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1 Introduction

In this paper, we study the existence of mild solutions, defined on the positive semi-infinite
real interval J := [0,+∞), for semilinear integro-differential equations of fractional order

y′(t)−
∫ t

0

(t− s)α−2

Γ(α−1)
Ay(s)ds = f (t,yρ(t,yt)), a.e. t ∈ J (1.1)

y0 = φ ∈ B, (1.2)

where 1 < α < 2 and A : D(A) ⊂ E → E is the generator of an integral resolvent family
defined on a complex Banach space (E, | · |), the convolution integral in the equation is known
as the Riemann-Liouville fractional integral, f : [0,+∞)×B → E and ρ : [0,∞)×B → R
are appropriated functions. For any continuous function y defined on (−∞,+∞) and any
t ≥ 0, we denote by yt the element of B defined by yt(θ) = y(t+ θ) for θ ∈ (−∞,0]. Here yt(·)
represents the history of the state from each time θ ∈ (−∞,0] up to the present time t. We
assume that the histories yt belongs to some abstract phase space B, to be specified later.
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Fractional integro-differential equations arise in modeling processes in applied sciences
(physics, engineering, finance, biology . . . ). Many problems in acoustics, electromagnet-
ics, viscoelasticity, hydrology and other areas of application can be modeled by fractional
differential equations; see the books [20, 22, 26].

The Cauchy problem for abstract differential equations involving Riemann-Liouville
fractional integral in the linear part have been treated by Cuevas and Souza in [12, 13],
where they studied S-asymptotically w-periodic solutions. Wang and Chen [28] consid-
ered a Cauchy problem for fractional integro-differential equations with time delay and
nonlocal initial condition. Uniqueness and existence results of mild solution for fractional
integro-differential equations with state-dependent delay on a semi-infinite interval have
been established by Benchohra and Litimein [10] in Fréchet spaces.

Many properties of solutions for differential equations and inclusions, such as stability
or oscillation, require global properties of solutions. This is the main motivation to look
for sufficient conditions that ensure global existence of mild solutions for problem (1.1)-
(1.2). There are two major approaches in the literature to establish existence of solutions to
any problems on infinite intervals. The first approach is based on a diagonalization process
[1, 2, 3] whereas the second is based on the recent nonlinear alternative of Leray Schauder
type due to Frigon and Granas for contraction maps in Fréchet spaces [5, 6, 7, 8, 14].

In this paper, we study the existence of solutions for fractional integro-differential equa-
tions with state-dependent delay on an infinite interval. Our results are based on Schauder’s
fixed point theorem [15] combined with the diagonalization process.

2 Preliminaries

We introduce notations, definitions and theorems which are used throughout this paper.
Let C([0,n]; E), n ∈ N be the Banach space of all continuous functions from Jn = [0,n]

into E with the usual norm ‖y‖n = sup{|y(t)| : 0 ≤ t ≤ n}.
B(E) be the space of all bounded linear operators N : E→ E, with the usual supremum

norm
‖N‖B(E) = sup { |N(y)| : |y| = 1 }.

A measurable function y : Jn → E is Bochner integrable if and only if |y| is Lebesgue
integrable. (For the Bochner integral properties, see the classical monograph of Yosida
[29]).

Let L1(Jn,E) denotes the Banach space of measurable functions y : Jn → E which are
Bochner integrable normed by

‖y‖L1 =

∫ n

0
|y(t)| dt.

In this paper, we will employ an axiomatic definition of the phase space B introduced
by Hale and Kato in [18] (see also [11]) and follow the terminology used in [21]. Thus,
(B,‖ · ‖B) will be a seminormed linear space of functions mapping (−∞,0] into E, and
satisfying the following axioms :

(A1) If y : (−∞,n)→ E is continuous on Jn and y0 ∈ B, then for every t ∈ Jn the following
conditions hold :
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(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions K(·),M(·) : R+→ R+ independent of y with K contin-
uous and M locally bounded such that :

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on Jn.

(A3) The space B is complete.

Denote Kn = sup{K(t) : t ∈ Jn} and Mn = sup{M(t) : t ∈ Jn}.

Remark 2.1. 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖ · ‖B is a seminorm, two elements φ,ψ ∈ B can verify ‖φ−ψ‖B = 0 without
necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence of in the first remark, we can see that for all φ,ψ ∈ B such that
‖φ−ψ‖B = 0 : We necessarily have that φ(0) = ψ(0).

We now indicate some examples of phase spaces. For other details we refer, for instance
to the book by Hino et al [21].

