A First-Order Periodic Differential Equation at Resonance

Eric R. Kaufmann*
Department of Mathematics \& Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

Abstract

We consider the existence of a periodic solution to the first-order nonlinear problem $$
\begin{aligned} & x^{\prime}(t)=-a(t) x(t)+q(t, x(t)), \text { a.e. on }(0, T), \\ & x(0)=x(T) \end{aligned}
$$ where the nonlinear term q is Carathéodory with respect to $L^{1}[0, T]$. The coefficient function a is such that the differential equation is non-invertible. The technique used to establish our existence result is Mahwin's coincidence degree theory.

AMS Subject Classification: 34A34; 34K13; 34F15.
Keywords: Coincidence theory, Brower degree, nonlinear dynamic equation, periodic, resonance

1 Introduction

Let $T>0$ be fixed. We consider existence of solutions to the first-order the nonlinear periodic equation

$$
\begin{align*}
& x^{\prime}(t)=-a(t) x(t)+q(t, x(t)), \text { a.e. on }(0, T), \tag{1.1}\\
& x(0)=x(T) .
\end{align*}
$$

In recent years, there have been several papers written on the existence, uniqueness, stability and positivity of solutions for periodic equations of forms similar to equation (1.1); see for example $[1,2,3,4,5,6,7,8,9,11,12,13,14]$ and references therein.

In the above mentioned works, the non-linear term is assumed to be continuous in all variables. We relax this condition by assuming that q is Carathéodory with respect to $L^{1}[0, T]$. The map $q:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies Carathéodory conditions with respect to $L^{1}[0, T]$ if the following conditions hold.
(i) For each $z \in \mathbb{R}^{n}$, the mapping $t \mapsto q(t, z)$ is Lebesgue measurable.

[^0](ii) For almost every $t \in[0, T]$, the mapping $z \mapsto q(t, z)$ is continuous on \mathbb{R}^{n}.
(iii) For each $\rho>0$, there exists $\alpha_{\rho} \in L^{1}([0, T], \mathbb{R})$ such that for almost every $t \in[0, T]$ and for all z such that $|z|<\rho$, we have $|q(t, z)| \leq \alpha_{\rho}(t)$.
Throughout the paper we assume that the function $a \in L^{1}[0, T]$ satisfies $e^{\int_{0}^{T} a(s) d s}=1$. As such, equation (1.1) is not invertible and we say that the system is at resonance. To show the existence of a solution of (1.1) we rewrite the differential equation in the form $L x=N x$ and employ Mawhin's coincidence theory; see [10]. We give some concepts from coincidence theory in Section 2 that are central in our proof, as well as define the spaces and projectors P and Q employed. We state and prove our main result in Section 3.

2 Coincidence Theory

Let X and Z be normed spaces. A linear mapping $L: \operatorname{dom} L \subset X \rightarrow Z$ is called a Fredholm mapping if the following two conditions hold:
(i) $\operatorname{ker} L$ has a finite dimension, and
(ii) $\operatorname{Im} L$ is closed and has finite codimension.

If L is a Fredholm mapping, its (Fredhom) index is the integer, Ind L, given by $\operatorname{Ind} L=$ $\operatorname{dim} \operatorname{ker} L-\operatorname{codim} \operatorname{Im} L$.

For a Fredholm map of index zero, $L: \operatorname{dom} L \subset X \rightarrow Z$, there exist continuous projectors $P: X \rightarrow X$ and $Q: Z \rightarrow Z$ such that

$$
\operatorname{Im} P=\operatorname{ker} L, \operatorname{ker} Q=\operatorname{Im} L, X=\operatorname{ker} L \oplus \operatorname{ker} P, Z=\operatorname{Im} L \oplus \operatorname{Im} Q,
$$

and the mapping

$$
\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}: \operatorname{dom} L \cap \operatorname{ker} P \rightarrow \operatorname{Im} L
$$

is invertible. The inverse of $\left.L\right|_{\text {dom } L \cap \mathrm{ker} P}$ is denoted by

$$
K_{P}: \operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P
$$

The generalized inverse of L, denoted by $K_{P, Q}: Z \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$, is defined by $K_{P, Q}=$ $K_{P}(I-Q)$.

