AFFINE OSSERMAN CONNECTIONS ON 2-DIMENSIONAL MANIFOLDS *

ABDOUL SALAM DIALLO[†]

Université d'Abomey-Calavi, Institut de Mathématiques et de Sciences Physiques, 01 BP 613, Porto-Novo, Bénin

Abstract

This paper deals with affine Osserman connections on 2-dimensional manifolds. We give in an explicit form, a sufficient condition for an affine connection to be Osserman. As applications, examples of affine Osserman connections are given.

AMS Subject Classification: 53B05, 53B20.

Keywords: affine connection; Osserman condition.

1 Introduction

Let (M, g) be a Riemannian manifold. Let \mathcal{R} be the curvature operator. The *Jacobi operator* $J_{\mathcal{R}}(X) : Y \to \mathcal{R}(Y, X)X$ is a self-adjoint operator and it plays an important role in the curvature theory. A Riemannian manifold is said to be an *Osserman space* if the eigenvalues of the Jacobi operators are constant on the unit sphere bundle S(M,g). The investigation of Osserman manifolds has been an extremely active and fruitful one in recent years; we refer to [2, 4] for further details.

The purpose of this paper is to study the generalization of these notions to the affine geometry. Let ∇ be a torsion free connection on TM. The pair (M, ∇) is said to be an *affine manifold*. Let \mathcal{R}^{∇} be the curvature operator and $J_{\mathcal{R}^{\nabla}}(\cdot)$ be the *affine Jacobi operator*; we will write \mathcal{R}^{∇} and $J_{\mathcal{R}^{\nabla}}$ when it is necessary to distinguish the role of the connection. One says that (M, ∇) is *affine Osserman* at $p \in M$ if $J_{\mathcal{R}^{\nabla}}$ has the same characteristic polynomial for every $X \in T_pM$. Also (M, ∇) is called *affine Osserman* if (M, ∇) is affine Osserman at each $p \in M$. It is well-known that for any affine Osserman manifolds $Spect \{J_{\mathcal{R}^{\nabla}}(X)\} = \{0\}$.

The concept of affine Osserman connection originated from the effort to build up examples of pseudo-Riemannian Osserman manifolds via the construction called the *Riemann extension*. This construction assigns to every *m*-dimensional manifold *M* with a torsion-free affine connection ∇ a pseudo-Riemannian metric g_{∇} of signature (m,m) on the cotangent bundle T^*M . (See [6], for more details.)

^{*}Supported by the ICTP's Office of External Activities Through the ICAC-3 Program.

[†]E-mail address: asalam@imsp-uac.org

In this note, we give in an explicit form, a sufficient condition for an affine connection on 2-dimensional manifolds to be Osserman. We shall prove the following result:

Theorem 1.1. Let \mathbb{R}^2 and let ∇ be the torsion free connection given by

$$\nabla_{\partial_{1}}\partial_{1} = f_{11}^{1}(u_{1}, u_{2})\partial_{1} + f_{11}^{2}(u_{1}, u_{2})\partial_{2};$$

$$\nabla_{\partial_{1}}\partial_{2} = f_{12}^{1}(u_{1}, u_{2})\partial_{1} + f_{12}^{2}(u_{1}, u_{2})\partial_{2};$$

$$\nabla_{\partial_{2}}\partial_{2} = f_{22}^{1}(u_{1}, u_{2})\partial_{1} + f_{22}^{2}(u_{1}, u_{2})\partial_{2}.$$
(1.1)

Then ∇ is affine Osserman if and only if the functions $f_{11}^1, f_{11}^2, f_{12}^1, f_{12}^2, f_{22}^1, f_{22}^2$ satisfy the following PDE's

$$\begin{cases} \partial_2 f_{11}^2 - \partial_1 f_{12}^2 + f_{12}^2 (f_{11}^1 - f_{12}^2) + f_{11}^2 (f_{22}^2 - f_{12}^1) &= 0; \\ \partial_1 f_{22}^1 - \partial_2 f_{12}^1 + f_{22}^1 (f_{11}^1 - f_{12}^2) + f_{12}^1 (f_{22}^2 - f_{12}^1) &= 0; \\ \partial_1 f_{12}^1 - \partial_2 f_{11}^1 - \partial_1 f_{22}^2 + \partial_2 f_{12}^2 + 2 (f_{12}^1 f_{12}^2 - f_{11}^2 f_{22}^1) &= 0. \end{cases}$$
(1.2)

