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Abstract

We present some results of Eberlein-weakly almost periodic functions with values
in a Banach space. Then, we apply these results to investigate the Eberlein-weakly
almost periodic solutions of some differential equations in a Banach space.
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1 Introduction

The existence of periodic solutions or almost periodic solutions or Eberlein weak almost
periodic solutions is very important in the qualitative studies of many problems. Among
numerous results in this direction we mention the following result which is classical in the
theory of ordinary differential equations. Let us consider the following system of differen-
tial equations in finite dimensional space

d
dt

x(t) = Bx(t)+g(t), t ∈ R, (1.1)

where B is a constant n×n-matrix and g : R→ Rn is a continuous and ω-periodic function.
In [13], Massera studied the existence of periodic solutions of Equation (1.1) and he proved
the equivalence between the existence of bounded solutions on R+ and the existence of ω-
periodic solutions. As a generalization of this result, Bohr and Neugebauer, see [8], studied
the existence of almost periodic solutions of Equation (1.1) in the case where the function
g is almost periodic. More precisely, they proved that every bounded solution in the whole
line is almost periodic solution. Here we propose to extend the Bohr-Neugebauer to the
Equation (1.2).
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The introduction of Eberlein weakly almost periodic functions played a role in the the-
ory of topological semigroups, where we only cite the book of Berglund, Junghenn and
Milnes [14], and, more recently, in differential equations. The role of Eberlein weak almost
periodicity in the latter context has been investigated by Ruess and Summers in [16] and
[17]

In this paper, we study the asymptotic behavior of the solutions to some differential
equations of the general form

d
dt

x(t) = f (t,x(t)), t ∈ R, (1.2)

in a Banach space. The emphasis is on the weak almost periodicity in the sense of Eberlein
properties of the solution, in particular on almost periodicity.

Main results specify conditions on the underlying Banach space and the map f , for
which by using a result due to E. Hanebaly [10], and some dissipative type conditions for
the term f leads to a Eberlein-weak almost periodic solution.

The goal of this work is to prove the existence of Eberlein weak almost periodic solu-
tions of Equation (1.2) without the hyperbolicity condition. More precisely, we will show
that the existence of an Eberlein weak almost periodic solution of Equation (1.2) is equiv-
alent to the existence of a bounded solution on R+. Our approach is based on the Dissipa-
tivity property of f .

Our work is organized as follows. In section 2, we state some facts on Eberlein weak
almost periodic functions with values in a Banach space; in section 3, we prove the main
theorem on Eberlein weak almost periodic solution of the equation (1.2) under the essential
property of dissipativity, we also consider the particular case of almost periodic situation.
The last section is devoted to some examples to illustrat the work.

2 Notations and basic properties of Eberlein-weakly almost pe-
riodic functions

2.1 Semi - inner product

Throughout this paper, let (E,‖·‖) be a Banach space. For x ∈ E, ‖x‖ be the norm of x.
Given x,y ∈ E, we let 〈x,y〉+ and 〈x,y〉− denote the upper and lower semi-inner product of
x and y; i.e.,

〈x,y〉+ = ‖y‖ lim
t→0+

1
t
(‖y+ tx‖−‖y‖)

and
〈x,y〉− = ‖y‖ lim

t→0+

1
t
(‖y‖−‖y− tx‖).

Remark 2.1. i) Both limits exist for every norm, and they coincide with the inner product,
if E is a Hilbert space.
ii) In the case when E is a uniformly convex space we have 〈x,y〉+ = 〈x,y〉− .

The following lemma on the functionals 〈·, ·〉+ and 〈·, ·〉− is well know (see, for instance,
[4]).
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Lemma 2.2. Let x,y and z be in E. Then, the functionals 〈·, ·〉+ and 〈·, ·〉− have the following
properties :
(1) 〈x,y〉− =−〈−x,y〉+ ;

(2)
∣∣∣〈x,y〉−

+

∣∣∣≤ ‖x‖‖y‖ ;

(3) 〈x+ z,y〉− ≤ 〈x,y〉−+ 〈z,y〉+ ;
(4) 〈x+ z,y〉+ ≤ 〈x,y〉+ + 〈z,y〉+ ;
(5) Let x(.) be a function from a real interval J into E such that x′(t0) exists for an interior
point t0 of J. Then, D− ‖x(t0)‖ exists and

D− ‖x(t0)‖ = 〈x′(t0),x(t0)〉− ,

where D− ‖x(t0)‖ denotes the left derivative of {t →‖x(t)‖} at t0.