If L is a Fredholm mapping of index zero, then for every isomorphism $J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$, the mapping $J Q+K_{P, Q}: Z \rightarrow \operatorname{dom} L$ is an isomorphism and, for every $x \in \operatorname{dom} L$,

$$
\left(J Q+K_{P, Q}\right)^{-1} x=\left(L+J^{-1} P\right) x .
$$

Definition 2.1. Let $L: \operatorname{dom} L \subset X \rightarrow Z$ be a Fredholm mapping, E be a metric space, and $N: E \rightarrow Z$. We say that N is L-compact on E if $Q N: E \rightarrow Z$ and $K_{P, Q} N: E \rightarrow X$ are compact on E. In addition, we say that N is L-completely continuous if it is L-compact on every bounded $E \subset X$.

As noted in the abstract, we formulate the periodic equation (1.1) as $L x=N x$, where L and N are defined below. We employ the following theorem due to Mawhin [10] to show the existence of a solution.

Theorem 2.2. Let $\Omega \subset X$ be open and bounded. Let L be a Fredholm mapping of index zero and let N be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in((\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega) \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{ker} L \cap \partial \Omega$;
(iii) $\operatorname{deg}_{B}\left(\left.J Q N\right|_{\operatorname{ker} L \cap \partial \Omega}, \Omega \cap \operatorname{ker} L, 0\right) \neq 0$, with $Q: Z \rightarrow Z$ a continuous projector, such that $\operatorname{ker} Q=\operatorname{Im} L$ and $J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$ is an isomorphism.

Then the equation $L x=N x$ has at least one solution in dom $L \cap \bar{\Omega}$.
Let $A C[0, T]$ denote the space of absolutely continuous functions on the interval $[0, T]$. Define $Z=L^{1}[0, T]$ with norm $\|\cdot\|_{1}$ and let

$$
X=\left\{x:[0, T] \rightarrow \mathbb{R}: x \in A C[0, T] \text { and } x^{\prime}+a(t) x \in L^{1}[0, T]\right\}
$$

with norm $\|x\|=\max _{t \in[0, T]}\left|x(t) e^{\int_{0}^{t} a(s) d s}\right|$. Define the mapping $L: \operatorname{dom} L \subset X \rightarrow Z$ by

$$
L x(t)=x^{\prime}(t)+a(t) x(t), \quad t \in[0, T],
$$

where

$$
\operatorname{dom} L=\{x \in X: x(0)=x(T)\} .
$$

Define $N: X \rightarrow Z$ by

$$
N x(t)=q(t, x(t)), \quad t \in[0, T] .
$$

Let $Q: Z \rightarrow Z$ be given by

$$
\begin{equation*}
Q g(t)=\frac{1}{T} \int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} \tag{2.1}
\end{equation*}
$$

Note that for all $t \in[0, T]$,

$$
\begin{aligned}
Q^{2} g(t) & =\frac{1}{T} \int_{0}^{T} Q g(r) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} \\
& =\frac{1}{T^{2}} \int_{0}^{T} g(u) e^{\int_{0}^{r} a(s) d s} d u \int_{0}^{T} e^{-\int_{0}^{r} a(s) d s} e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} \\
& =\frac{1}{T} \int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s}=Q g(t)
\end{aligned}
$$

Hence $Q: Z \rightarrow Z$ is a continuous projector.
Lemma 2.3. The mapping $L: \operatorname{dom} L \subset X \rightarrow Z$ is a Fredholm mapping of index zero.
Proof. Note

$$
\operatorname{ker} L=\left\{x \in \operatorname{dom} L: x(t)=c e^{-\int_{0}^{t} a(s) d s}, c \in \mathbb{R}\right\} \cong \mathbb{R}
$$

Thus $\operatorname{dim} \operatorname{ker} L=1$.

