‖E0 + ‖η0−η1(ω)‖E0

]
+ ‖ξn−1(ω)−ηn−1(ω)‖E0

≤
[
λn−1(ω)+λn−2(ω)

] [
‖ξ0− ξ1(ω)‖E0 + ‖η0−η1(ω)‖E0

]
+ ‖ξn−1(ω)−ηn−1(ω)‖E0 + ‖ξn−2(ω)−ηn−2(ω)‖E0 (3.3)

≤
[
λn−1(ω)+λn−2(ω)+ · · ·+1

][
‖ξ0− ξ1(ω)‖E0

+ ‖η0−η1(ω)‖E0

]
+ ‖ξ0−η0‖E0

≤
1

1−λ(ω)
[
‖ξ0− ξ1(ω)‖E0 + ‖η0−η1(ω)‖E0

]
+ ‖ξ0−η0‖E0 .
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In particular if, ξ0 = η0, then Q(ω,ξ0) = Q(ω,η0) which implies that ξ1(c,ω) = η1(c,ω).
Hence, from (3.3)

‖ξn(ω)−ηn(ω)‖E0 ≤
2

1−λ(ω)
‖ξ0− ξ1(ω)‖E0 .

(c) The sequence {ξn(ω)} of measurable functions as constructed in (a) converges to a
random fixed point ξ∗(ω) with PPF dependence. As Rc is topologically closed, ξ∗(ω) ∈ Rc.

Suppose that η∗(ω) , ξ∗(ω), ω ∈ Ω, are two random fixed points of the random operator
Q(ω) in Rc with PPF dependence. Then,

‖ξ∗(ω)−η∗(ω)‖E0 = ‖ξ
∗(c,ω)−η∗(c,ω)‖E

= ‖Q(ω,ξ∗(ω))−Q(ω,η∗(ω))‖E
≤ α(ω)

[
‖ξ∗(c,ω)−Q(ω,ξ∗(ω))‖E0 + ‖η

∗(c,ω)−Q(ω,η∗(ω))‖E0

]
= 0

and, therefore, η∗(ω) = ξ∗(ω) for all ω ∈ Ω. Hence the random operator Q(ω) has a unique
random fixed point with PPF dependence in Rc. This completes the proof.

Theorem 3.5. Let (Ω,A) be a measurable space and let E be a separable Banach space.
If Q : Ω×E0 → E is a continuous random operator satisfying the condition of Reich type
random contraction, then the following statements hold in E :

(a) If Rc is algebraically closed with respect to difference, then for a given ξ0 ∈ E0 and
for a given c ∈ I, every sequence {ξn(ω)} of measurable functions satisfying (3.1) and
(3.2) converges to a PPF dependent random fixed point of the random operator Q(ω),
i.e. there is a measurable function ξ∗ :Ω→ E such that for each ω ∈Ω,

Q(ω,ξ∗(ω)) = Q(ω)ξ∗(ω) = ξ∗(c,ω).

(b) Given ξ0,η0 ∈ E0, let {ξn(ω)} and {ηn(ω)} be the sequences of iterates of measurable
functions corresponding to ξ0 and η0 constructed as in (a). Then,

‖ξn(ω)−ηn(ω)‖E0 ≤
1

1−λ(ω)
[
‖ξ0− ξ1(ω)‖E0 + ‖ξ0− ξ1(ω)‖E0

]
+ ‖ξ0−η0‖E0 ,

where λ(ω) =
α(ω)+γ(ω)

1−β(ω)
< 1 for all ω ∈Ω.

If, in particular, ξ0 = η0, and {ξn(ω)} , {ηn(ω)}, then

‖ξn(ω)−ηn(ω)‖E0 ≤
2

1−λ(ω)
‖ξ0− ξ1(ω)‖E0 .