2.2 Eberlein-weakly almost periodic functions

Let (D,τ) be a topological space. The linear space of bounded continuous (respectively
continuous) functions defined on the real line R (respectively on R×D) with values in E,
will be denoted by Cb(R,E) (respectively by C(R×D,E)), and for s ∈ R and f ∈C(R×
D,E), if T (s) f ∈C(R×D,E) denotes the function defined by

(T (s) f )(t,x) = f (t + s,x), for (t,x) ∈ R×D,

the set of all sequential cluster points of {T (s) f : s ∈ R} , will be denoted by HT ( f ), that is,

HT ( f ) :=


g ∈C(R×D,E) such that for some sequence (tn)n∈IN ⊂ R,
((T (tn) f ))n∈IN converges to g pointwise on R×D, that is,
lim
n→∞

(T (tn) f )(t,x) = g(t,x) for any (t,x) ∈ R×D.

 .

The set HT ( f ) is considered as a topological space. Let {xtn(.)}n∈IN is a sequence of
translations of x(.) ∈ Cb(R,E). xtn(.) ⇀ y(.) denotes {xtn(.)}n∈IN converges weakly to y
in Cb(R,E).
The space Cb(R,E) will always be supposed to be endowed with the sup-norm.

Definition 2.3. A function f ∈Cb(R,E) is almost periodic (a.p.), if the set of its translations

O( f ) := { fs : s ∈ R} ⊂Cb(R,E)

is relatively compact in Cb(R,E). The set of all almost periodic functions is denoted by
AP(R,E).

The canonical wakening of the definition leads to the notion of weakly almost periodic
functions, as done by Eberlein [7].

Definition 2.4. A function f ∈ Cb(R,E) is Eberlein-weakly almost periodic (E-w.a.p.), if
the set of its translations

O( f ) := { fs : s ∈ R} ⊂Cb(R,E)

is relatively compact in the weak topology of Cb(R,E). The set of all Eberlein-weak almost
periodic functions is denoted by W (R,E).
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In [5], Deleeuw and Glicksberg proved that the following decomposition holds :

W (R,E) = AP(R,E) ⊕t W0(R,E), (2.1)

where W0(R,E) denotes the subspace of those Eberlein-weakly almost periodic functions,
which contains zero in the weak closure of the orbit, i.e.,

W0(R,E) = { f ∈W (R,E) : for a sequence (sn)n∈IN ⊆ R, fsn ⇀ 0} ,

In order to prove the weak compactness of the translates, we need the following result :

Proposition 2.5. [16] A subset H ⊂Cb(R,E), is relatively weakly compact, if and only if,
(i) H is bounded in Cb(R,E), and
(ii) for all (hm)m∈IN ⊂ H, (tn)n∈IN ⊂ R and (x∗n)n∈IN ⊂ BE∗ the following double limits
condition holds :

lim
n→+∞

lim
m→+∞

〈hm(tn),x∗n〉 = lim
m→+∞

lim
n→+∞

〈hm(tn),x∗n〉 ,

whenever the iterated limits exist.
This criterion will be the main tool in verifying weak almost periodicity in the sense of
Eberlein.

Corollary 2.6. Let X be a Banach space. If f ∈ C(J,X) is uniformly continuous with
relatively compact range in X such that, for some x ∈ X , one has

Λk( f ) ⊆ C0(J,X)+{αx} ,

where αx is the function defined on J with values in X by :

αx(t) = x, ∀t ∈ J.

Then, f is Eberlein weakly almost periodic.

Example 2.7. For any γ in C0(−1,1), let us consider the scalar function ρ(γ) defined on
IR+ by:

ρ(γ)(t) =


γ(t−22n), if t ∈

(
22n−1,22n +1

)
0 elsewhere.

Then, the function ρ(γ) is an Eberlein weakly almost periodic function, which is almost
periodic only when γ ≡ 0.

Proof. In deed : first one let us prove that if γ is not identically equal to zero, ρ(γ) is not
almost periodic.
Assume the contrary ρ(γ) is almost periodic. Then, ∀ε > 0 there exists a real number l =
l(ε) > 0, such that in every interval I of length l, there exists a real number τ for which one
has:

‖ρ(γ)(t + τ)−ρ(γ)(t)‖< ε, for all t ∈ IR+.
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It follows that, there exists a real number l > 0, such that in every interval I of length l,
there exists a real number τ for which one has:

‖ρ(γ)(t + τ)−ρ(γ)(t)‖<

sup
0≤t≤6

‖ρ(γ)(t)‖

2
, for all t ∈ IR+.

For n0 large enough, we can always make the possiblity such that the interval[
22n0 +1,22(n0+1)−1

]
contains an interval [a,b] with length l and

∣∣(22(n0+1)−1)−b
∣∣ > 6, it follows that, it will

be exist τ ∈ [a,b] such that :

‖ρ(γ)(t + τ)−ρ(γ)(t)‖<

sup
0≤t≤6

‖ρ(γ)(t)‖

2
, for every t ∈ IR+. (2.2)

But as we have , ∣∣∣(22(n0+1)−1)− τ

∣∣∣ > 6,

we will have fτ = 0 on [0,6]. So, the relation (2.2) becames

sup
0≤t≤6

‖ρ(γ)(t)‖ ≤ ‖ρ(γ)(t + τ)−ρ(γ)(t)‖ ≤
sup

0≤t≤6
‖ρ(γ)(t)‖

2
,

which is absurd. Then, if γ 6= 0, ρ(γ) is not almost periodic.
Let us prove that ρ(γ) is Eberlein weakly almost periodic.
By the corollary (2.6), since ρ(γ) is bounded and uniformly continuous, it suffices to prove
that there exists x ∈ IR+ such that

Λk(ρ(γ)) ⊆ C0(IR+)+{αx} .

