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Abstract

We consider the existence of a periodic solution to the first-order nonlinear prob-
lem

x′(t) =−a(t)x(t)+q(t,x(t)), a.e. on (0,T ),
x(0) = x(T ),

where the nonlinear term q is Carathéodory with respect to L1[0,T ]. The coefficient
function a is such that the differential equation is non-invertible. The technique used
to establish our existence result is Mahwin’s coincidence degree theory.
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1 Introduction

Let T > 0 be fixed. We consider existence of solutions to the first-order the nonlinear
periodic equation

x′(t) =−a(t)x(t)+q(t,x(t)) , a.e. on (0,T ),
x(0) = x(T ).

(1.1)

In recent years, there have been several papers written on the existence, uniqueness, stability
and positivity of solutions for periodic equations of forms similar to equation (1.1); see for
example [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14] and references therein.

In the above mentioned works, the non-linear term is assumed to be continuous in all
variables. We relax this condition by assuming that q is Carathéodory with respect to
L1[0,T ]. The map q : [0,T ]×Rn → R satisfies Carathéodory conditions with respect to
L1[0,T ] if the following conditions hold.

(i) For each z ∈ Rn, the mapping t 7→ q(t,z) is Lebesgue measurable.
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(ii) For almost every t ∈ [0,T ], the mapping z 7→ q(t,z) is continuous on Rn.

(iii) For each ρ > 0, there exists αρ ∈ L1([0,T ],R) such that for almost every t ∈ [0,T ]
and for all z such that |z|< ρ, we have |q(t,z)| ≤ αρ(t).

Throughout the paper we assume that the function a ∈ L1[0,T ] satisfies e
R T

0 a(s)ds = 1.
As such, equation (1.1) is not invertible and we say that the system is at resonance. To
show the existence of a solution of (1.1) we rewrite the differential equation in the form
Lx = Nx and employ Mawhin’s coincidence theory; see [10]. We give some concepts from
coincidence theory in Section 2 that are central in our proof, as well as define the spaces
and projectors P and Q employed. We state and prove our main result in Section 3.

2 Coincidence Theory

Let X and Z be normed spaces. A linear mapping L : dom L ⊂ X → Z is called a Fredholm
mapping if the following two conditions hold:

(i) kerL has a finite dimension, and

(ii) Im L is closed and has finite codimension.

If L is a Fredholm mapping, its (Fredhom) index is the integer, Ind L, given by Ind L =
dimkerL− codim Im L.

For a Fredholm map of index zero, L : dom L ⊂ X → Z, there exist continuous projec-
tors P : X → X and Q : Z → Z such that

Im P = kerL, kerQ = Im L, X = kerL⊕kerP, Z = Im L⊕ Im Q,

and the mapping
L|dom L∩kerP : dom L∩kerP → Im L

is invertible. The inverse of L|dom L∩kerP is denoted by

KP : Im L → dom L∩kerP.

The generalized inverse of L, denoted by KP,Q : Z → dom L∩ kerP, is defined by KP,Q =
KP(I−Q).

If L is a Fredholm mapping of index zero, then for every isomorphism J : Im Q→ kerL,
the mapping JQ+KP,Q : Z → dom L is an isomorphism and, for every x ∈ dom L,

(JQ+KP,Q)−1x = (L+ J−1P)x.

Definition 2.1. Let L : dom L ⊂ X → Z be a Fredholm mapping, E be a metric space,
and N : E → Z. We say that N is L-compact on E if QN : E → Z and KP,QN : E → X are
compact on E. In addition, we say that N is L-completely continuous if it is L-compact on
every bounded E ⊂ X .

As noted in the abstract, we formulate the periodic equation (1.1) as Lx = Nx, where L
and N are defined below. We employ the following theorem due to Mawhin [10] to show
the existence of a solution.
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Theorem 2.2. Let Ω ⊂ X be open and bounded. Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lx , λNx for every (x,λ) ∈
(
(dom L\kerL)∩∂Ω

)
× (0,1);

(ii) Nx < Im L for every x ∈ kerL∩∂Ω;

(iii) degB
(
JQN|kerL∩∂Ω,Ω∩ kerL,0

)
, 0, with Q : Z → Z a continuous projector, such

that kerQ = Im L and J : Im Q → kerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in dom L∩Ω.