Example 2.2. Let:

BC the space of bounded continuous functions defined from (−∞,0] to E;

BUC the space of bounded uniformly continuous functions defined from (−∞,0] to E;

C∞ :=
{
φ ∈ BC : lim

θ→−∞
φ(θ) exist in E

}
;

C0 :=
{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)− (A3). However, BC
satisfies (A1), (A3) but (A2) is not satisfied.

Example 2.3. The spaces Cg, UCg, C∞g and C0
g.

Let g be a positive continuous function on (−∞,0]. We define:

Cg :=
{
φ ∈C((−∞,0],E) :

φ(θ)
g(θ)

is bounded on (−∞,0]
}

;

C0
g :=

{
φ ∈Cg : lim

θ→−∞

φ(θ)
g(θ)
= 0

}
, endowed with the uniform norm

‖φ‖ = sup
{
|φ(θ)|
g(θ)

: θ ≤ 0
}
.
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Then we have that the spaces Cg and C0
g satisfy conditions (A3). We consider the following

condition on the function g.

(g1) For all a > 0, sup
0≤t≤a

sup
{

g(t+ θ)
g(θ)

: −∞ < θ ≤ −t
}
<∞.

They satisfy conditions (A1) and (A2) if (g1) holds.

Example 2.4. The space Cγ.
For any real positive constant γ, we define the functional space Cγ by

Cγ :=
{
φ ∈C((−∞,0],E) : lim

θ→−∞
eγθφ(θ) exists in E

}
endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

Definition 2.5. A function f : J ×B → E is said to be an Carathéodory function if it
satisfies:

(i) for each t ∈ J the function f (t, .) : B→ E is continuous;

(ii) for each y ∈ B the function f (.,y) : J→ E is measurable.

The Laplace transformation of a function f ∈ L1
loc([0,∞),E) is defined by

L( f )(λ) :=: â(λ) =
∫ ∞

0
e−λt f (t)dt, Re(λ) > ω,

if the integral is absolutely convergent for Re(λ) > ω. In order to defined the mild solution
of the problems (1.1)− (1.2) we recall the following definition

Definition 2.6. Let A be a closed and linear operator with domain D(A) defined on a Banach
space E. We call A the generator of an integral resolvent if there exists ω > 0 and a strongly
continuous function S : [0,+∞)→ B(E) such that(

1
â(λ)

I−A
)−1

x =
∫ ∞

0
e−λtS (t)xdt, Reλ > ω, x ∈ E.

In this case, S (t) is called the integral resolvent family generated by A.

The following result is a direct consequence of ([23], Proposition 3.1 and Lemma 2.2).

Proposition 2.7. Let {S (t)}t≥0 ⊂ B(E) be an integral resolvent family with generator A.
Then the following conditions are satisfied:

a) S (t) is strongly continuous for t ≥ 0 and S (0) = I;

b) S (t)D(A) ⊂ D(A) and AS (t)x = S (t)Ax for all x ∈ D(A), t ≥ 0;
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c) for every x ∈ D(A) and t ≥ 0,

S (t)x = a(t)x+
∫ t

0
a(t− s)AS (s)xds.

d) Let x ∈ D(A). Then
∫ t

0
a(t− s)S (s)xds ∈ D(A) and

S (t)x = a(t)x+A
∫ t

0
a(t− s)S (s)xds.

In particular, S (0) = a(0).

Remark 2.8. The uniqueness of resolvent is well-know (see Prüss [27]).

If an operator A with domain D(A) is the infinitesimal generator of an integral resolvent
family S (t) and a(t) is a continuous, positive and nondecreasing function which satisfies

lim
t→0+

‖S (t)‖B(E)

a(t)
<∞, then for all x ∈ D(A) we have

Ax = lim
t→0+

S (t)x−a(t)x
(a∗a)(t)

,

see ([24], Theorem 2.1). For example, the case a(t) ≡ 1 corresponds to the generator of a
C0−semigroup (see [9]) and a(t) = t actually corresponds to the generator of a sine family
(see [4]). A characterization of generators of integral resolvent families, analogous to the
Hille-Yosida Theorem for C0-semigroups, can be directly deduced from ([24], Theorem
3.4). More information on the C0−semigroups and sine families can be found in [9, 16, 17,
25].

Definition 2.9. A resolvent family of bounded linear operators, {S (t)}t>0, is called uni-
formly continuous if

lim
t→s
‖S (t)−S (s)‖B(E) = 0.

