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Abstract

Global existence of solutions to the coupled Einstein-Maxwell system which rules
the dynamics of the considered relativistic charged fluid is proved and asymptotic be-
havior is investigated, in the case of positive cosmological constant and positive initial
velocity of the cosmological expansion factor.
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1 Introduction

Global dynamics of various relativistic kinetic matter remain an open research area in Gen-
eral Relativity. The Robertson-Walker background space-time we consider in the present
paper is known to be the basic space-time in cosmology, where homogeneous phenomena
such as the one we consider here are relevant. Notice that the whole universe is modeled
and that what we call ”particles” in the kinetic description, may be galaxies or even clus-
ters of galaxies, for which only the evolution in time is really significant. The coupled
Einstein-Maxwell system we study in the present paper and which rules the dynamics of
the considered charged fluid models physical situations which exist for instance in some
media at very high temperature such as: burning reactors, nebular galaxies, solar winds,
etc, where massive particles of ionized gas evolve with high velocities under the action of
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both their common gravitational field and self-created electromagnetic forces. The Einstein
equations for the gravitational field inquire the gravitational effects, whereas the Maxwell
equations for the electromagnetic field inform about the electromagnetic effects.

The Einstein theory stipulates that, the gravitational field, represented by the metric ten-
sor g, depending in the case we consider on a single positive real-valued function a called
the cosmological expansion factor, is determined, through the Einstein equations, by the
material and energetic content of the space-time. In the considered case, the space-time
content is represented by both the Maxwell tensor associated to the electromagnetic field F
deriving itself from a potential vector A taken in temporal gauge, and the matter tensor of
a class of relativistic fluids. We consider the case of matter tensors generated by a matter
density ρ, a unit vector u tangent to the geodesics flow, and a symmetric 2-tensor Θ called
"pressure pseudo-tensor", following the terminology introduced by A.LICHNEROWICZ
in [3] for a notion which generalizes both the notion of pure matter and the notion of rel-
ativistic perfect fluid of pure radiation type. We consider that the electromagnetic field F
is generated through the Maxwell equations, by the Maxwell current defined by both an
unknown charge density e and the unknown unit vector u tangent to the geodesics flow.
The Einstein-Maxwell system, coupled to the conservation laws, turns out to be a non lin-
ear second order differential system in a, ρ, u, F, A and Θ; which by a suitable change of
variables gives an equivalent non linear first order differential system to which the standard
theory applies.

Now our motivation for considering the Einstein equations with the cosmological con-
stant Λ is due to astrophysical applications. The cosmological constant appears to be a
wonderful tool to model and to explain mathematically the acceleration phenomenon of the
expansion of the universe, as revealed by astrophysical observations. Such models are also
studied in [1] [5] [6] [8] [9].

By global solutions in the present paper, we mean solutions defined over the whole
interval [0,+∞[. In the present paper we prove that the Einstein-Maxwell system with
cosmological constant Λ admits global solutions only if Λ≥ 0 and if the initial velocity of
expansion is positive. We prove in details that there cannot exist global solutions if Λ < 0.
We also prove that, even in the case Λ ≥ 0 which is the most studied case in the literature,
there cannot exist global solutions if the initial velocity of expansion is negative. The proof
shows that in these two cases, there exists singularities in the space-time after a finite time;
from a physical point of view, this can be interpreted as explosions occurring after a finite
time in the space-time. Finally we prove by studying the asymptotic behavior in the case
of global existence, that the space-time tends to the vacuum at late times, regardless to
the size of the initial data as a consequence of the growth of the cosmological expansion
factor which is exponential if Λ > 0 and slow if Λ = 0, modeling as we indicated above, the
acceleration phenomenon of the expansion of the universe. The present paper extends the
results of [7] to the case of a non-zero cosmological constant and to the case of relativistic
fluids of more general type than the relativistic perfect fluid of pure radiation type. The
paper is organized as follows:

• In section 1, we state all the equations. This section is the most important part of the
paper since we analyze the problem in details, we specify the hypotheses and we give
the final form of each equation.
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• In section 2, we study the global existence of solutions.