Let $g \in Z$ and let

$$
x(t)=x(0) e^{-\int_{0}^{t} a(s) d s}+\int_{0}^{t} g(r) e^{-\int_{r}^{t} a(s) d s} d r
$$

Then $x^{\prime}(t)=-a(t) x(t)+g(t)$ a.e. on $[0, T]$. Furthermore, suppose that g satisfies

$$
\int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=0
$$

Then,

$$
x(T)=x(0) e^{-\int_{0}^{T} a(s) d s}+\int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=x(0),
$$

and hence, $g \in \operatorname{Im} L$. That is,

$$
\begin{equation*}
\left\{g \in Z: \int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=0\right\} \subseteq \operatorname{Im} L . \tag{2.2}
\end{equation*}
$$

Now let $g \in \operatorname{Im} L$. Then there exists an $x \in \operatorname{dom} L$ such that $L x(t)=g(t)$ for a.e. $t \in[0, T]$. That is,

$$
x^{\prime}(t)+a(t) x(t)=g(t) \quad \text { a.e. on }[0, T] .
$$

It is easy to see that x satisfies

$$
x(t)=x(0) e^{-\int_{0}^{t} a(s)}+e^{-\int_{0}^{t} a(s) d s} \int_{0}^{t} g(r) e^{\int_{0}^{r} a(s) d s} d r
$$

Since $x \in X$, then $x(0)=x(T)$ and so,

$$
\int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=0
$$

Thus

$$
\begin{equation*}
\operatorname{Im} L \subseteq\left\{g \in Z: \int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=0\right\} \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we have that

$$
\operatorname{Im} L=\left\{g \in Z: \int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=0\right\} .
$$

The projector defined by (2.1) is continuous and linear. Also,

$$
\operatorname{ker} Q=\left\{g \in Z: \int_{0}^{T} g(r) e^{\int_{0}^{r} a(s) d s} d r=0\right\}=\operatorname{Im} L
$$

Since $Q(g-Q g)=Q g-Q^{2} g=0$ for all $g \in Z$, then $g-Q g \in \operatorname{ker} Q=\operatorname{Im} L$. Hence $Z=$ $\operatorname{Im} L+\operatorname{Im} Q$. Let $g \in \operatorname{Im} L \cap \operatorname{Im} Q$. Since $g \in \operatorname{Im} Q$, then $g=Q g$ and since $g \in \operatorname{Im} L=\operatorname{ker} Q$, then $Q g=0$. Consequently, $g \equiv 0$. We have $\operatorname{Im} L \cap \operatorname{Im} Q=\{0\}$ and so, $Z=\operatorname{Im} L \oplus \operatorname{Im} Q$. Hence, $\operatorname{dim} \operatorname{ker} L=1=\operatorname{dim} \operatorname{Im} Q=\operatorname{codim} \operatorname{Im} L$. Since L is linear, then L is a Fredholm map of index 0 and the proof is complete.

We need to define the second projector P. Let $P: X \rightarrow X$ be given by

$$
\begin{equation*}
P x(t)=x(0) e^{-\int_{0}^{t} a(s) d s} \tag{2.4}
\end{equation*}
$$

Since $P x(0)=x(0)$ then it follows trivially that $P^{2} x(t)=P x(t), t \in[0, T]$. Note that ker $P=$ $\{x \in X: x(0)=0\}$ and that $\operatorname{Im} P=\operatorname{ker} L$. Since $\operatorname{ker} P=\{x \in X: x(0)=0\}$, an argument similar to the one showing $Z=\operatorname{Im} L \oplus \operatorname{Im} Q$, implies that $X=\operatorname{ker} P \oplus \operatorname{ker} L$.

Define $K_{P}: \operatorname{Im} L \subset Z \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ by

$$
K_{P} g(t)=\int_{0}^{t} g(r) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s}
$$

Then

$$
\begin{align*}
\left\|K_{p} g\right\| & =\max _{t \in[0, T]}\left|\int_{0}^{t} g(r) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} e^{\int_{0}^{t} a(s) d s}\right| \\
& \leq \max _{t \in[0, T]} \int_{0}^{t}\left|g(r) e^{\int_{0}^{r} a(s) d s}\right| d r \tag{2.5}\\
& \leq\|g\| T
\end{align*}
$$

Note that, if $x \in \operatorname{dom} L \cap \operatorname{ker} P$ then $K_{P} L x(t)=x(t)$, and if $g \in \operatorname{Im} L$ then $L K_{P} g(t)=g(t)$. Consequently, $K_{P}=\left(\left.L\right|_{\text {dom } L \text { ker } P}\right)^{-1}$.