3 Main results

Now we define the mild solution for the initial value problem (1.1)− (1.2).

Definition 3.1. We say that the function y : (−∞,+∞)→ E is a mild solution of (1.1)− (1.2)
if y(t) = φ(t) for all t ≤ 0 and y satisfies the following integral equation

y(t) = S (t)φ(0)+
∫ t

0
S (t− s) f (s,yρ(s,ys)) ds f or each t ∈ J. (3.1)

Set
R(ρ−) = {ρ(s,ϕ) : (s,ϕ) ∈ J×B,ρ(s,ϕ) ≤ 0}.

We always assume that ρ : J ×B→ R is continuous. Additionally, we introduce following
hypothesis:
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(Hϕ) The function t→ ϕt is continuous from R(ρ−) into B and there exists a continuous
and bounded function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.2. The condition (Hϕ), is frequently verified by continuous and bounded func-
tions. For more details, see for instance [21].

Lemma 3.3. ([19], Lemma 2.4) If y : R→ E is a function such that y0 = φ, then

‖ys‖B ≤ (Mn+Lφ)‖φ‖B+Kn sup{|y(θ)|;θ ∈ [0,max{0, s}]}, s ∈ R(ρ−)∪ Jn,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

Theorem 3.4. Assume that

(H1) The operator solution S (t)t∈J is compact for t > 0.

(H2) The function f : J×B→ E is Carathéodory.

(H3) There exists a function p ∈ L1(J;R+) and a continuous nondecreasing function ψ :
R+→ (0,∞) such that

| f (t,u)| ≤ p(t) ψ(‖u‖B) for a.e. t ∈ J and each u ∈ B,

(H4) For each n ∈ N, there exists rn > 0 such that

rn ≥ M ψ(Knrn+ cn)
∫ n

0
p(s)ds

where
cn := (Mn+Lφ+KnMH)‖φ‖B

(H5) For each t ∈ J and each bounded set B ⊂ B, the set { f (t,yρ(t,yt)),y ∈ B}is relatively
compact in E.

Then the problem (1.1)− (1.2) has a mild solution on (−∞,+∞).

Proof. The proof will be given in two parts. Fix n ∈ N and consider the problem

y′(t)−
∫ t

0

(t− s)α−2

Γ(α−1)
Ay(s)ds = f (t,yρ(t,yt)), a.e. t ∈ Jn := [0,n], (3.2)

y0 = φ ∈ B, (3.3)

Let
Bn =

{
y : (−∞,n]→ E : y|[0,n] continuous and y0 ∈ B

}
,

where y|[0,n] is the restriction of y to the real compact interval [0,n].
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Part I: We begin by showing that the problem (3.2)− (3.3) has a solution yn ∈ Bn. Consider
the operator N : Bn→ Bn defined by :

N(y)(t) =


φ(t), if t ≤ 0;

S (t) φ(0)+
∫ t

0
S (t− s) f (s,yρ(s,ys)) ds, if t ∈ Jn.

(3.4)

Clearly, fixed points of the operator N are mild solutions of the problem (3.2)− (3.3).

For φ ∈ B, we will define the function x(.) : (−∞,+∞)→ E by

x(t) =

 φ(t), if t ≤ 0;

S (t) φ(0), if t ∈ Jn.

Then x0 = φ. For each function z ∈ Bn with z0 = 0, we denote by z the function defined by

z(t) =

 0, if t ≤ 0;

z(t), if t ∈ Jn.

If y(·) satisfies (3.1), we can decompose it as y(t)= z(t)+ x(t), t ≥ 0, which implies yt = zt+ xt,
for every t ∈ Jn and the function z(·) satisfies

z(t) =
∫ t

0
S (t− s) f (s,zρ(s,zs+xs)+ xρ(s,zs+xs)) ds for t ∈ Jn.

Let
B0

n = {z ∈ Bn : z0 = 0 ∈ B} .

For any z ∈ B0
n we have

‖z‖n = ‖z0‖B+ sup{|z(s)| : 0 ≤ s ≤ n} = sup{|z(s)| : 0 ≤ s ≤ n}.

Thus (B0
n,‖ · ‖n) is a Banach space. We define the operator F : B0

n→ B0
n by :

F(z)(t) =
∫ t

0
S (t− s) f (s,zρ(s,zs+xs)+ xρ(s,zs+xs)) ds for t ∈ Jn. (3.5)

Obviously the operator N has a fixed point is equivalent to F has one, so it turns to prove
that F has a fixed point. We shall show that the operators F satisfies the assumptions of
Schauder’s fixed point theorem. The proof will be given in several steps.
Let

Cn = {z ∈ B0
n,‖z‖n ≤ rn},

where rn is the constant from (H4). It is clear that Cn is a closed, convex subset of B0
n.