We will prove more than this result, every element g of Λk(ρ(γ)) is with compact support
and is included in some interval of length small than 2.
Let g ∈ Λk(ρ(γ)),
i) If g ≡ 0, the result is clear.
ii) If g 6= 0, then there exists a t0 ∈ IR+, such that g(t0) 6= 0. But, g ∈ Λk(ρ(γ)), then there
exists a sequence (wn)n of elements of IR+ satisfying wn →

n→+∞
+∞ and ρ(γ)wn →

n→+∞
g. It

follows that, the sequence (ρ(γ)(wn + t0))n converges to g(t0) which gives the existence of
an nt0 ∈ IN∗ such that :

‖ρ(γ)(wn + t0)‖>
‖g(t0)‖

2
, ∀n ≥ nt0 .

So, ∀n≥ nt0 , ρ(γ)(wn +t0) 6= 0. Then, there exist δ∈ (0,1) and (kn)n ⊂ IN with kn →
n→+∞

+∞

such that :
wn + t0 ∈

(
22kn −δ,22kn +δ

)
, ∀n ≥ nt0 . (2.3)
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Let α ∈ [2,+∞) and let us prove that ρ(γ)(u := t0 + α) = 0 (i.e. the support of ρ(γ) is
included in some interval of type [a,a+2] with a ∈ IR+).
Assume that ρ(γ)(u) 6= 0. In the same manner, one has the existence of nu ∈ IN∗, η ∈ (0,1)
and (Jn)n ⊂ IN with Jn →

n→+∞
+∞ such that :

wn +u ∈
(
22Jn −η,22Jn +η

)
, ∀n ≥ nu. (2.4)

Consider n ≥ max{nt0 ,nu} verifying 22kn > 2 + α (we can always prove the existence of
a such n because kn →

n→+∞
+∞). From the relations (2.3) and (2.4), we have the following

inequalities :
22kn −δ+α−wn ≤ u ≤ 22kn +δ+α−wn

and
22Jn −η−wn ≤ u ≤ 22Jn +η−wn.

(2.5)

Assume that kn < Jn, from (2.5), one has :

0 ≤ 22kn +δ+α−wn− (22kn −δ+α−wn) = 22kn(1−22(Jn−kn))+α+δ+η

≤ α+(δ+η)−22kn ,

which is impossible since by hypothesis one has 22kn > 2+α. It follows that, one has Jn ≤ kn

from (2.5), we have also :

0 ≤ 22Jn +η−wn− (22kn −δ+α−wn) = 22Jn(1−22(kn−Jn))−α+δ+η

≤ (δ+η)−α,

which contradicts the fact that α ≥ 2. hence we have the dezired result.

2.2.1 Mappings leaving Eberlein-weak almost periodicity invariant

In this subsubsection, we start with the question for which f : R×E → E and given g ∈
W (R,E), the composition t 7→ f (t,g(t)) is Eberlein-weakly almost periodic.

Definition 2.8. A function f ∈C(R×D,E) is said to be Eberlein-weak almost periodic in
t uniformly for x ∈D (D.E-w.a.p), if f (.,x) ∈Cb(R,E) is Eberlein -weakly almost periodic
for each x ∈ D, for every compact subset K ⊂ D, f /R×K is bounded and the mapping
K 3 x 7→ f (·,x) ∈W (R,E) is continuous.

In the sequel, we denote these functions by :

W (R×D,E) := { f ∈C(R×D,E): f is D.E-w.a.p} .

and by WRC(R×D,E), the subset of those functions f ∈W (R×D,E), such that for all
x ∈ D, f (·,x) has a relatively compact range.

Theorem 2.9. [16] Suppose that D = (E,weak), f ∈W (R×D,E) and g ∈W (R,E), then

t 7→ f (t,g(t)) ∈W (R,E).
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Corollary 2.10. For a Banach space Y, let D = (Y,‖·‖) and f ∈ W (R×D,E), then for
every g ∈W (R,E) with a relatively compact range,

t 7→ f (t,g(t)) ∈W (R,E).

Proof. The reader will have no difficulty to apply the previous theorem to

K := g(R)

since (K,weak) = (K,‖·‖) hence one will obtain the result.

In order to discuss our results in the case where f (t,x) is almost periodic in t uniformly
for x ∈ D, we introduce the projection operator on the almost periodic component

Q : W (R,E) → AP(R,E).

By the fact that the almost periodic component can be obtained as the weak limit of a
sequence of translates (2.1), it follows that ‖Q‖ ≤ 1.