Consider the map $Q N: X \rightarrow Z$ defined by

$$
Q N x(t)=\frac{1}{T} \int_{0}^{T} q(r, x(r)) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s}, \quad t \in[0, T]
$$

We define the generalized inverse of L by

$$
\begin{aligned}
K_{P, Q} N x(t)= & \int_{0}^{t}(N x(r)-Q N x(r)) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} \\
= & \int_{0}^{t} q(r, x(r)) e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} \\
& \quad-\frac{t}{T} \int_{0}^{T} q(\tau, x(\tau)) e^{\int_{0}^{\tau} a(s) d s} d \tau e^{-\int_{0}^{t} a(s) d s}
\end{aligned}
$$

We end this section by showing that N is L-completely continuous. To do so, we first define the quantity

$$
M=\max _{t \in[0, T]} e^{-\int_{0}^{t} a(s) d s}
$$

Lemma 2.4. The mapping $N: X \rightarrow Z$ given by $N u(t)=q(t, u(t))$ is L-completely continuous.

Proof. Let $E \subset X$ be a bounded set and let ρ be such that $\|x\| \leq \rho$ for all $x \in E$. Since q satisfies Carathéodory conditions, there exists an $\alpha_{\rho} \in L^{1}[0, T]$ such that for a.e. $t \in[0, T]$ and for all z such that $|z|<\rho$ we have $|q(t, z)| \leq \alpha_{\rho}(t)$. Then,

$$
\begin{aligned}
|Q N x(t)| & \leq \frac{1}{T} \int_{0}^{T}|q(r, x(r))| e^{\int_{0}^{r} a(s) d s} d r e^{-\int_{0}^{t} a(s) d s} \\
& \leq \frac{M}{M T} \int_{0}^{T} \alpha_{\rho}(r) d r \\
& \leq \frac{1}{T}\left\|\alpha_{\rho}\right\|_{1} .
\end{aligned}
$$

Hence, $Q N(E)$ is uniformly bounded.
It is clear that the functions $Q N x$ are equicontinuous on E. By the Arzelà-Ascoli Theorem, $Q N(E)$ is relatively compact. Furthermore, it can be shown that $K_{P, Q} N(E)$ is relatively compact. As such, the mapping $N: X \rightarrow Z$ is L-completely continuous and the proof is complete.

3 Main Result

In this section we state and prove our main result. We will assume that the following conditions hold.
$\left(H_{1}\right)$ There exists a constant $c_{1}>0$ such that for all $x \in \operatorname{dom} L \backslash \operatorname{ker} L$ satisfying $|x(t)|>$ $c_{1}, t \in[0, T]$, we have

$$
Q N x(t) \neq 0 .
$$

$\left(H_{2}\right)$ There exist $\beta, \delta \in L^{1}[0, T]$, such that for all $x \in \mathbb{R}$ and for all $t \in[0, T]$,

$$
|q(t, x)| \leq \beta(t)|x|+\delta(t) .
$$

$\left(H_{3}\right)$ There exists a constant $B>0$ such that for all $c_{2} \in \mathbb{R}$ with $\left|c_{2}\right|>B$, either

$$
c_{2} \int_{0}^{T} q\left(r, c_{2} e^{-\int_{0}^{r} a(s) d s}\right) e^{\int_{0}^{r} a(s) d s} d r<0
$$

or

$$
c_{2} \int_{0}^{T} q\left(r, c_{2} e^{-\int_{0}^{r} a(s) d s}\right) e^{\int_{0}^{r} a(s) d s} d r>0 .
$$

Theorem 3.1. Assume that conditions $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then the nonlinear periodic problem (2.2) has at least one solution provided that $\|\beta\|<\frac{1}{(1+M) T}$.

Proof. Let $Q: Z \rightarrow Z$ and $P: X \rightarrow X$ be defined as in (2.1) and (2.4), respectively. We first construct a bounded open set Ω that satisfies Theorem 2.2. With this goal in mind, we define the set Ω_{1} by

$$
\Omega_{1}=\{x \in \operatorname{dom} L \backslash \operatorname{ker} L: L x=\mu N x \text { for some } \mu \in(0,1)\} .
$$

Let $x \in \Omega_{1}$ and write x as $x=P x+(I-P) x$. Then

$$
\begin{equation*}
\|x\| \leq\|P x\|+\|(I-P) x\| . \tag{3.1}
\end{equation*}
$$