Step 1: F is continuous.
Let zq be a sequence such that zq −→ z in B0

n. Then for each t ∈ Jn
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|F(zq)(t)−F(z)(t)| =
∣∣∣∣∫ t

0
S (t− s) [ f (s,zqρ(s,zqs+xs)+ xρ(s,zqs+xs))

− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))] ds
∣∣∣∣

≤ M
∫ t

0
| f (s,zqρ(s,zqs+xs)+ xρ(s,zqs+xs))

− f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))| ds.

Since f (s, .) is continuous, we have by the Lebesgue dominated convergence theorem

‖F(zq)−F(z)‖n→ 0 as q→ +∞.

Thus F is continuous.
Step 2: F(Cn) ⊂ Cn.

Let z ∈ Cn, we show that F(z) ∈ Cn. For each t ∈ Jn we have

|Fz(t)| ≤ M
∫ t

0
| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))| ds

≤ M
∫ t

0
p(s) ψ

(
‖zρ(s,zs+xs)+ xρ(s,zs+xs)‖B

)
ds

≤ M
∫ t

0
p(s) ψ

(
Knrn+ (Mn+Lφ+KnM̂H)‖φ‖B

)
ds.

Set

cn := (Mn+Lφ+KnMH)‖φ‖B

Then, we have

‖Fz‖n ≤ M ψ(Knrn+ cn)
∫ n

0
p(s)ds.

By (H4), we have

‖Fz‖n ≤ rn.

Step 3: F(Cn) is an equicontinuous set.

Let τ1, τ2 ∈ Jn with τ2 > τ1, and z ∈ Cn. Then
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|F(z)(τ2)−F(z)(τ1)|

≤

∣∣∣∣∫ τ1

0
[S (τ2− s)−S (τ1− s)] f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds

∣∣∣∣
+
∣∣∣∣∫ τ2

τ1

S (τ2− s)| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds
∣∣∣∣

≤

∫ τ1

0
|S (τ2− s)−S (τ1− s)|| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

+

∫ τ2

τ1

|S (τ2− s)|| f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))|ds

≤ ψ(rnKn+ cn)
∫ τ1

0
|S (τ2− s)−S (τ1− s)|p(s)ds

+M ψ(rnKn+ cn)
∫ τ2

τ1

p(s)ds.

The right-hand of the above inequality tends to zero as τ2−τ1→ 0, since S (t) is uniformly
continuous. As a consequence of Steps 1 to 3, (H5) together with the Arzelá-Ascoli theo-
rem, the operator F is completely continuous.

Therefore, we deduce from Schauder’s fixed point theorem that F has a fixed point
zn ∈ Cn which is a solution of problem (3.2)− (3.3) .

Part II: The diagonalization process

We now use the following diagonalization process. For k ∈ N, let

uk(t) =

 zk(t), t ∈ [0,nk];

zk(nk), t ∈ [nk,∞).
(3.6)

Here {nk}k ∈ N
∗ is a sequence of numbers satisfying

0 < n1 < n2 < ... < nk < . . . ↑ ∞.

Let S = {uk}
∞
k=1.

For k ∈ N and t ∈ [0,n1] we have

unk (t) =
∫ t

0
S (t− s) f (s, (unk )ρ(s,(unk )s+xs)+ xρ(s,(unk )s+xs))ds.

Thus, for k ∈ N and t,h ∈ [0,n1] we have

unk (t)−unk (h) =
∫ t

0
[S (t− s)−S (h− s)] f (s, (unk )ρ(s,(unk )s+xs)+ xρ(s,(unk )s+xs))ds

and by (H3), we have

|unk (t)−unk (h)| ≤ ψ(rn1 Kn1 + cn1)
∫ t

0
|S (t− s)−S (h− s)|p(s)ds.
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The Arzelà-Ascoli Theorem guarantees that there is a subsequence F∗1 of N and a func-
tion v1 ∈ B0

n1
with unk → v1 in B0

n1
as k→∞ through F∗1. Let N1 = N∗1 \ {1}.