(c) Finally, if Rc is topologically closed, then for a given ξ0 ∈ E0, every sequence {ξn(ω)}
of iterates of Q(ω) constructed as in (a), converges to a unique PPF dependent ran-
dom fixed point ξ∗(ω) of Q(ω), i.e. there is a unique measurable function ξ∗ :Ω→ E0
such that Q(ω,ξ∗(ω)) = ξ∗(c,ω) for all ω ∈Ω.
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Proof. Let ξ0 ∈ E0 be arbitrary. By hypothesis, Q(ω,ξ0) ∈ E. Suppose that Q(ω,ξ0) =
x1(ω), where the function x1 : Ω→ E is measurable. Choose a measurable function ξ1 :
Ω→ E0 such that x1(ω) = ξ1(c,ω) and that

‖ξ1(c,ω)− ξ0(c)‖E = ‖ξ1(ω)− ξ0‖E0 .

Define a sequence {ξn(ω)} of measurable functions from Ω into E0 inductively so that

Q(ω,ξn(ω)) = ξn+1(c,ω)

and
‖ξn+1(c,ω)− ξn(c,ω)‖E = ‖ξn+1(ω)− ξn(ω)‖E0

for all ω ∈Ω.

We claim that {ξn(ω)} is a Cauchy sequence in E0. Now for any n ∈ N we have the
following estimate for each fixed ω ∈Ω,

‖ξn(ω)− ξn+1(ω)‖E0 = ‖ξn(c,ω)− ξn+1(c,ω)‖E
= ‖Q(ω,ξn−1(ω))−Q(ω,ξn(ω))‖E0

≤ α(ω)‖ξn−1(c,ω)−Q(ω,ξn−1(ω))‖E +β(ω)‖ξn(c,ω)−Q(ω,ξn(ω))‖E
+γ(ω)‖ξn−1(c,ω)−Q(ω,ξn(ω))‖E

≤ α(ω)‖ξn−1(c,ω)− ξn(c,ω)‖E +β(ω)‖ξn(c)(ω)− ξn+1(c,ω)‖E
+γ(ω)‖ξn−1(c,ω)−Q(ω,ξn(ω))‖E

≤ [α(ω)+γ(ω)]‖ξn−1(ω)− ξn(ω)‖E0 +β(ω)‖ξn(ω)− ξn+1(ω)‖E0 .

From the above inequality, it follows that

‖ξn(ω)− ξn+1(ω)‖E0 ≤ λ(ω)‖ξn−1(ω)− ξn(ω)‖E0

for all n = 1,2, . . . , where λ(ω) =
α(ω)+γ(ω)

1−β(ω)
< 1 foe all ω ∈Ω.

By induction,
‖ξn(ω)− ξn+1(ω)|E0 ≤ λ

n(ω)‖ξ0− ξ1(ω)‖E0

for all n = 1,2, . . . . The rest of the proof is similar to that of Theorem 3.4 and we omit the
details.

On taking α(ω) = β(ω) = 0 for all ω ∈ Ω in Theorem 3.5, then we obtain the following
result proved in Dhage [5] as corollary.

Corollary 3.6 (Dhage [5]). Let (Ω,A) be a measurable space and let E be a separable
Banach space. If Q : Ω×E0→ E is a continuous random operator satisfying the condition
(2.4) of random contraction, then the statements (a), (b) and (c) of Theorem 3.4 hold in E.

Remark 3.7. If the Razumikhin class Rc of functions in E0 is not topologically closed, then
the sequence {ξn(ω)} of measurable functions as constructed in (a) of Theorems 3.4 and 3.5
may converge to a random fixed point with PPF dependence of the random operator Q(ω)
outside the set Rc which may not be unique. However, we have a nice flexibility in the
approximations of the PPF dependent random fixed point of the random operator Q(ω).
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4 Functional Random Differential Equations

In this section, we apply the abstract results of the previous section to periodic boundary
value problems (PBVP) of functional random differential equations for proving the exis-
tence of PPF dependent random solutions under a Lipschitz type condition.

Given the closed and bounded intervals I0 = [−r,0] and I = [0,T ] in R , the set of real
numbers, for some real numbers r > 0, T > 0, let C denote the space of continuous real-
valued functions defined on I0. We equip the space Cwith the supremum norm ‖ ·‖C defined
by

‖ξ‖C = sup
θ∈I0

|ξ(θ)|.

It is clear that C is a Banach space with this norm, called the history space of the problem
under consideration.