2 Preliminaries

Let *M* a two-dimensional manifold and ∇ a smooth torsion-free connection. We choose a fixed coordinates domain $\mathcal{U}(u_1, u_2) \subset M$. In \mathcal{U} , the connection is given by

$$\nabla_{\partial_1}\partial_1 = f_{11}^1(u_1, u_2)\partial_1 + f_{11}^2(u_1, u_2)\partial_2;$$

$$\nabla_{\partial_1}\partial_2 = f_{12}^1(u_1, u_2)\partial_1 + f_{12}^2(u_1, u_2)\partial_2;$$

$$\nabla_{\partial_2}\partial_2 = f_{22}^1(u_1, u_2)\partial_1 + f_{22}^2(u_1, u_2)\partial_2;$$

where we denote $\partial_i = (\partial/\partial u_i)$ (i = 1, 2). We will denote the functions $f_{11}^1(u_1, u_2)$, $f_{11}^2(u_1, u_2)$, $f_{12}^1(u_1, u_2)$, $f_{22}^1(u_1, u_2)$, $f_{22}^2(u_1, u_2)$ by $f_{11}^1, f_{11}^2, f_{12}^1, f_{12}^2, f_{22}^1, f_{22}^2$ respectively, if there is no risk of confusion.

Lemma 2.1. The components of the curvature operator are given by

$$\mathcal{R}^{\nabla}(\partial_1,\partial_2)\partial_1 = a\partial_1 + b\partial_2, \ \mathcal{R}^{\nabla}(\partial_1,\partial_2)\partial_2 = c\partial_1 + d\partial_2.$$

where

$$\begin{array}{rcl} a & = & \partial_1 f_{12}^1 - \partial_2 f_{11}^1 + f_{12}^1 f_{12}^2 - f_{11}^2 f_{22}^1, \\ b & = & \partial_1 f_{12}^2 - \partial_2 f_{11}^2 + f_{11}^2 f_{12}^1 + f_{12}^2 f_{12}^2 - f_{11}^1 f_{12}^2 - f_{11}^2 f_{22}^2, \\ c & = & \partial_1 f_{22}^1 - \partial_2 f_{12}^1 + f_{11}^1 f_{12}^1 + f_{12}^1 f_{22}^2 - f_{12}^1 f_{12}^1 - f_{12}^2 f_{12}^1, \\ d & = & \partial_1 f_{22}^2 - \partial_2 f_{12}^2 + f_{11}^2 f_{22}^1 - f_{12}^1 f_{12}^2. \end{array}$$

We say that the affine connection ∇ is *flat* if and only if the curvature tensor \mathcal{R}^{∇} vanishes on M. It is well-known that ∇ is flat if and only if around each point it exists a local coordinate system such that all Christoffel symbols vanish.

Lemma 2.2. If $X = \sum_{i=1}^{2} \alpha_i \partial_i$ is a vector on *M*, then the affine Jacobi operator is given by

$$J_{\mathcal{R}^{\nabla}}(X)\partial_1 = A\partial_1 + B\partial_2, \quad J_{\mathcal{R}^{\nabla}}(X)\partial_2 = C\partial_1 + D\partial_2,$$

where

$$A = \alpha_1 \alpha_2 a + \alpha_2^2 c, \ B = \alpha_1 \alpha_2 b + \alpha_2^2 d, \ C = -\alpha_1^2 a - \alpha_1 \alpha_2 c, \ and \ D = -\alpha_1^2 b - \alpha_1 \alpha_2 d.$$