Theorem 2.11. [11] Let D = (E,weak), f ∈ W (R×D,E) and g ∈ W (R,E). Then, the
identity

Q f (.,g(.)) = f a(.,ga(.))

holds, where f a(.,x) and ga(.) denote the almost periodic component of f (.,x) and g re-
spectively.

Corollary 2.12. Let D = (E,weak), f ∈W (R×D,E) and y ∈W (R,E) the solution of the
differential equation :

d
dt

y(t) = f (t,y(t)), t ∈ R.

Then, the almost periodic component ya(.) of y(.) satisfies the following differential equa-
tion :

d
dt

ya(t) = f a(t,ya(t)), t ∈ R,

where f a(.,x) denotes the almost periodic component of f (.,x).

3 Differential Equations

In this section, we apply the above results to study the weak almost periodicity in the sense
of Eberlein of solutions for the differential equation (1.2) :

d
dt

x(t) = f (t,x(t)), t ∈ R,

where f ∈C(R×D,E).

Hypothesis :
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(H1) let D = (E,weak), and f ∈ WRC(R×D,E) dissipative, i.e., there exists a constant
c > 0, such that :

〈 f (t,x)− f (t,y),x− y〉− ≤−c‖x− y‖2 , for all (t,x,y) ∈ R×E×E.

(H2) HT ( f ), the set of all sequential cluster points of {T (s) f : s ∈ R} , is simply sequen-
tially compact, i.e.,
for every sequence (tn)n∈IN ⊂ R, there exist a subsequence (tnk)k∈IN and a function g ∈
C(R×D,E) such that (T (tnk) f )k∈IN converges to g pointwise on R×D, that is,

((T (tnk) f )(t,x))k∈IN converges to g(t,x) on E, for any (t,x) ∈ R×D.

Remark 3.1. : Notice that the dissipativity property is essentially weaker than the classical
Lipschitz condition:

‖ f (x)− f (y)‖ ≤ k‖x− y‖ ,

but it only guarantees existence of solutions to the right.

Theorem 3.2. Assume that E is reflexive. Under the hypothesis (H1) and (H2), equation
(1.2) has one and only one solution x(·) ∈Cb(R,E) which is Eberlein-weakly almost peri-
odic.

For the proof of theorem (3.2), we shall need the following technical lemmas.

Lemma 3.3. Assume that E is reflexive, and let f ∈W (R×D,E) be dissipative. For every
g ∈ HT ( f ), g is dissipative, and for every bounded subset B of E, g/R×B ∈Cb(R×B,E).

Proof. Since g∈HT ( f ), then there exist a sequence (tn)n∈IN ⊂R such that for every (t,x)∈
R×E

((T (tn) f )(t,x))n∈IN converges in E to g(t,x).

Thus, for (t,x,y) ∈ R×E×E, there exists n0 = n0(t,x,y) ∈ IN such that

‖(T (tn0) f )(t,x)−g(t,x)‖E ≤ ε,

and
‖(T (tn0) f )(t,y)−g(t,y)‖E ≤ ε.

(3.1)

By lemma (2.2), we obtain,

〈g(t,x)−g(t,y),x− y〉− ≤ 〈g(t,x)− (T (tn0) f )(t,x),x− y〉+
+〈(T (tn0) f )(t,x)− (T (tn0) f )(t,y),x− y〉−
+〈(T (tn0) f )(t,y)−g(t,y),x− y〉+ .

Thus, by the above estimate (3.1), we have

〈g(t,x)−g(t,y),x− y〉− ≤ 2ε+ 〈(T (tn0) f )(t,x)− (T (tn0) f )(t,y),x− y〉− .

Since f is dissipative, we conclude that g is dissipative.
Let B be a bounded subset of E. Since E is reflexive, then Bω is compact in D (where ω
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denotes the weak topology), and since f ∈W (R×D,E), we have that f /R×Bω is bounded.
By the fact that for all (t,x) ∈ R×B,

‖g(t,x)‖ ≤ ‖g(t,x)− (T (tn0) f )(t,x)‖+‖(T (tn0) f )(t,x)‖ .

From (3.1), we derive that :
for every ε > 0,

‖g(t,x)‖ ≤ ε+ sup
t∈R,x∈Bω

‖ f (t,x)‖ ,

thus
‖g(t,x)‖ ≤ sup

t∈R, x∈Bω

‖ f (t,x)‖ , for all (t,x) ∈ R×B.

The lemma is proved.

Lemma 3.4. Assume that E is reflexive, and let f ∈W (R×D,E) such that HT ( f ) is simply
sequentially compact. Then, for every compact subset K ⊂ D and sequence (tn)n∈IN ⊂ R,
there exist a subsequence (tK

nk
)k∈IN ⊂ (tn)n∈IN and a function g ∈ C(R×D,E) such that

((T (tK
nk

) f )(·,x))k∈IN converges weakly in Cb(R,E) to g(·,x) uniformly for x on K.