Also for k ∈ N and t,h ∈ [0,n2] we have

|unk (t)−unk (x)| ≤ ψ(rn2 Kn2 + cn2)
∫ t

0
|S (t− s)−S (h− s)|p(s)ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence F∗2 of F1 and a
function v2 ∈ B0

n2
with unk→ v2 in B0

n2
as k→∞ through F∗2. Note that v1 = v2 on [0,n1] since

F∗2 ⊆ F1. Let F2 = F∗2 \ {2}. Proceed inductively to obtain for m ∈ {3,4, . . .}a subsequence
F∗m of Fm−1 and a function vm ∈ B0

nm
with unk → vm in B0

nm
as k → ∞ through F∗m. Let

Fm = F∗m \ {m}.
Define a function z as follows. Fix t ∈ (0,∞) and let m ∈ N with s ≤ nm. Then define
z(t) = vm(t). Then z ∈ B∞ and z0 = 0 .
Again fix t ∈ [0,∞) and let m ∈ N with s ≤ nm. Then for n ∈ Fm we have

unk (t) =
∫ t

0
S (t− s) f (s, (unk )ρ(s,(unk )s+xs)+ xρ(s,(unk )s+xs))ds.

Let nk→∞ through Fm to obtain

vm(t) =
∫ t

0
S (t− s) f (s,vmρ(s,vms+xs) + xρ(s,vms+xs))ds.

i.e

z(t) =
∫ t

0
S (t− s) f (s,zρ(s,zs+xs)+ xρ(s,zs+xs))ds.

We can use this method for each h ∈ [0,nm], and for each m ∈ N. Thus the constructed
function y is a mild solution of (1.1)− (1.2). This completes the proof of the theorem.

4 An Example

To apply our abstract results, we consider the fractional differential equation with state-
dependent delay of the form

∂u
∂t

(t, ξ)−
1

Γ(µ−1)
+

∫ 0

t
(t− s)µ−2Luξu(s, ξ)ds

=
e−γt+t|u(t−σ(u(t,0)), ξ)|

3(e−t + et)(1+ |u(t−σ(u(t,0), ξ))|)
, t ∈ [0,∞), ξ ∈ [0,π],

u(t,0) = u(t,π) = 0, t ∈ [0,∞),

u(θ,ξ) = u0(θ,ξ), θ ∈ (−∞,0], ξ ∈ [0,π],

(4.1)

where 1< µ < 2, σ ∈C(R, [0,∞)), γ > 0, Lξ stands for the operator with respect to the spatial
variable ξ which is given by:

Lξ =
∂2

∂ξ2 − r, with r > 0.
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Take E = L2([0,π],R) and the operator A := Lξ : D(A) ⊂ E→ E with domain

D(A) := { u ∈ E : u′′ ∈ E, u(0) = u(π) = 0 }.

Clearly A is densely defined in E and is sectorial. Hence A is a generator of a solution
operator on E. For the phase space, we choose B = Bγ defined by

Bγ = {φ ∈C((−∞,0],R) : lim
θ→−∞

eγθφ(θ) exists}

with the norm
‖φ‖γ = sup

θ∈(−∞,0]
eγθ|y(θ)|.

Notice that the phase space Bγ satisfies axioms (A1), (A2) (see [21] for more details).
Set

y(t)(ξ) = u(t, ξ), t ∈ [0,∞), ξ ∈ [0,π].

φ(θ)(ξ) = u0(θ,ξ), t ∈ [0,∞), θ ≤ 0.

f (t,ϕ)(ξ) =
e−γt+tϕ(0, ξ)

3(e−t + et)(1+ϕ(0, ξ))
, t ∈ [0,∞), ξ ∈ [0,π].

ρ(t,ϕ) = t−σ(ϕ(0,0)).

Theorem 4.1. Let ϕ ∈ Bγ be such that (Hϕ) holds, and let t→ ϕt be continuous on R(ρ−).
Then there exists a mild solution of (4.1).

References

[1] R.P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problem for
differential equations involving Riemann-Liouville fractional derivative on the half
line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18 (2011), 235-244.

[2] R.P. Agarwal and D. O’Regan, Infinite Interval Problems for Difference and Integral
Equations, Kluwer Academic Publisher Dordrecht, 2001.

[3] A. Arara, M. Benchohra, N. Hamidi and J.J. Nieto, Fractional order differential equa-
tions on an unbounded domain. Nonlinear Anal. 72 (2010), 580-586.

[4] W. Arendt, C. Batty, M., Hieber, and F. Neubrander, Vector-Valued Laplace Trans-
forms and Cauchy Problems, Monographs in Mathematics, 96 Birkhauser, Basel,
2001.

[5] S. Baghli and M. Benchohra, Uniqueness results for partial functional differential
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