For each t ∈ I = [0,T ], define a function t→ xt ∈ C by

xt(θ) = x(t+ θ), θ ∈ I0,

where the argument θ represents the delay in the argument of solutions.

Now we are equipped with the necessary details to study the nonlinear problems of
functional random differential equations for existence and uniqueness results.

4.1 PBVP of functional random differential equations

Let (Ω,A) be a measurable space and let E be a given Banach space. By a mapping x :Ω→
C(J,R) we denote a function x(t,ω) which is continuous in the variable t for each ω ∈Ω. In
this case, we also write x(t,ω) = x(ω)(t).

Given the measurable functions φ : Ω→ C and x : Ω→ C(I,R), consider a periodic
boundary value problem of functional random differential equations of delay type (in short
FRDE),

x′(t,ω) = f (t, xt(ω), x(t,ω),ω)

x0(ω) = φ(ω)

x(0,ω) = φ(0,ω) = x(T,ω)

 (4.1)

for all t ∈ I and ω ∈Ω, where f : I×C×R×Ω→ R.

By a random solution x of the FRDE (4.1) we mean a measurable function x : Ω→
C(J,R) that satisfies the equations in (4.1) on J, where C(J,R) is the space of continuous
real-valued functions defined on J = I0∪ I.

The functional random differential equation (4.1) is not new to the theory of nonlinear
functional random differential equations and the existence and uniqueness theorems for
FRDE (4.1) are obtained by using the random version of classical fixed point theorems of
Schauder and Banach respectively. However, the novelty of the present paper lies in the
nice applicability of Theorem 3.6 for proving the existence of random solutions with PPF
dependence for the FRDE (4.1) defined on J.
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Now, consider the PBVP of first order functional random differential equation

x′(t,ω)+h(t)x(t,ω) = fh(t, xt(ω), x(t,ω),ω)

x0(ω) = φ(ω)

x(0,ω) = φ(0,ω) = x(T,ω)

 (4.2)

for all t ∈ I and ω ∈Ω, where h : I→ R+ is a continuous function and fh : I×C×R×Ω→ R
is a function defined by

fh(t, x,y,ω) = f (t, x,y,ω)+h(t)y. (4.3)

Remark 4.1. Notice that x is a random solution of the FRDE (4.1) if and only if it is random
solution of the FRDE (4.2) on J.

We consider the following hypotheses in what follows.

(H1) The function ω 7→ fh(t, x,y,ω) is measurable for each t ∈ I, x ∈ C and y ∈ R and the
function (t, x,y) 7→ f (t, x,y,ω) is jointly continuous for each ω ∈Ω.

(H2) There exists a real number M fh > 0 such that for each ω ∈Ω,

| fh(t, x,y,ω)| ≤ M fh

for all t ∈ I, x ∈ C and y ∈ R.

(H3) There exist real numbers L1 > 0 and L2 > 0 such that for each ω ∈Ω,

| fh(t, x1, x2,ω)− fh(t,y1,y2,ω)| ≤ L1‖x1− y1‖C+L2|x2− y2|

for all t ∈ I, x1,y1 ∈ C and x2,y2 ∈ R.

Using the variation of constant formula for FRDE (4.2), we obtain

Lemma 4.2. If the hypotheses (H1)-(H2) hold, then the FRDE (4.2) is equivalent to the
functional random integral equation (in short FRIE)

x(t,ω) =


∫ T

0
Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.

(4.4)

for all t ∈ I and ω ∈Ω, where G is a Green’s function defined by

Gh(t, s) =


eH(s)−H(t)+H(T )

eH(T )−1
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)

eH(T )−1
, 0 ≤ t < s ≤ T,

(4.5)

where H(t) =
∫ t

0
h(s)ds.
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It is clear that the function Gh is continuous and nonnegative on I× I and so the number
MGh = sup

t,s∈I
Gh(t, s) exists. Our main existence result is the following.

Theorem 4.3. Assume that the hypotheses (H1) through (H3) hold. Furthermore, if (L1 +

L2)MGh T < 1, then the FRDE (4.1) has a a unique PPF dependent random solution ξ∗(ω)
defined on J.