Lemma 2.3. The components of the Ricci tensor are given by

$$\begin{split} & \textit{Ric}^{\nabla}(\partial_{1},\partial_{1}) &= \partial_{2}f_{11}^{2} - \partial_{1}f_{12}^{2} + f_{12}^{2}(f_{11}^{1} - f_{12}^{2}) + f_{11}^{2}(f_{22}^{2} - f_{12}^{1}); \\ & \textit{Ric}^{\nabla}(\partial_{1},\partial_{2}) &= \partial_{2}f_{12}^{2} - \partial_{1}f_{22}^{2} + f_{12}^{1}f_{12}^{2} - f_{11}^{2}f_{22}^{1}; \\ & \textit{Ric}^{\nabla}(\partial_{2},\partial_{1}) &= \partial_{1}f_{12}^{1} - \partial_{2}f_{11}^{1} + f_{12}^{1}f_{12}^{2} - f_{11}^{2}f_{22}^{1}; \\ & \textit{Ric}^{\nabla}(\partial_{2},\partial_{2}) &= \partial_{1}f_{22}^{1} - \partial_{2}f_{12}^{1} + f_{22}^{1}(f_{11}^{1} - f_{12}^{2}) + f_{12}^{1}(f_{22}^{2} - f_{12}^{1}). \end{split}$$

The *skew-symmetric* of Ric^{∇} means that, in local coordinates

$$Ric^{\nabla}(\partial_1, \partial_1) = Ric^{\nabla}(\partial_2, \partial_2), Ric^{\nabla}(\partial_1, \partial_2) + Ric^{\nabla}(\partial_2, \partial_1) = 0.$$
(2.1)

We easily see that the conditions (2.1) reduce to:

$$\begin{aligned} \partial_2 f_{11}^2 &- \partial_1 f_{12}^2 + f_{12}^2 (f_{11}^1 - f_{12}^2) + f_{11}^2 (f_{22}^2 - f_{12}^1) &= 0; \\ \partial_1 f_{22}^1 &- \partial_2 f_{12}^1 + f_{22}^1 (f_{11}^1 - f_{12}^2) + f_{12}^1 (f_{22}^2 - f_{12}^1) &= 0; \\ \partial_1 f_{12}^1 &- \partial_2 f_{11}^1 - \partial_1 f_{22}^2 + \partial_2 f_{12}^2 + 2 (f_{12}^1 f_{12}^2 - f_{11}^2 f_{22}^1) &= 0. \end{aligned}$$

The authors of [1], characterized affine connections on surfaces which are affine Osserman by skew-symmetric of their Ricci tensor.

A affine connection ∇ on *M* is *locally symmetric* if and only if:

$$\nabla \mathcal{R}_{\cdot}^{\nabla} = 0. \tag{2.2}$$

Writing this formula in local coordinates, we find that any locally symmetric affine connections must satisfy eight equations.

Proposition 2.4. The connection ∇ defined by (1.1) is locally symmetric if and only if the functions $f_{11}^1, f_{12}^1, f_{12}^1, f_{12}^2, f_{22}^2, f_{22}^2$ are solutions of the following:

$$\begin{array}{rcl} \partial_1 a + f_{11}^1 a + f_{12}^1 b &=& 0,\\ \partial_1 b + f_{11}^2 a + f_{12}^2 b &=& 0,\\ \partial_1 c + f_{11}^1 c + f_{12}^1 d &=& 0,\\ \partial_1 d + f_{11}^2 c + f_{12}^2 d &=& 0,\\ \partial_2 a + f_{12}^1 a + f_{22}^1 b &=& 0,\\ \partial_2 b + f_{12}^2 a + f_{22}^2 b &=& 0,\\ \partial_2 c + f_{12}^1 c + f_{22}^1 d &=& 0,\\ \partial_2 d + f_{12}^2 c + f_{22}^2 d &=& 0. \end{array}$$

Proof. Let $X_k = \alpha_i^k \partial_i$, k = 1, 2, 3, 4, i = 1, 2. The condition

$$\nabla_{X_1} \mathcal{R}^{\mathsf{V}}(X_2, X_3) X_4 = 0$$

leads to

$$\nabla_{\alpha_i^1\partial_i} \mathcal{R}^{\nabla}(\alpha_i^2\partial_i, \alpha_i^3\partial_i) \alpha_i^4 \partial_i = 0, \quad i, j, k = 1, 2.$$