• Section 3 is devoted to the study of asymptotic behavior in the case of global exis-
tence.

2 The equations

Greek indices α, β, λ, . . . range from 0 to 3, and Latin indices i, j,k, . . . from 1 to 3. We

adopt the Einstein summation convention aαbα ≡
3
∑

α=0
aαbα.

2.1 The Einstein-Maxwell system

We consider a kind of fast moving charged massive particles in the flat Robertson-Walker
space-time (R4,g) and denote by xα = (x0,xi) = (t,xi), the usual coordinates in R4; g stands
for the unknown metric tensor of Lorentzian type with signature (−,+,+,+) which can be
written:

g =−dt2 +a2(t)[(dx1)2 +(dx2)2 +(dx3)2], (2.1)

where a > 0 is an unknown function of the single variable t, called the cosmological ex-
pansion factor. The Einstein-Maxwell system with cosmological constant can be written,
following HAWKING and ELLIS [2]:

Rαβ−
1
2

Rgαβ +Λgαβ = 8π(Tαβ + ταβ), (2.2)

∇αFαβ = euβ, (2.3)

∇αFβγ +∇βFγα +∇γFαβ = 0, (2.4)

where:

• (2.2) are the Einstein equations which are the basic equations of General Relativity,
for the metric tensor g = (gαβ) which represents the gravitational field; Rαβ is the
Ricci tensor, contracted of the curvature tensor; R = gαβRαβ is the scalar curvature,
contracted of the Ricci tensor, (gαβ) being the inverse matrix of (gαβ); Λ is a constant
called the cosmological constant; Tαβ and ταβ are respectively the matter tensor and
the Maxwell tensor we specify below.

• (2.3)-(2.4) are the two groups of the Maxwell equations written in covariant form,
for the electromagnetic field F = (F0i,Fi j), which is a closed unknown antisymmetric
2-form depending on the single variable t; F0i and Fi j are
respectively, its electric and magnetic parts. In (2.3), e ≥ 0 is an unknown scalar
function of the single variable t representing the charge density of the charged parti-
cles, and u = (uα) is an unknown time-like future pointing vector; euβ is the Maxwell
current. Recall that ∇ is the Levi-Civita connection associated to g, and indices are
raised and lowered following the rules: V α = gαβVβ; Vα = gαβV β.
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Now by Poincare Lemma, the closed 2-form F is locally exact; but since R4 is simply
connected, F is globally exact, see for instance MALLIAVIN [4]; so F globally derives on
R4 from a potential vector A. F and A are linked by:

Fαβ = ∇αAβ−∇βAα. (2.5)

We take the potential A in temporal gauge which means:

A0 = 0. (2.6)

Now we deduce from (2.5) that: ∇αFαβ = ∇α∇αAβ−∇α∇βAα which gives, using the usual
formula ∇α∇βAα−∇β∇αAα = R β

α Aα:

∇αFαβ = ∇α∇
αAβ−∇

β
∇αAα−R β

α Aα. (2.7)

We next introduce Tαβ and ταβ.
Tαβ is taken in the general form:

Tαβ = ρuαuβ +Θαβ. (2.8)

Where ρ ≥ 0 is an unknown scalar function of t, representing the matter density of the
charged particles; Θαβ is a symmetric 2-tensor called the "pressure pseudo-tensor", fol-
lowing the terminology of A.LICHNEROWICZ who introduced this notion in [3]; notice
that the particular case Θαβ=0 corresponds to the case of pure relativistic matter, and that
Θαβ = pgαβ, where p≥ 0 is a scalar function representing the pressure, corresponds to the
case of a perfect relativistic fluid of pure radiation type. We make the following assumptions
on Θαβ: {

∇αΘ
αβ = ρuβ; (2.9)

gi j
Θi j = 0. (2.10)