Proof. Set E = C(J,R). Then E is a Banach space with respect to the usual supremum
norm ‖ · ‖E defined by

‖x‖E = sup
t∈J
|x(t)|.

Clearly, E is a separable Banach space. Given a function x ∈ C(J,R), define a mapping
x̂ : I→C by x̂(t) = xt ∈ C so that x̂(t)(0) = xt(0) = x(t), t ∈ J and x̂(0) = x0.

Define a set Ê of functions by

Ê =
{
x̂ = (xt)t∈I : xt ∈ C, x ∈C(I,R) and x0 = φ

}
.

Define a norm ‖x̂‖Ê in Ê by
‖x̂‖Ê = sup

t∈I
‖xt‖C.

Clearly, x̂ ∈ C(I0,R) = C. Next we show that Ê is a Banach space. Consider a Cauchy
sequence {x̂n} = {(xn

t )t∈I} in Ê. Then, {(xn
t )} is a Cauchy sequence in C for each t ∈ I. This

further implies that {xn
t (s)} is a Cauchy sequence in R for each s ∈ [−r,0]. Then {xn

t (s)}
converges to xt(s) for each t ∈ I0. Since {xn

t } is a sequence of uniformly continuous functions
for a fixed t ∈ I, xt(s) is also continuous in s ∈ [−r,0]. Hence the sequence {x̂n} converges to
x̂ ∈ Ê. As a result, Ê is complete. Moreover, Ê is a separable Banach space.

Given a measurable function x̂ : Ω→ Ê, consider the operator Q : Ω× Ê → R defined
by

Q(ω, x̂(ω)) = Q(ω, xt(ω))

=


∫ T

0
Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.

Then the FRIE (4.4) is equivalent to the random operator equation

Q(ω, x̂(ω)) = x̂(0,ω).

Define a sequence {x̂n(ω)} of measurable functions by

(i) Q(ω, x̂n(ω)) = x̂n+1(0,ω),

(ii) ‖x̂n(ω)− x̂n+1(ω)‖E0 = ‖x̂n(0,ω)− x̂n+1(0,ω)‖E

 (4.6)

for n = 1,2, . . . .

We shall show that the operator Q satisfies all the conditions of Theorem 3.4. Firstly, we
show that Q is a random operator on Ω× Ê. Since hypothesis (H1) holds, by Carathéodory
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theorem, the functionω→ f (t, x,y,ω) is measurable for all t ∈ I, x ∈ C and y ∈R. As integral
is the limit of the finite sum of finite-valued measurable functions, the map

ω 7→

∫ T

0
Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds

is measurable. Hence, the operator Q(ω, x̂) is measurable in ω for each x̂ ∈ Ê. As a result,
Q(ω) is a random operator on Ê into E.

Secondly, we show that the random operator Q(ω) is continuous on Ê. Let ω ∈ Ω be
fixed. We show that the continuity of the random operator Q(ω) in the following two cases:

Case I: Let t ∈ [0,T ] and let {x̂n(ω)} be a sequence of points in Ê such that x̂n(ω)→ x̂(ω)
as n→∞. Then, by dominated convergence theorem,

lim
n→∞

Q(ω, x̂n(ω)) = lim
n→∞

∫ T

0
Gh(t, s) fh(s, xn

s(s,ω), xn(s,ω),ω)ds

= lim
n→∞

∫ T

0
Gh(t, s) fh(s, xn

s(ω), xn(s,ω),ω)ds

=

∫ T

0
lim
n→∞

Gh(t, s) fh(s, xn
s(ω), xn(s,ω),ω)ds

=

∫ T

0
Gh(t, s)Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds

= Q(ω, x̂(ω))

for all t ∈ [0,T ] and for each fixed ω ∈Ω.

Case II: Suppose that t ∈ [−r,0]. Then we have:

|Q(ω, x̂n(ω))−Q(ω, x̂(ω))| = |φ(t,ω)−φ(t,ω)| = 0

for each fixed ω ∈Ω. Hence,

lim
n→∞

Q(ω)x̂n(ω) = Q(ω)x̂(ω)

for all t ∈ [−r,0] and ω ∈Ω. Now combining the Case I with Case II, we conclude that Q(ω)
is a pointwise continuous random operator on Ê into itself.