Proof. Let (tn)n∈IN ⊂ R. Since HT ( f ) is simply sequentially compact, then there exist a
subsequence (tnk)k∈IN and a function g ∈C(R×D,E) such that : for every (t,x) ∈ R×E,

((T (tnk) f )(t,x))k∈IN converges in E to g(t,x).

Let us prove that for every compact subset K ⊂ D, there exist a subsequence (tK
nk j

) j∈IN ⊂
(tnk)k∈IN such that

((T (tK
nk j

) f )(·,x)) j∈IN ⇀ g(·,x), uniformly for x on K.

Let K be a compact subset of D. First, we show that

∆K := {(T (t) f )(·,x) : t ∈ R and x ∈ K}

is a subset of a closed and separable subspace YK of Cb(R,E). Given any ε > 0, since for a
compact subset of D

K 3 x 7→ f (·,x) ∈W (R,E)

is continuous, we find an n(ε) and (zi)
i=n(ε)
i=1 ⊂ K, such that

K ⊂
i=n(ε)
∪

i=1
{x : ‖ f (·,x)→ f (·,zi)‖< ε} .

Since HK := { f (·,x) : x ∈ K} is compact,

T : R×K → Cb(R,E)
(t,x) 7→ (T (t) f )(.,x)

is continuous, and

∆K := {(T (t) f )(·,x) : t ∈ R and x ∈ K} ⊂
i=n(ε)
∪

i=1
T ([−n,n])HK ,
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where (T (t))t∈R denotes the group of translations.
Note that continuous images of separable spaces are separable, we obtain that ∆ is a subset
of the closed and separable subspace

YK := span
{

i=n(ε)
∪

i=1
T ([−n,n])HK

}
of Cb(R,E).
By the fact that

∆K ⊂
i=n(ε)
∪

i=1
O( f (·,xi))+ εBCb(R,E)

we obtain the relative weak compactness of ∆K .
As from Dunford- Schwartz [6], we recall, that the weak topology on weak compact subsets
in separable Banach spaces is a metric topology. Hence the weak topology on ∆

ω

K is metric.
Thus, we may pass to subsequence (tK

nk j
) j∈IN ⊂R, such that the limit of (T (tK

nk j
) f )(·,x)) j∈IN

exist in the weak topology of Cb(R,E), for all x ∈ K.
Using that for all (t,x) ∈ R×E,

lim
j→+∞

∥∥∥(T (tK
nk j

) f )(t,x)−g(t,x)
∥∥∥

E
= 0,

a standard trick of topology gives

ω− lim
j→+∞

(T (tK
nk j

) f )(·,x) = g(·,x)

uniformly for x ∈ K.

Lemma 3.5. Assume that E is reflexive, let x0(·) ∈Cb(R,E) and f ∈W (R×D,E). Then,
for every sequence (tn)n∈IN ⊂R, there exist a subsequence (tnk)k∈IN ⊂R and a function g∈
C(R×D,E) such that ((T (tnk) f )(·,x0(·))k∈IN converges weakly in Cb(R,E) to g(·,x0(·)).

Proof. Let K0 := ∪
t∈R

{x0(t) : t ∈ R}ω
. Since x0(.) is bounded and E is reflexive, K0 is a

weak compact subset of the closed separable subspace Y := span{x0(R)} of E. Hence the
weak topology on K0 is metric. Let d0(., .) denotes the metric on K0. By Lemma (3.4),
for (tn)n∈IN ⊂ R, there exist a subsequence (tK0

nk
)k∈IN ⊂ R and g ∈ C(R×D,E) such that

((T (tK0
nk

) f )(·,x))k∈IN converges weakly in Cb(R,E) to g(·,x) uniformly on x ∈ K0.
Claim: ((T (tK0

nk
) f )(·,x0(·))k∈IN converges weakly to g(·,x0(·)) in Cb(R,E). Since, for all

(t,x) ∈ R×E
((T (tK0

nk
) f )(t,x))k∈IN converges in E to g(t,x),

it will suffice to show that
{
(T (tK0

nk
) f )(.,x0(.)) : k ∈ IN

}
is weakly relatively compact in

Cb(R,E). Thus, for given sequences (tK0
nk j

) j∈IN ⊂ (tK0
nk

)k∈IN and (sm,x∗m)m∈IN ⊂ R×BE∗ , we
have to verify the following identity:

lim
j→+∞

lim
m→+∞

〈
(T (tK0

nk j
) f )(sm,x0(sm)),x∗m

〉
= lim

m→+∞
lim

j→+∞

〈
(T (tK0

nk j
) f )(sm,x0(sm)),x∗m

〉
,
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whenever the iterated limits exist. By the weak compactly of K0, without loss of generality
x0(sm) ⇀ x0 ∈ K0.
We define,

z j,m =
〈
(T (tK0

nk j
) f )(sm,x0(sm)),x∗m

〉
z = lim

j→+∞
lim

m→+∞
z j,m

y j,m =
〈
(T (tK0

nk j
) f )(sm,x0),x∗m

〉
.