Assumption (2.9) is also due to A.LICHNEROWICZ [3] and assumption (2.10) which
means that the spatial part of Θ is traceless is not so restrictive since to every 2-tensor Li j on
(R3,g) where g=(gi j), one can always associate the traceless tensor Li j= Li j− 1

3 gi j(gkmLkm).
ταβ is defined by:

ταβ =−1
4

gαβFλµFλµ +FβλF λ
α . (2.11)

ταβ has the useful property (see [3]):

∇ατ
αβ = Fβ

λ
∇αFαλ. (2.12)

Now recall that solving the Einstein equations is determining both the gravitational field
and its sources. This means that we have to determine every unknown function introduced
above, namely: a, F, e, A, ρ, u, and Θ. First of all, expression (2.1) of g gives:

g00 =−1; g11 = g22 = g33 = a2;
g00 =−1; g11 = g22 = g33 = 1

a2 ;
gαβ = gαβ = 0 f or α , β,

(2.13)
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and the expression Γλ

αβ
= 1

2 gλµ
[
∂αgµβ +∂βgαµ−∂µgαβ

]
of the Christoffel symbols gives

directly: 
Γ1

10 = Γ2
20 = Γ3

30 = ȧ
a ;

Γ0
11 = Γ0

22 = Γ0
33 = ȧa;

Γλ

αβ
= 0 otherwise,

(2.14)

where the dot stands for the derivative with respect to t. Also recall that Γλ

αβ
= Γλ

βα
. Since

u=(uα) is a unit vector, we have uαuα=-1. Expression (2.1) of g then implies, since u is
future pointing i.e.u0 ≥ 0:

u0 =
√

1+a2[(u1)2 +(u2)2 +(u3)2], (2.15)

implying also that u0 ≥ 1, and in particular u0 never vanishes.
10) Determination of e
The Maxwell equation (2.3) for β=0 writes ∇αFα0= eu0; but we have ∇αFα0 = ∂αFα0 +

Γα
ασFσ0 +Γ0

αβ
Fαβ=0 since F00=0, F depends only on t, and using expression (2.14) of Γλ

αβ

and the fact that Γ0
αβ

Fαβ=0 since Γ0
αβ

= Γ0
βα

and Fαβ =−Fβα. We then have eu0=0. Then
e=0, since u0 never vanishes. As a consequence, the Maxwell equations (2.3) write:

∇αFαβ = 0. (2.16)

20) Determination of u and ρ

We use the fact that the well known identities ∇α(Rαβ− 1
2 Rgαβ +Λgαβ)=0 impose, given

the Einstein equations (2.2), that the source terms must always satisfy the conservation laws:

∇αT αβ +∇ατ
αβ = 0. (2.17)

But using (2.12) and (2.16), we have ∇αταβ=0. (2.17) then reduces to ∇αT αβ=0. Expression
(2.8) of Tαβ then gives, using assumption (2.9) on Θ: ∇α(ρuαuβ)+ ρuβ=0, which can be
written:

uβ
∇α(ρuα)+ρuα

∇αuβ =−ρuβ. (2.18)

The contracted multiplication of (2.18) by uβ gives, using uβuβ=-1, which implies uβ∇αuβ =
0:

∇α(ρuα) =−ρ. (2.19)

(2.18) then gives, using the expression of ∇α(ρuα) provided by (2.19):

ρuα
∇αuβ = 0. (2.20)

Computing the left hand side (l.h.s) of (2.19) gives, since ρ is a scalar function, the equation
in ρ:

ρ̇+(
1+∇αuα

u0 )ρ = 0. (2.21)

Solving (2.21) as an ordinary differential equation (o.d.e.) in ρ over [0, t], t > 0, gives:

ρ = ρ(0)exp
(
−

R t
0(

1+∇αuα

u0 )(s)ds
)

,
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which shows that (ρ(0) > 0) =⇒ (ρ > 0). We will make the assumption that:

ρ(0) > 0. (2.22)

So that we will always have:
ρ > 0. (2.23)

(2.20) then gives, using (2.23), the differential system in u=(uα):

uα
∇αuβ = 0, (2.24)

which shows that u=(uα) is tangent to geodesics flow. So, if ρ and u satisfy (2.21) and
(2.24), then the conservation laws (2.17) are satisfied.