Next we show that the family of functions {Q(ω, x̂n(ω)} is a uniformly continuous set in
E for a fixed ω ∈Ω. We consider the following three cases:

Case I: Let ε > 0 and let t1, t2 ∈ [0,T ] be arbitrary. Then, we have

|Q(ω, xn
t1(ω))−Q(ω, xn

t2(ω))| ≤

∣∣∣∣∣∣
∫ T

0
Gh(t1, s) fh(s, xn

s(ω), xn(s,ω),ω)ds

−

∫ T

0
Gh(t2, s) fh(s, xn

s(ω), xn(s,ω),ω)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ T

0
|Gh(t1, s)−Gh(t2, s)| | fh(s, xn

s(ω), xn(s,ω),ω)|ds

∣∣∣∣∣∣
≤ M fh

∫ T

0
|Gh(t1, s)−Gh(t2, s)|ds.
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Since Gh is continuous on compact I × I, it is uniformly continuous there. Hence for
ε > 0, choose δ1 > 0 such that if |t1− t2| < δ1, then

|Q(ω, xn
t1(ω))−Q(ω, xn

t2(ω))| <
M fhT ε

2(M fhT +1)

uniformly for t1, t2 ∈ I and x̂n ∈ E0.
Case II: Let t1, t2 ∈ [−r,0] be arbitrary. Since t 7→ φ(t,ω) is continuous on a compact

[−r,0], it is uniformly continuous there. Hence for above ε > 0 there exists a δ2 > 0 such
that |t1− t2| < δ2 implies

|Q(ω, xn
t1(ω))−Q(ω, xn

t2(ω))| = |φ(t1,ω)−φ(t2,ω)| ≤
ε

2(M fhT +1)

uniformly for t1, t2 ∈ I and x̂n ∈ E0.

Case III: Let t1 ∈ [−r,0] and t2 ∈ [0,T ] be arbitrary. Choose δ = min{δ1, δ2}. Then,
|t1− t2| < δ implies

|Q(ω, xn
t1(ω))−Q(ω, xn

t2(ω))| ≤ |Q(ω, xn
t1(ω))−Q(ω, xn

0(ω))|+ |Q(ω, xn
0(ω))−Q(ω, xn

t2(ω))|

<
ε

2(M fhT +1)
+
εM fhT

2(M fhT +1)

= ε

uniformly for x̂n ∈ E0.
Thus, in all three cases, |t1− t2| < δ implies

|Q(ω, xn
t1(ω))−Q(ω, xn

t2(ω))| < ε

uniformly for all t1, t2 ∈ J and x̂n ∈ E0. This shows that {Q(ω, x̂n)} is a sequence of uni-
formly continuous functions on J. Hence, it converges uniformly on J. Hence, Q(ω, x̂) is a
continuous random operator on E0 for a fixed ω ∈Ω.

Finally, we show that Q is a strong random contraction on Ê. Let ω ∈Ω be fixed. Then,

‖Q(ω, x̂(ω))−Q(ω, ŷ(ω))‖E = ‖Q
(
ω, xt(ω)

)
−Q
(
ω,yt(ω)

)
‖E

= sup
t∈I

∣∣∣∣∣∣
∫ T

0
Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds

−

∫ T

0
Gh(t, s) fh(s,ys(ω),y(s,ω),ω)ds

∣∣∣∣∣∣
≤

∫ T

0
L1MGh ‖xs(ω)− ys(ω)‖C ds

+

∫ T

0
L2MGh ‖x(ω)− y(ω)‖E ds

≤

∫ T

0
(L1+L2)MGh ‖x̂(ω)− ŷ(ω)‖Ê ds

≤ (L1+L2)MGh T‖x̂(ω)− ŷ(ω)‖Ê
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for all x̂(ω), ŷ(ω) ∈ Ê. Hence, Q is a random contraction on Ê with contraction constant
α = (L1+L2)MGh T < 1.