Let AC[0,T ] denote the space of absolutely continuous functions on the interval [0,T ].
Define Z = L1[0,T ] with norm ‖ · ‖1 and let

X =
{

x : [0,T ]→ R : x ∈ AC[0,T ] and x′+a(t)x ∈ L1[0,T ]
}

with norm ‖x‖= maxt∈[0,T ]

∣∣∣x(t)eR t
0a(s)ds

∣∣∣. Define the mapping L : dom L ⊂ X → Z by

Lx(t) = x′(t)+a(t)x(t), t ∈ [0,T ],

where
dom L = {x ∈ X : x(0) = x(T )}.

Define N : X → Z by
Nx(t) = q(t,x(t)), t ∈ [0,T ].

Let Q : Z → Z be given by

Qg(t) =
1
T

Z T

0
g(r)e

R r
0 a(s)ds dr e−

R t
0a(s)ds. (2.1)

Note that for all t ∈ [0,T ],

Q2g(t) =
1
T

Z T

0
Qg(r)e

R r
0 a(s)ds dr e−

R t
0a(s)ds

=
1

T 2

Z T

0
g(u)e

R r
0 a(s)ds du

Z T

0
e−

R r
0 a(s)dse

R r
0 a(s)ds dr e−

R t
0a(s)ds

=
1
T

Z T

0
g(r)e

R r
0 a(s)ds dre−

R t
0a(s)ds = Qg(t).

Hence Q : Z → Z is a continuous projector.

Lemma 2.3. The mapping L : dom L ⊂ X → Z is a Fredholm mapping of index zero.

Proof. Note

kerL =
{

x ∈ dom L : x(t) = ce−
R t

0a(s)ds, c ∈ R
}
� R.

Thus dimkerL = 1.
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Let g ∈ Z and let

x(t) = x(0)e−
R t

0a(s)ds +
Z t

0
g(r)e−

R t
r a(s)ds dr.

Then x′(t) =−a(t)x(t)+g(t) a.e. on [0,T ]. Furthermore, suppose that g satisfiesZ T

0
g(r)e

R r
0 a(s)ds dr = 0.

Then,

x(T ) = x(0)e−
R T

0 a(s)ds +
Z T

0
g(r)e

R r
0 a(s)ds dr = x(0),

and hence, g ∈ Im L. That is,{
g ∈ Z :

Z T

0
g(r)e

R r
0 a(s)ds dr = 0

}
⊆ Im L. (2.2)

Now let g ∈ Im L. Then there exists an x ∈ dom L such that Lx(t) = g(t) for a.e.
t ∈ [0,T ]. That is,

x′(t)+a(t)x(t) = g(t) a.e. on [0,T ].

It is easy to see that x satisfies

x(t) = x(0)e−
R t

0a(s) + e−
R t

0a(s)ds
Z t

0
g(r)e

R r
0 a(s)ds dr.

Since x ∈ X , then x(0) = x(T ) and so,Z T

0
g(r)e

R r
0 a(s)ds dr = 0.

Thus

Im L ⊆
{

g ∈ Z :
Z T

0
g(r)e

R r
0 a(s)ds dr = 0

}
. (2.3)

From (2.2) and (2.3) we have that

Im L =
{

g ∈ Z :
Z T

0
g(r)e

R r
0 a(s)ds dr = 0

}
.

The projector defined by (2.1) is continuous and linear. Also,

kerQ =
{

g ∈ Z :
Z T

0
g(r)e

R r
0 a(s)dsdr = 0

}
= Im L.

Since Q(g−Qg) = Qg−Q2g = 0 for all g ∈ Z, then g−Qg ∈ kerQ = Im L. Hence Z =
Im L+ Im Q. Let g∈ Im L∩ Im Q. Since g∈ Im Q, then g = Qg and since g∈ Im L = kerQ,
then Qg = 0. Consequently, g ≡ 0. We have Im L∩ Im Q = {0} and so, Z = Im L⊕ Im Q.
Hence, dimkerL = 1 = dimIm Q = codim Im L. Since L is linear, then L is a Fredholm
map of index 0 and the proof is complete.
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We need to define the second projector P. Let P : X → X be given by

Px(t) = x(0)e−
R t

0a(s)ds. (2.4)

Since Px(0) = x(0) then it follows trivially that P2x(t) = Px(t), t ∈ [0,T ]. Note that kerP =
{x ∈ X : x(0) = 0} and that Im P = kerL. Since kerP = {x ∈ X : x(0) = 0}, an argument
similar to the one showing Z = Im L⊕ Im Q, implies that X = kerP⊕kerL.