Equivalently,

$$\nabla_{\alpha_1^1\partial_1} \mathcal{R}^{\nabla}(\alpha_j^2\partial_j, \alpha_k^3\partial_k) \alpha_l^4 \partial_l + \nabla_{\alpha_2^1\partial_2} \mathcal{R}^{\nabla}(\alpha_j^2\partial_j, \alpha_k^3\partial_k) \alpha_l^4 \partial_l = 0, \, j, k, l = 1, 2.$$

Straightforward calculation give

١

$$\begin{cases} \nabla_{\partial_1} \mathcal{R}^{\nabla}(\partial_1, \partial_2) \partial_1 &= [\partial_1 a + f_{11}^1 a + f_{12}^1 b] \partial_1 + [\partial_1 b + f_{11}^2 a + f_{12}^2 b] \partial_2, \\ \nabla_{\partial_1} \mathcal{R}^{\nabla}(\partial_1, \partial_2) \partial_2 &= [\partial_1 c + f_{11}^1 c + f_{12}^1 d] \partial_1 + [\partial_1 d + f_{11}^2 c + f_{12}^2 d] \partial_2, \\ \nabla_{\partial_2} \mathcal{R}^{\nabla}(\partial_1, \partial_2) \partial_1 &= [\partial_2 a + f_{12}^1 a + f_{22}^1 b] \partial_1 + [\partial_2 b + f_{12}^2 a + f_{22}^2 b] \partial_2, \\ \nabla_{\partial_2} \mathcal{R}^{\nabla}(\partial_1, \partial_2) \partial_2 &= [\partial_2 c + f_{12}^1 c + f_{22}^1 d] \partial_1 + [\partial_2 d + f_{12}^2 c + f_{22}^2 d] \partial_2. \end{cases}$$

The proof is complete.

A smooth connection ∇ on M is *locally homogeneous* if and only if it admits, in neighborhoods of each point $p \in M$; at least two linearly independent affine Killing vectors fields. An affine Killing vector field X is characterized by the equation:

$$[X, \nabla_Y Z] - \nabla_Y [X, Z] - \nabla_{[X, Y]} Z = 0$$
(2.3)

which has to be satisfied for arbitrary vectors fields Y, Z (see [5]). It is sufficient to satisfy (2.3) for the choices $(Y,Z) \in \{(\partial_1,\partial_1), (\partial_1,\partial_2), (\partial_2,\partial_1), (\partial_2,\partial_2)\}$. Moreover, we easily check from the basic identities for the torsion and the Lie brackets, that the choice $(Y,Z) = (\partial_1,\partial_2)$ gives the same conditions as the choice $(Y,Z) = (\partial_2,\partial_1)$.

In the sequel, let us express the vector field *X* in the form

$$X = F(u_1, u_2)\partial_1 + G(u_1, u_2)\partial_2.$$

Writing the formula (2.3) in local coordinates, we find that any affine Killing vector field *X* must satisfy six basics equations. We shall write these equations in the simplified notation:

$$\begin{split} \partial_{11}F + f_{11}^1\partial_1F + \partial_1f_{11}^1F - f_{11}^2\partial_2F + \partial_2f_{11}^1G + 2f_{12}^1\partial_1G &= 0, \\ \partial_{11}G + 2f_{11}^2\partial_1F + (2f_{12}^2 - f_{11}^1)\partial_1G - f_{11}^2\partial_2G + \partial_1f_{11}^2F + \partial_2f_{11}^2G &= 0, \\ \partial_{12}F + (f_{11}^1 - f_{12}^2)\partial_2F + f_{22}^1\partial_1G + f_{12}^1\partial_2G + \partial_1f_{12}^1F + \partial_2f_{12}^1G &= 0, \\ \partial_{12}G + f_{12}^2\partial_1F + f_{11}^2\partial_2F + (f_{22}^2 - f_{11}^2)\partial_1G + \partial_1f_{12}^2F + \partial_2f_{12}^2G &= 0, \\ \partial_{22}F - f_{22}^1\partial_1F + (2f_{12}^1 - f_{22}^2)\partial_2F + 2f_{22}^1\partial_2G + \partial_1f_{12}^2F + \partial_2f_{12}^2G &= 0, \\ \partial_{22}G + 2f_{12}^2\partial_2F - f_{22}^1\partial_1G + f_{22}^2)\partial_2G\partial_1f_{22}^2F + \partial_2f_{22}^2G &= 0. \end{split}$$

A complete description of locally homogeneous affine Osserman surfaces is given by Kowalski, Opozda and Vlášek in [5].