Thus, the condition (a) of Theorem 3.4 is satisfied. Hence, an application of Theorem
3.4(a) yields that the functional random integral equation (4.1) has a random solution with
PPF dependence defined on J. This further implies that the FRDE (4.1) has a PPF depen-
dent random solution ξ∗ defined on J and the sequence {ξn(ω)} of measurable functions
constructed as in (4.6) converges to ξ∗. Moreover, here the Razumikhin class R0,0 ∈ [−r,T ]
is C([0,T ],R) which is topologically and algebraically closed with respect to difference,
and thus by Theorem 3.4(c), ξ∗ is a unique random solution with PPF dependence for the
the FRDE (4.1) defined on J. This completes the proof.

4.2 PBVP of hybrid random differential equations

Given the functions φ : Ω→C and x : Ω→ C(I,R), consider a boundary value problem of
functional random hybrid differential equations of delay type (in short FRDE),

x′(t,ω) = f (t, xt(ω), x(t,ω),ω)+g(t, x(t,ω),ω)

x0(ω) = φ(ω)

x(0,ω) = φ(0,ω) = x(T,ω)

 (4.7)

for all t ∈ I and ω ∈Ω, where f : I×C×R×Ω→ R and g : I×R×Ω→ R.

By a random solution x of the FRDE (4.7) we mean a measurable function x : Ω→
C(J,R) that satisfies the equations in (4.7) on J.

The functional random differential equation (4.7) is not new to the theory of nonlin-
ear functional differential equations and the details of the classifications of different types
of nonlinear differential equations appear in Dhage [5]. The existence theorems for the
FRDE (4.7) are generally proved by using the hybrid fixed point theorems of Krasnoselskii
and Dhage type. See for example, Krasnoselskii [11], Dhage [5] and the references given
therein. We apply the following PPF dependent random fixed point theorem of Dhage [6]
in what follows.

Theorem 4.4 (Dhage [6]). Let (Ω,A) be a measurable space and let E be a separable
Banach space. Suppose that A :Ω×E0→ E and B :Ω×E→ E are two continuous random
operators satisfying for each ω ∈Ω

(a) A(ω) is strong random contraction, and

(b) B is compact on Ω×E.

If Rc is a topologically and algebraically closed with respect to difference, then for a given
c ∈ I, the random operator equation

A(ω,ξ(ω))+B(ω,ξ(ω,c)) = ξ(ω,c)

has a random solution with PPF dependence, i.e. for a given c ∈ I, there is a measurable
function ξ∗ :Ω→ E0 such that

A(ω,ξ∗(ω))+B(ω,ξ∗(c,ω)) = ξ∗(c,ω)

for all ω ∈Ω.
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In the following we prove an existence of PPF dependent random solutions for the
FRDE (4.7) defined on J under the mixed Lipschitz and compactness type conditions on
the nonlinearities involved in (4.7).

Now, consider the PBVP of first order functional random hybrid differential equation,

x′(t,ω)+h(t)x(t,ω) = fh(t, xt(ω), x(t,ω),ω)+g(t, x(t,ω),ω)

x0(ω) = φ(ω)

x(0,ω) = φ(0,ω) = x(T,ω)

 (4.8)

for all t ∈ I and ω ∈ Ω, where h : I → R+ is a continuous function and the function fh :
I×C×R×Ω→ R is defined by (4.3).

Remark 4.5. Notice that x is a random solution of the FRDE (4.7) if and only if it is a
random solution of the FRDE (4.8) on J.

We consider the following hypothesis in what follows.

(H4) There exist real number L1 > 0 and L2 > 0 such that for each ω ∈Ω,

| fh(t, x1, x2,ω)− fh(t,y1,y2,ω)| ≤ L1‖x1(0)− y1(0)‖C+L2|x2− y2|

for all t ∈ I, x1,y1 ∈ C and x2,y2 ∈ R, for all t ∈ I and x,y ∈ R.

(H5) The function ω 7→ g(t, x,ω) is measurable for each t ∈ I and x ∈ R and the function
(t, x) 7→ g(t, x,ω) is jointly continuous for each ω ∈Ω.

(H6) There exists a real number Mg > 0 such that for each ω ∈Ω,

|g(t, x,ω)| ≤ Mg

for all t ∈ I and x ∈ R.

Note that hypothesis (H4) is stronger than the hypothesis (H3) in the sense that (H4)
implies (H3), however, the converse is not true.