Define KP : Im L ⊂ Z → dom L∩kerP by

KPg(t) =
Z t

0
g(r)e

R r
0 a(s)ds dr e−

R t
0a(s)ds.

Then

‖Kpg‖= max
t∈[0,T ]

∣∣∣∣Z t

0
g(r)e

R r
0 a(s)ds dr e−

R t
0a(s)ds e

R t
0a(s)ds

∣∣∣∣
≤ max

t∈[0,T ]

Z t

0

∣∣∣g(r)e
R r

0 a(s)ds
∣∣∣ dr

≤ ‖g‖T.

(2.5)

Note that, if x ∈ dom L∩ kerP then KPLx(t) = x(t), and if g ∈ Im L then LKPg(t) = g(t).
Consequently, KP = (L|dom LkerP)−1.

Consider the map QN : X → Z defined by

QNx(t) =
1
T

Z T

0
q(r,x(r))e

R r
0 a(s)ds dr e−

R t
0a(s)ds, t ∈ [0,T ].

We define the generalized inverse of L by

KP,QNx(t) =
Z t

0
(Nx(r)−QNx(r))e

R r
0 a(s)dsdr e−

R t
0a(s)ds

=
Z t

0
q(r,x(r))e

R r
0 a(s)ds dr e−

R t
0a(s)ds

− t
T

Z T

0
q(τ,x(τ))e

R
τ

0 a(s)ds dτe−
R t

0a(s)ds.

We end this section by showing that N is L-completely continuous. To do so, we first
define the quantity

M = max
t∈[0,T ]

e−
R t

0a(s)ds.

Lemma 2.4. The mapping N : X → Z given by Nu(t) = q(t,u(t)) is L-completely continu-
ous.

Proof. Let E ⊂ X be a bounded set and let ρ be such that ‖x‖ ≤ ρ for all x ∈ E. Since q
satisfies Carathéodory conditions, there exists an αρ ∈ L1[0,T ] such that for a.e. t ∈ [0,T ]
and for all z such that |z|< ρ we have |q(t,z)| ≤ αρ(t). Then,

|QNx(t)| ≤ 1
T

Z T

0
|q(r,x(r))|e

R r
0 a(s)ds dr e−

R t
0a(s)ds

≤ M
MT

Z T

0
αρ(r)dr

≤ 1
T
‖αρ‖1.
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Hence, QN(E) is uniformly bounded.
It is clear that the functions QNx are equicontinuous on E. By the Arzelà-Ascoli Theo-

rem, QN(E) is relatively compact. Furthermore, it can be shown that KP,QN(E) is relatively
compact. As such, the mapping N : X → Z is L-completely continuous and the proof is
complete.

3 Main Result

In this section we state and prove our main result. We will assume that the following
conditions hold.

(H1) There exists a constant c1 > 0 such that for all x ∈ dom L \ kerL satisfying |x(t)| >
c1, t ∈ [0,T ], we have

QNx(t) , 0.

(H2) There exist β,δ ∈ L1[0,T ], such that for all x ∈ R and for all t ∈ [0,T ],

|q(t,x)| ≤ β(t)|x|+δ(t).

(H3) There exists a constant B > 0 such that for all c2 ∈ R with |c2|> B, either

c2

Z T

0
q
(

r,c2e−
R r

0 a(s)ds
)

e
R r

0 a(s)ds dr < 0

or

c2

Z T

0
q
(

r,c2e−
R r

0 a(s)ds
)

e
R r

0 a(s)ds dr > 0.

Theorem 3.1. Assume that conditions (H1) - (H3) hold. Then the nonlinear periodic prob-
lem (2.2) has at least one solution provided that ‖β‖< 1

(1+M)T .

Proof. Let Q : Z → Z and P : X → X be defined as in (2.1) and (2.4), respectively. We
first construct a bounded open set Ω that satisfies Theorem 2.2. With this goal in mind, we
define the set Ω1 by

Ω1 = {x ∈ dom L\kerL : Lx = µNx for some µ ∈ (0,1)}.