3 Proof of Theorem

The matrix associated to $J_{\mathcal{R}^{\nabla}}(X)$ with respect to the basis $\{\partial_1, \partial_2\}$ is given by

$$(J_{\mathcal{R}^{\nabla}}(X)) = \begin{pmatrix} A & C \\ B & D \end{pmatrix}.$$

It follows from the matrix associated to $J_{\mathcal{R}^{\nabla}}(X)$, that its characteristic polynomial satisfies

$$P_{\lambda}[J_{\mathcal{R}^{\nabla}}(X)] = \lambda^2 - \lambda(A+D) + (AD - BC).$$

Through the results of [1], (M, ∇) is affine Osserman if and only if

$$Spect\{J_{\mathcal{R}^{\nabla}}(X)\} = \{0\}.$$

Since $J_{\mathcal{R}^{\nabla}}(X)X = 0$, we conclude that

$$\det\{J_{\mathscr{R}^{\nabla}}(X)\} = (AD - BC) = 0.$$

Thus $Spect \{J_{\mathcal{R}^{\nabla}}(X)\} = \{0\}$ if and only if A + D = 0. Straightforward computations of give

$$\begin{aligned} &\partial_1 f_{12}^1 - \partial_2 f_{11}^1 - \partial_1 f_{22}^2 + \partial_2 f_{12}^2 + 2 f_{12}^1 f_{12}^2 - 2 f_{11}^2 f_{12}^2 = 0; \\ &\partial_1 f_{22}^1 - \partial_2 f_{12}^1 + f_{11}^1 f_{12}^1 + f_{12}^1 f_{22}^2 - f_{12}^1 f_{12}^1 - f_{12}^2 f_{22}^1 = 0; \\ &\partial_1 f_{12}^2 - \partial_2 f_{11}^2 + f_{11}^2 f_{12}^1 + f_{12}^2 f_{12}^2 - f_{11}^1 f_{12}^2 - f_{11}^2 f_{22}^2 = 0. \end{aligned}$$

The proof is complete.

Corollary 3.1. [1] Let ∇ be the affine connection on \mathbb{R}^2 given by

$$\nabla_{\partial_1}\partial_1 = f_{11}^1(u_1, u_2)\partial_1, \quad \nabla_{\partial_1}\partial_2 = 0, \quad \nabla_{\partial_2}\partial_2 = f_{22}^2(u_1, u_2)\partial_2. \tag{3.1}$$

Then ∇ is affine Osserman if and only if the functions f_{11}^1, f_{22}^2 satisfy the following equation:

$$\partial_2 f_{11}^1 + \partial_1 f_{22}^2 = 0.$$

The authors of [2] used the connection defined by (3.1) to construct examples of pseudo-Riemannian nonsymmetric Osserman manifolds of signature (2,2).

Corollary 3.2. Let ∇ be the affine connection on \mathbb{R}^2 given by

$$\nabla_{\partial_1}\partial_1 = 0, \quad \nabla_{\partial_1}\partial_2 = f_{12}^1(u_1, u_2)\partial_1, \quad \nabla_{\partial_2}\partial_2 = f_{22}^1(u_1, u_2)\partial_1.$$

Then ∇ *is affine Osserman if and only if the functions* f_{12}^1 *and* f_{22}^1 *have the form*

 $f_{12}^1(u_1, u_2) = f(u_2), \quad and \quad f_{22}^1(u_1, u_2) = u_1 G(u_2),$

where G depending only u_2 satisfying $G(u_2) = \partial_2 f_{12}^1 + (f_{12}^1)^2$.