Since $x \in \Omega_{1}$ then $(I-P) x \in \operatorname{dom} L \cap \operatorname{ker} P=\operatorname{Im} K_{P}$. Note that $N x=\frac{1}{\mu} L x \in \operatorname{Im} L, \mu \in$ $(0,1)$. We obtain from the inequality (2.5) that

$$
\begin{equation*}
\|(I-P) x\|=\left\|K_{P} L(I-P) x\right\| \leq\|L(I-P) x\| T=\|L x\| T<\|N x\| T . \tag{3.2}
\end{equation*}
$$

From (H_{2}) we have that $\|N x\| \leq\|\beta\|\|x\|+\|\delta\|$, and so by (3.1) and (3.2), we obtain,

$$
\begin{equation*}
\|x\|<\|P x\|+\|\beta\|\|x\| T+\|\delta\| T . \tag{3.3}
\end{equation*}
$$

Now, $P x(t)=x(0) e^{-\int_{0}^{t} a(s) d s}$. So,

$$
\begin{equation*}
\|P x\|=|x(0)| . \tag{3.4}
\end{equation*}
$$

Since $x \in \Omega_{1}$ and $\operatorname{ker} Q=\operatorname{Im} L$, then

$$
Q N x(t)=0, \quad \text { for all } t \in[0, T] .
$$

By $\left(H_{1}\right)$ there exists $t_{0} \in[0, T]$ such that $\left|x\left(t_{0}\right)\right|<c_{1}$. Also, since

$$
x^{\prime}(t)+a(t) x(t)=q(t, x(t))
$$

then,

$$
x(0)=x\left(t_{0}\right) e^{\int_{0}^{t_{0}} a(s) d s}-\int_{0}^{t_{0}} q(r, x(r)) e^{\int_{0}^{r} a(s) d s} d r .
$$

We obtain that,

$$
\begin{align*}
|x(0)| & \leq c_{1} e^{\int_{0}^{t_{0}} a(s) d s}+\int_{0}^{t_{0}}|q(r, x(r))| e^{\int_{0}^{r} a(s) d s} d r \\
& \leq c_{1} M+\|N x\| M T \tag{3.5}\\
& \leq c_{1} M+\|\beta\|\|x\| M T+\|\delta\| M T .
\end{align*}
$$

From (3.2), (3.4), and (3.5) we get that

$$
\|x\| \leq c_{1} M+\|\beta\|\|x\| M T+\|\delta\| M T+\|\delta\| T+\|\beta\|\|x\| T .
$$

That is,

$$
\|x\| \leq \frac{c_{1}+\|\delta\| T(1+M)}{1-\|\beta\| T(1+M)} .
$$

Since $\|\beta\|<\frac{1}{(1+M) T}$, the set Ω_{1} is bounded.
Define

$$
\Omega_{2}=\{x \in \operatorname{ker} L: N x \in \operatorname{Im} L\}
$$

and let $x \in \Omega_{2}$. Since $x \in \operatorname{ker} L$, then there exists a constant c such that

$$
x(t)=c e^{-\int_{0}^{t} a(s) d s} .
$$

Since $N u \in \operatorname{Im} L=\operatorname{ker} Q$, then

$$
\int_{0}^{T} q\left(r, c e^{-\int_{0}^{r} a(s) d s}\right) e^{\int_{0}^{r} a(s) d s} d r=0 .
$$

By $\left(H_{3}\right)$, we have that $|c| \leq B$ and so $\|x\|=|c| \leq B$. The set Ω_{2} is bounded.
Before we define the set Ω_{3}, we must state our isomorphism, $J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$. Let

$$
J\left(c e^{-\int_{0}^{t} a(s) d s}\right)=c e^{-\int_{0}^{t} a(s) d s} .
$$

If the first part of $\left(H_{3}\right)$ is satisfied, then define

$$
\Omega_{3}=\left\{x \in \operatorname{ker} L:-\lambda J^{-1} x+(1-\lambda) Q N x=0\right\} .
$$

Let $x \in \Omega_{3}$. Since $x \in \operatorname{ker} L$, then there exists c_{2} such that

$$
x(t)=c_{2} e^{-\int_{0}^{t} a(s) d s} .
$$

Assume that $\left|c_{2}\right|>B>0$. Since $x \in \Omega_{3}$, we have

$$
\lambda J^{-1} x=(1-\lambda) Q N x
$$

from which we obtain,

$$
\lambda c_{2}=(1-\lambda) \frac{1}{T} \int_{0}^{T} q\left(r, c_{2} e^{-\int_{0}^{r} a(s) d s}\right) e^{\int_{0}^{r} a(s) d s} d r .
$$