Let x ∈ Ω1 and write x as x = Px+(I−P)x. Then

‖x‖ ≤ ‖Px‖+‖(I−P)x‖. (3.1)

Since x ∈ Ω1 then (I−P)x ∈ dom L∩kerP = Im KP. Note that Nx = 1
µ Lx ∈ Im L,µ ∈

(0,1). We obtain from the inequality (2.5) that

‖(I−P)x‖= ‖KPL(I−P)x‖ ≤ ‖L(I−P)x‖T = ‖Lx‖T < ‖Nx‖T. (3.2)

From (H2) we have that ‖Nx‖ ≤ ‖β‖‖x‖+‖δ‖, and so by (3.1) and (3.2), we obtain,

‖x‖< ‖Px‖+‖β‖‖x‖T +‖δ‖T. (3.3)
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Now, Px(t) = x(0)e−
R t

0a(s)ds. So,

‖Px‖= |x(0)|. (3.4)

Since x ∈ Ω1 and kerQ = Im L, then

QNx(t) = 0, for all t ∈ [0,T ].

By (H1) there exists t0 ∈ [0,T ] such that |x(t0)|< c1. Also, since

x′(t)+a(t)x(t) = q(t,x(t))

then,

x(0) = x(t0)e
R t0

0 a(s)ds−
Z t0

0
q(r,x(r))e

R r
0 a(s)ds dr.

We obtain that,

|x(0)| ≤ c1e
R t0

0 a(s)ds +
Z t0

0
|q(r,x(r))|e

R r
0 a(s)ds dr

≤ c1M +‖Nx‖MT

≤ c1M +‖β‖‖x‖MT +‖δ‖MT.

(3.5)

From (3.2), (3.4), and (3.5) we get that

‖x‖ ≤ c1M +‖β‖‖x‖MT +‖δ‖MT +‖δ‖T +‖β‖‖x‖T.

That is,

‖x‖ ≤ c1 +‖δ‖T (1+M)
1−‖β‖T (1+M)

.

Since ‖β‖< 1
(1+M)T , the set Ω1 is bounded.

Define
Ω2 = {x ∈ kerL : Nx ∈ Im L}

and let x ∈ Ω2. Since x ∈ kerL, then there exists a constant c such that

x(t) = ce−
R t

0a(s)ds.

Since Nu ∈ Im L = kerQ, thenZ T

0
q
(

r,ce−
R r

0 a(s)ds
)

e
R r

0 a(s)ds dr = 0.

By (H3), we have that |c| ≤ B and so ‖x‖= |c| ≤ B. The set Ω2 is bounded.
Before we define the set Ω3, we must state our isomorphism, J : Im Q → kerL. Let

J
(

ce−
R t

0a(s)ds
)

= ce−
R t

0a(s)ds.

If the first part of (H3) is satisfied, then define

Ω3 = {x ∈ kerL : −λJ−1x+(1−λ)QNx = 0}.
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Let x ∈ Ω3. Since x ∈ kerL, then there exists c2 such that

x(t) = c2e−
R t

0a(s)ds.

Assume that |c2|> B > 0. Since x ∈ Ω3, we have

λJ−1x = (1−λ)QNx

from which we obtain,

λc2 = (1−λ)
1
T

Z T

0
q
(

r,c2e−
R r

0 a(s)ds
)

e
R r

0 a(s)ds dr.

If λ = 1, then c2 = 0. If λ ∈ (0,1) then

λc2
2 = (1−λ)

c2

T

Z T

0
q
(

r,c2e−
R r

0 a(s)ds
)

e
R r

0 a(s)ds dr < 0.

That is, c2
2 < 0. If λ = 0, we obtain from the above equation that c2 = 0. Consequently, if

λ ∈ [0,1] we obtain a contradiction and hence |c2| ≤ B. Thus, Ω3 is bounded.
Let Ω be an open and bounded set such that ∪3

i=1Ωi ⊂Ω. Then the assumptions (i) and
(ii) of Theorem 2.2 are satisfied. By Lemma 2.3, L : dom L⊂ X → Z is a Fredholm mapping
of index zero. By Lemma 2.4, the mapping N : X → Z is L-completely continuous. We only
need to verify that condition (iii) of Theorem 2.2 is satisfied.

We apply the invariance under a homotopy property of the Brower degree. Let

H(x,µ) =±µIdx+(1−µ)JQNx.

If x ∈ kerL∩∂Ω, then

degB
(
JQN|kerL∩∂Ω,Ω∩kerL,0

)
= degB

(
H(·,0),Ω∩kerL,0

)
= degB

(
H(·,1),Ω∩kerL,0

)
= degB

(
± Id,Ω∩kerL,0

)
, 0.

All the assumptions of Theorem 2.2 are fulfilled and the proof is complete.
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