By our hypothesis, we have {t 7→ f (t,x0)} is E-w.a.p., thus
{

y j,m
}

j,m∈IN satisfies the double
limit conditions, let y ∈ R be the double limit,
CLAIM : y = z.
Now,

|y− z| ≤
∣∣y− y j,m

∣∣+ ∣∣y j,m− z j,m
∣∣+ ∣∣z j,m− z

∣∣ .
From the convergence of

{
y j,m

}
j,m∈IN and

{
z j,m

}
j,m∈IN , we derive that for every ε > 0,

there exists an n0 ∈ IN, such that for m ≥ n0, there exists an mn ∈ IN, such that∣∣y− y j,m
∣∣ <

ε

3
, for all m ≥ mn, and∣∣z j,m− z

∣∣ <
ε

3
, for all m ≥ mn.

Using that x0(sm) ⇀ x0 ∈ K0, for a given δ > 0, there exists m1 ∈ IN, such that

d0(x0(sm),x0) < δ, for all m ≥ m1. (3.2)

Applying the continuity of the map

K0 3 x → f (.,x) ∈W (R,E)

on x0, for ε > 0, we find a δ > 0, and according to the previous estimate (3.2), there is an
m1 = m(ε) ∈ IN, such that

‖ f (.,x0(sm))− f (.,x0)‖< ε, for all m ≥ m1.

This yields, that
|y− z| ≤ ε,

and hence y = z. By using the same arguments, we find that

lim
m→+∞

lim
j→+∞

〈
(T (tK0

nk j
) f )(sm,x0(sm)),x∗m

〉
= y,

the lemma is proved.

Proof. Proof of theorem (2.9) :
The existence and uniqueness of a solution x(.) in Cb(R,E) follows immediately from (H1)
(see [10, theorem 2, pp.140]).
Let us prove that x(.) is E-w.a.p..
To this end, we choose sequences (wn)n∈IN ⊂ R and (tm,x∗m)m∈IN ⊂ R×BE∗ so that the
limits

α = lim
n→+∞

lim
m→+∞

〈x(wn + tm),x∗m〉 and β = lim
m→+∞

lim
n→+∞

〈x(wn + tm),x∗m〉
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both exist. According to proposition (2.5), it will suffice to show that α = β.
Since HT ( f ) is simply sequentially compact, there exist a subsequence (wnk)k∈IN ⊂ R and
g ∈ HT ( f ), such that for all (t,x) ∈ R×E,

((T (wnk) f )(t,x))k∈IN converges in E to g(t,x).

From lemma (3.3), g satisfies the conditions of theorem 2 pp.140 [10], then equation

d
dt

x(t) = g(t,x(t)), t ∈ R,

has a unique solution x0(.) in Cb(R,E). By Lemma (2.2), without loss of generality, we can
assume that

((T (tnk) f )(·,x0(·))k∈IN converges weakly in Cb(R,E) to g(·,x0(·)). (3.3)

Consider the sequence (φk)k∈IN ⊂C(R) defined by

φk(t) := ‖x(t +wnk)− x0(t)‖2 , for all t ∈ R.

For all k ∈ IN, we have

1
2

D−φk(t) = 〈x′(wnk + t)− x′0(t),x(wnk + t)− x0(t)〉−
= 〈(T (wnk) f )(t,x(wnk + t))−g(t,x0(t)),x(wnk + t)− x0(t)〉−
= 〈(T (wnk) f )(t,x(wnk + t))− (T (wnk) f )(t,x0(t))
+(T (wnk) f )(t,x0(t))−g(t,x0(t)),x(wnk + t)− x0(t)〉− .

Making use of the upper and lower semi-inner product properties (see Lemma (2.2)), and
taking into account the dissipativity of f , we have

1
2

D−φk(t) ≤ −cφk(t)+bk(t)
√

φk(t), for all t ∈ R,

where
bk(t) := ‖(T (wnk) f )(·,x0(.))(t)−g(·,x0(·))(t)‖E , for all t ∈ R.

Hence by R. H. Martin result [12], for all t0 ∈ R, we have

‖x(t +wnk)− x0(t)‖E ≤ e−c(t−t0) ‖x(t0 +wnk)− x0(t0)‖E
+

R t
t0 e−c(t−s)bk(s)ds, for all t ≥ t0.

Since x(·) and x0(·) are bounded, by tending t0 to −∞, we obtain, for all k ∈ IN,

‖x(t +wnk)− x0(t)‖E ≤
R t
−∞

e−c(t−s)bk(s)ds, for all t ∈ R. (3.4)

As for all k, j and m ∈ IN,∣∣〈x(wnk + tm),x∗m〉−
〈
x(wn j + tm),x∗m

〉∣∣ ≤ ‖x(tm +wnk)− x0(tm)‖E
+

∥∥x(tm +wn j)− x0(tm)
∥∥

E ,
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from the above estimate (3.4), we obtain∣∣〈x(wnk + tm),x∗m〉−
〈
x(wn j + tm),x∗m

〉∣∣ ≤
R tm
−∞

e−c(tm−s)bk(s)ds
+

R tm
−∞

e−c(tm−s)b j(s)ds.