Corollary 3.3. Let ∇ be the affine connection on \mathbb{R}^2 given by

$$\nabla_{\partial_1}\partial_1 = 0, \quad \nabla_{\partial_1}\partial_2 = f_{12}^2(u_1, u_2)\partial_2, \quad \nabla_{\partial_2}\partial_2 = f_{22}^2(u_1, u_2)\partial_2$$

Then ∇ is affine Osserman if and only if the functions f_{12}^1 and f_{22}^1 have the form:

$$f_{12}^2(u_1, u_2) = \frac{1}{u_1}$$
, and $f_{22}^2(u_1, u_2) = f(u_2)$.

One has the following observation:

Theorem 3.4. Let (M, ∇) be a 2-dimensional affine Osserman manifold. If ∇ is locally symmetric, then the Ricci tensor of ∇ is zero.

Example 3.5. Let ∇ the connection on the plane \mathbb{R}^2 defined by

$$abla_{\partial_1}\partial_1 = 0, \quad
abla_{\partial_1}\partial_2 = u_2\partial_1, \quad
abla_{\partial_2}\partial_2 = u_1(1+u_2^2)\partial_1.$$

A straightforward calculation shows that ∇ is a locally symmetric affine Osserman connection.

Example 3.6. Let ∇ the connection on the plane \mathbb{R}^2 defined by

$$abla_{\partial_1}\partial_1 = 0, \quad
abla_{\partial_1}\partial_2 = \frac{1}{u_1}\partial_2, \quad
abla_{\partial_2}\partial_2 = e^{u_2}\partial_2$$

A straightforward calculation shows that ∇ is a symmetric affine Osserman connection.

Theorem 3.7. Let (M, ∇) be a 2-dimensional affine Osserman manifold. If ∇ is nonsymmetric, then the Ricci tensor of ∇ is skew-symmetric.

Example 3.8. ([2]) Consider the connection ∇ on \mathbb{R}^2 defined by

$$\nabla_{\partial_1}\partial_1 = 0, \quad \nabla_{\partial_1}\partial_2 = e^{u_2}u_1\partial_1, \quad \nabla_{\partial_1}\partial_2 = \frac{1}{2}e^{u_2}u_1^2\partial_1 + e^{u_2}u_1\partial_2.$$

We have

$$\mathscr{R}^{\nabla}(\partial_1,\partial_2)\partial_1 = e^{u_2}\partial_1, \quad \mathscr{R}^{\nabla}(\partial_1,\partial_2)\partial_2 = e^{u_2}\partial_2$$

Now the nonvanishing components of the Ricci tensor are given by

$$Ric^{\nabla}(\partial_1,\partial_2) = -e^{u_2}, \quad Ric^{\nabla}(\partial_2,\partial_1) = e^{u_2},$$

It follows that the Ricci tensor of ∇ is skew symmetric, and thus, an affine Osserman connection. We use (2.2) in order to show that (\mathbb{R}^2, ∇) is nonsymmetric.

Acknowledgement: I would like to thank Professor J. Tossa for many valuble discussions. Special thanks go to referee for useful suggestions.

References

- E. García-Rio, D. N. Kupeli, M. E. Vázquez-Abal and R. Vázquez-Lorenzo, Affine Osserman connections and their Riemannian extensions. *Differential Geom. Appl.* 11 (1999), 145-153.
- [2] E. García-Rio, D. N. Kupeli and R. Vázquez-Lorenzo, Osserman Manifolds in Semi-Riemannian Geometry. Lectures Notes in Mathematics 1777, Springer-Verlag, Berlin 2002.
- [3] E. García-Rio, M. E. Vázquez-Abal and R. Vázquez-Lorenzo, Nonsymmetric Osserman pseudo-Riemannian manifolds. *Proc. Amer. Math. Soc.* 126 (1998), 2771-2778.
- [4] P. Gilkey, *Geometric Properties of Natural Operators defined by the Riemann Curvature Tensor*. World Scientific Publishing Co. Inc., River Edge, NJ, 2001.
- [5] O. Kowalski, B. Opozda, Z. Vlásek, A classification of locally homogeneous affine connections with skew-symmetric Ricci tensor on 2-dimensional manifolds. *Monatsh. Math.* 130 (2000), 109-125.
- [6] K. Yano and S. Ishihara, *Tangent and Cotangent Bundles*. Marcel Dekker, New York, 1973.