If $\lambda=1$, then $c_{2}=0$. If $\lambda \in(0,1)$ then

$$
\lambda c_{2}^{2}=(1-\lambda) \frac{c_{2}}{T} \int_{0}^{T} q\left(r, c_{2} e^{-\int_{0}^{r} a(s) d s}\right) e^{\int_{0}^{r} a(s) d s} d r<0
$$

That is, $c_{2}^{2}<0$. If $\lambda=0$, we obtain from the above equation that $c_{2}=0$. Consequently, if $\lambda \in[0,1]$ we obtain a contradiction and hence $\left|c_{2}\right| \leq B$. Thus, Ω_{3} is bounded.

Let Ω be an open and bounded set such that $\cup_{i=1}^{3} \bar{\Omega}_{i} \subset \Omega$. Then the assumptions (i) and (ii) of Theorem 2.2 are satisfied. By Lemma 2.3, $L: \operatorname{dom} L \subset X \rightarrow Z$ is a Fredholm mapping of index zero. By Lemma 2.4, the mapping $N: X \rightarrow Z$ is L-completely continuous. We only need to verify that condition (iii) of Theorem 2.2 is satisfied.

We apply the invariance under a homotopy property of the Brower degree. Let

$$
H(x, \mu)= \pm \mu \mathrm{I} \mathrm{~d} x+(1-\mu) J Q N x .
$$

If $x \in \operatorname{ker} L \cap \partial \Omega$, then

$$
\begin{aligned}
\operatorname{deg}_{B}\left(\left.J Q N\right|_{\operatorname{ker} L \cap \partial \Omega}, \Omega \cap \operatorname{ker} L, 0\right) & =\operatorname{deg}_{B}(H(\cdot, 0), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}_{B}(H(\cdot, 1), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}_{B}(\pm \operatorname{Id}, \Omega \cap \operatorname{ker} L, 0) \\
& \neq 0 .
\end{aligned}
$$

All the assumptions of Theorem 2.2 are fulfilled and the proof is complete.

References

[1] M. Adivar and Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations. Electron. J. Qual. Theory Differ. Equ. 2009 Special Edition I (2009), no. 1, 20 pp.
[2] M. Adivar and Y. N. Raffoul, Stability and periodicity in dynamic delay equations. Comput. Math. Appl. 58 (2009), no. 2, 264-272.
[3] R. P Agarwal and Jinhai Chen, Periodic solutions for first order differential systems. Appl. Math. Lett. 23 (2010), no. 3, 337-341.
[4] F. D. Chen and J. L. Shi, Periodicity in logistic type system with several delays. Comput. Math. Appl. 48 (2004), no. 1-2, 35-44.
[5] E. R. Kaufmann and Y. N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl., 319 (2006), no. 1, 315-325.
[6] E. R. Kaufmann and Y. N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale. Electron. J. Differential Equations 2007 (2007), no. 27, 1-12.
[7] M. Li and M. Han, Existence of periodic solutions of nonlinear delay differential equations with impulses. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), no. 1, 95-105.
[8] Y. Li and Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl. 255 (2001), no. 1, 260-280.
[9] M. Maroun and Y. N. Raffoul, Periodic solutions in nonlinear neutral difference equations with functional delay. J. Korean Math. Soc. 42 (2005), no. 2, 255-268.
[10] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, in NSF-CBMS Regional Conference Series in Mathematics, 40. Amer. Math. Soc., Providence RI 1979.
[11] Y. N. Raffoul, Periodic solutions for neutral nonlinear differential equations with functional delay. Electron. J. Differential Equations, 102 (2003) 1-7.
[12] Y. N. Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed point Theory. Math. Comput. Modelling, 40 (2004), no. 7-8, 691-700.
[13] Y. N. Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. Comput. Modelling 40 (2004), no. 7-8, 691-700.
[14] Y. N. Raffoul, Positive periodic solutions in neutral nonlinear differential equations. E. J. Qualitative Theory of Diff. Equ. 2007 (2007), no. 16, 1-10.

[^0]: *E-mail address: erkaufmann@ualr.edu