Theorem 4.6. Assume that the hypotheses (H1)-(H2) and (H4)-(H6) hold. Furthermore, if
(L1+L2)MGh T < 1, then the FRDE (4.7) has a PPF dependent random solution defined on
J.

Proof. The FRDE (4.7) is equivalent to the nonlinear functional random integral equa-
tion (in short FRIE)

x(t,ω) =



∫ T

0
Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds

+

∫ T

0
Gh(t, s)g(s, x(s,ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.

(4.9)

where the Green’s function Gh is defined by (4.5).
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Define two separable Banach spaces E and E0 = Ê as in the proof of Theorem 4.3. Given
a measurable function x̂ : Ω→ Ê, consider the operators A : Ω× Ê→ R and B : Ω×R→ R
defined by

A(ω, x̂(ω)) = A(ω, xt(ω))

=


∫ T

0
Gh(t, s) f (s, xs(ω), x(s,ω),ω)ds, if t ∈ I,

φ(t,ω), if t ∈ I0.

and

B(ω, x(t,ω)) =


∫ T

0
Gh(t, s)g(s, x(s,ω),ω)ds, if t ∈ I,

0, if t ∈ I0.

Then the FRIE (4.9) is equivalent to the operator equation

A(ω, x̂(ω))+B(ω, x̂(0,ω)) = x̂(0,ω).

We shall show that the operators A and B satisfy all the conditions of Theorem 4.4. It
can be shown on the similar lines as in the proof of Theorem 4.3 that A(ω) and B(ω) are
continuous random operators on Ê and E respectively. Next, we prove that A(ω) is a strong
contraction random operator on E0. Let ω ∈Ω be fixed. Then,

‖A(ω, x̂(ω))−A(ω, ŷ(ω))‖E = ‖A
(
ω, xt(ω)

)
−A
(
ω,yt(ω)

)
‖E

≤ sup
t∈I

∣∣∣∣∣∣
∫ T

0
Gh(t, s) fh(s, xs(ω), x(s,ω),ω)ds

−

∫ T

0
Gh(t, s) fh(s,ys(ω),y(s,ω),ω)ds

∣∣∣∣∣∣
≤

∫ T

0
MGh L1‖xs(0,ω)− ys(0,ω)‖C ds

+

∫ T

0
MGh L2|x(s,ω)− y(s,ω)|ds

≤

∫ T

0
(L1+L2)MGh‖x̂(0,ω)− ŷ(0,ω)‖E ds

≤ (L1+L2)MGh T ‖x̂(0,ω)− ŷ(0,ω)‖E

for all x̂(ω), ŷ(ω) ∈ Ê. Hence, A is a strong random contraction on Ê with contraction
constant α = (L1+L2)MGh T < 1. Next, we show that B(ω) is a compact random operator on
E. Let {xn(ω)} be a sequence of measurable functions on Ω into E To finish, it is enough to
show that {B(ω, xn(ω))} has a convergent subsequence. Now, using the standard arguments,
it is shown that {B(ω, xn(ω))} is a uniformly bounded and equicntinuous set in E. Therefore,
we apply Arzelá-Ascoli theorem and conclude that B is a compact random operator on
Ω× E into E. Thus, A(ω) and B(ω) satisfy all the conditions of Theorem 4.4. Again, the
Razumikhin class R0,0 ∈ [−r,T ] is C([0,T ],R) which is topologically and algebraically
closed with respect to difference. Hence, by Theorem 4.4, the FRIE (4.9) and consequently
FRDE (4.7) has a random solution with PPF dependence defined on J. This completes the
proof.
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5 Conclusion

Finally, we conclude this paper with the remark that the random fixed point theorems with
PPF dependence proved here are very fundamental in random fixed point theory involving
geometric hypothesis of distance between the images and objects in question. However,
using the principle that has been formulated in Theorems 3.4 and 3.5 several random fixed
point theorems with PPF dependence can be proved in separable Banach space. In a forth-
coming paper, we plan to prove some PPF dependent random fixed point theorems for the
random operators satisfying certain generalized contraction conditions and apply them to
some random differential equations different from those considered in this paper.
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