Thus, ∣∣〈x(wnk + tm),x∗m〉−
〈
x(wn j + tm),x∗m

〉∣∣ ≤ Ak,m +A j,m. (3.5)

The uniform boundedness of the sequence of linear functionals,

Ψm : Cb(R) → R
h 7→

R tm
−∞

e−c(tm−s)h(s)ds,

if we prove that
‖(T (wnk) f )(·,x0(·))−g(·,x0(·))‖⇀ 0 in Cb(R).

by going over to appropriate subsequences, we can assume that the iterated double limits
for (Ak,m)k,m∈IN exist. Since they have to coincide, they have to be zero. Starting with lim

k→+∞

,

then lim
m→+∞

, and at last lim
j→+∞

in (3.5), we obtain

|α−β| ≤ 0

which concludes the proof.
Thus, let us show that

‖(T (wnk) f )(·,x0(·))−g(·,x0(·))‖⇀ 0 in Cb(R).

First we show that the set {‖(T (wnk) f )(·,x0(·))−g(·,x0(·))‖}k∈IN is weakly relatively com-
pact in Cb(R). Thus, for given a subsequence (wnk j

) j∈IN ⊂ (wnk)k∈IN and (sm)m∈IN ⊂R, we
have to verify the following identity:

lim
j→+∞

lim
m→+∞

∥∥∥(T (wnk j
) f )(sm,x0(sm))−g(sm,x0(sm))

∥∥∥
= lim

m→+∞
lim

j→+∞

∥∥∥(T (wnk j
) f )(sm,x0(sm))−g(sm,x0(sm))

∥∥∥ ,

whenever the iterated limits exist. By the weak compactly of K0, without loss of generality
x0(sm) ⇀ x0 ∈ K0.
From the continuity of

K0 3 x → f (.,x) ∈W (R,E), and

K0 3 x → g(.,x) ∈Cb(R,E)

on x0, we obtain for ε > 0, an m0 = m(ε) ∈ IN, such that

‖ f (.,x0(sm))− f (.,x0)‖ < ε, for all m ≥ m0, and
‖g(.,x0(sm))−g(.,x0)‖ < ε, for all m ≥ m0.

(3.6)
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Since g ∈ HT ( f ),

lim
j→+∞

∥∥∥(T (wnk j
) f )(sm,x0(sm))−g(sm,x0(sm))

∥∥∥ = 0, for all m ∈ IN.

Thus, let us prove that

lim
j→+∞

lim
m→+∞

∥∥∥(T (wnk j
) f )(sm,x0(sm))−g(sm,x0(sm))

∥∥∥
E

= 0.

Since for all j,k ∈ IN,∥∥∥(T (wnk j
) f )(sm,x0(sm))−g(sm,x0(sm))

∥∥∥
E

≤
∥∥∥(T (wnk j

) f )(sm,x0(sm))− (T (wnk j
) f )(sm,x0)

∥∥∥
E

+
∥∥∥(T (wnk j

) f )(sm,x0)−g(sm,x0(sm))
∥∥∥

E
+‖g(sm,x0(sm))−g(sm,x0)‖E ,

by (3.6), we obtain that for all m ≥ m0,∥∥∥(T (wnk j
) f )(sm,x0(sm))−g(sm,x0(sm))

∥∥∥
E
≤ 2ε+

∥∥∥(T (wnk j
) f )(sm,x0)−g(sm,x0(sm))

∥∥∥
E
.

As by hypothesis, {t 7→ f (t,x0)} has a weakly relatively compact range, a diagonaliza-
tion argument gives us a subsequences, such that the iterated limits exist for the sequence
((T (wnk jq

) f )(sml ,x0))q,l∈IN . By the fact that we only have to verify the equality of the it-
erated limits we may pass to these subsequences. In order to avoid subindices, we assume
that the iterated limits exist for ((T (wnk j

) f )(sm,x0))m, j∈IN . The characterization of weak
compactness gives

lim
j→+∞

lim
m→+∞

(T (wnk j
) f )(sm,x0)−g(sm,x0(sm))= lim

m→+∞
lim

j→+∞
(T (wnk j

) f )(sm,x0)−g(sm,x0(sm)).

Since the convergence holds in norm, by the estimate (3.3), we derive that

{‖(T (wnk) f )(·,x0(·))−g(·,x0(·))‖}k∈IN

is weakly relatively compact in Cb(R). Using that

lim
k→+∞

‖(T (wnk) f )(t,x0(t))−g(t,x0(t))‖= 0, for all t ∈ R,

a standard trick of topology gives

‖(T (wnk) f )(·,x0(·))−g(·,x0(·))‖⇀ 0 in Cb(R),

which concludes the proof.

3.1 Almost periodic solutions

In this section, we shall discuss an existence theorem for an almost periodic solution of
equation (1.2).
A function f ∈ C(R×D,E) is said to be almost periodic if f (t,x) is almost periodic in t
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uniformly with respect to x in bounded set of D.
In the sequel, we denote these functions by :

AP(R×D,E) := { f ∈C(R×D,E): f is almost periodic} .

Let f ∈ AP(R×D,E). Bochner’s theorem implies that HT ( f ) is a minimal set. Also,
(i) for any sequence (tn)n∈IN ⊂ R, there exist a subsequence (tnk)k∈IN ⊂ R and a function
g ∈C(R×D,E) such that (T (tnk) f )(t,x) → g(t,x) as n → ∞, uniformly in s ∈ R and x in
bounded set of D; and
(ii) for any compact subset K ⊂D such that ωK is metric (ωK designs the weak topology on
K), then f (t,x) is uniformly continuous on R×K.
For a detailed account of other results on this direction we refer to [3].
Remark : By the fact that for any compact subset K ⊂ D such that ωK is metric, f (t,x) is
uniformly continuous on R×K, it’s easy to derive that the map

K 3 x 7→ f (.,x) ∈ AP(R,E)

is continuous.

3.1.1 Main result

Hypothesis :
(H ′

1) f ∈ AP(R×D,E);
(H ′

2) f is dissipative.

Theorem 3.6. Assume that E is reflexive. Under the hypothesis (H ′
1) and (H ′

2), equation
(1.2) has one and only one solution x(·) ∈Cb(R,E) which is almost periodic.

Proof. The reader will have no difficulty to apply theorem (3.2) to f under hypothesis (H ′
1)

and (H ′
2), since for any f ∈ AP(R×D,E), f satisfies all properties of a D.E-w.a.p. function

and HT ( f ) is simply sequentially compact, hence one will obtain that equation (1.2) has a
unique bounded solution x(.) ∈W (R,E).
By corollary (2.12), the almost periodic component xa(.) of x(.) satisfies the following
differential equation

d
dt

z(t) = f a(t,z(t)), t ∈ R, (3.7)

where f a(.,x) denotes the almost periodic component of f (.,x).
As for all x ∈ D, f a(.,x) = f (.,x). From the above differential equation (3.7), we deduce
that xa(.) satisfies equation (1.2). By the uniqueness of bounded solution, we obtain

x(.) = xa(.),

hence x(.) is almost periodic. Which conclude the proof.
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4 Examples

I)
dx
dt

= Ax+ f (t) (4.1)

where f : R → H, where H is a Hilbert space, t → f (t) is continuous, bounded, Eberlein
weakly almost periodic, and A : H → H, defined by Ax =−x

A verifies (Ax,x) = −‖x‖2 , so A is dissipative; using the theorem (3.2) we have that
equation (4.1) has only and only one bounded solution which is Eberlein weakly almost
periodic.

II) We consider the following equation:
∂2u
∂t2 = −∆u+ f (t,x) t ≥ 0, x ∈ Rn

u(0,x) = u1(x)
∂u
∂t

(0,x) = u2(x)
(4.2)

Where

u1 ∈ H1(Rn) =
{

v ∈ L2(Rn)/
∂v
∂xi

∈ L2(Rn)
}

where
∂v
∂xi

is a distribution derivative u2 ∈ L2(Rn)

f :R×Rn →R satisfying that f is Eberlein weakly almost periodic in t uniformly with
respect to x , f (t, .) ∈ L2(Rn) ,

F : R → L2(Rn)
t → f (t, .)

is Eberlein weakly almost periodic.
So the problem (4.2) is equivalent to the following{

∂

∂t

[
u1
u2

]
=

[
0 I
−∆ 0

][
u1
u2

]
+

(
0
F

)
(4.3)

with the variables change u2 =
∂u1

∂t
Henceforth the phase space is X = H1(Rn)×L2(Rn)

Proposition 4.1. [15] The operator

A =
[

0 I
−∆ 0

]
is the infinitesimal generator of a C0 semi group S(t) on the space H1(Rn)×L2(Rn) satis-
fying the following inequality

‖S(t)‖ ≤ 4exp(−2t) , t ≥ 0
D(A) = H2(Rn) × L2(Rn).
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So if we put V =
[

u1
u2

]
, then, the problem (4.3) becomes

{ d
dt

V = AV +F(t), t ≥ 0

V (0) = V0

(4.4)

Proposition 4.2. If F is a continuously differentiable function such that

sup
t∈R

∥∥∥∥dF(t)
dt

∥∥∥∥ < ∞.

Then equation (4.4) has one and only one bounded solution W which is Eberlein weakly
almost periodic solution.

Remark 4.3. In this case, the function that defined by v(t,x) =W (t)(x) satisfies the problem
(4.2) and is Eberlein weakly almost periodic in L2(Rn) norm.
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