Now using the formula ∇αuβ = ∂αuβ +Γ
β

αλ
uλ, (2.24) gives:

u̇β =−Γ
β

αλ

uλuα

u0 . (2.25)

But we know by (2.15) that a and the ui determine u0. Then, (2.25) gives, using (2.14), the
differential system in ui:

u̇i +2(
ȧ
a
)ui = 0; i = 1,2,3,

which solves at once over [0,t] to give:

ui = ui(0)
(

a(0)
a

)2

; i = 1,2,3. (2.26)

(2.26) shows that the cosmological expansion factor a determines the ui, i=1,2,3. We are
now able to state the final form of the equation in ρ. (2.25) gives for β=0, and using (2.14):

u̇0 =− ȧa
u0

3

∑
i=1

(
ui)2

.

Now we have, using once more (2.14): ∇αuα= u̇0 +3 ȧ
a u0. We then deduce, using expression

(2.15) of u0 and expression (2.26) of ui, that equation (2.21) in ρ can be written:
ρ̇ =−

 ȧ
a

2+
1

1+ k2
0

a2

+
1

(1+ k2
0

a2 )
1
2

ρ; (2.27)

where:k0 = (a(0))2

[
3

∑
i=1

(
ui(0)

)2

] 1
2

. (2.28)

30) Determination of F and A
- Concerning F: the Maxwell equation (2.16) for β=i, i.e., ∇αFαi=0, gives: ∇αFαi= ∂αFαi +
Γα

αλ
Fλi +Γi

αλ
Fαλ = ∂0F0i +Γα

αλ
Fλi=0 and, using (2.14) we obtain Ḟ0i +3 ȧ

a F0i = 0, which
solves directly over [0,t], t > 0 to give:
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F0i = F0i(0)
(

a(0)
a

)3

. (2.29)

Observe that (2.5) gives Fαβ = ∇αAβ−∇βAα and a direct calculation using the temporal
gauge A0 =−A0 = 0 gives, using (2.14): F0i =−Ȧi−2 ȧ

a Ai; so that in (2.29) we have:

F0i(0) =−Ȧi(0)−2
ȧ(0)
a(0)

Ai(0). (2.30)

Next, (2.5) also gives Fαβ= ∂αAβ - ∂βAα; then, since A depends only on t, we have ∂iA j−
∂ jAi=0, so that:

Fi j = 0, (2.31)

which means that the electromagnetic field F reduces to its electric part F0i. Also notice
that the Maxwell equations (2.4) are identically satisfied since (2.4) is equivalent to:

∂0Fi j +∂iFj0 +∂ jF0i = 0, ∂iFjk +∂ jFki +∂kFi j = 0,

relations always satisfied given (2.31) and the fact that F depends only on t.
- Concerning A: we deduce from the temporal gauge A0 = 0, which implies A0=0, and
using (2.14), that: ∇αAα = ∂αAα + Γα

αλ
Aλ = ∂0A0 + Γα

αiA
i = 0, which means that in the

homogeneous case we consider, A also satisfies the LORENTZ gauge:

∇αAα = 0. (2.32)

Then, since A0 = 0 is known, (2.7), (2.16) and (2.32) give the second order differential
system in Ai, which is a system of wave equations in a curved space-time:

∇α∇
αAi = Ri

jA
j.

A straight forward calculation yields, using the expression of the Ricci tensor

Rαβ =
(

∂λΓ
λ

βα
−∂βΓ

λ

λα

)
+
(

Γ
ν

βα
Γ

λ

λν
−Γ

ν

λα
Γ

λ

βν

)
, (2.33)

also using expression (2.14) of Γλ

αβ
and ∇α∇α = gαβ∇α∇β, then gives the second order

differential system in Ai, i= 1, 2, 3:

Äi +5
(

ȧ
a

)
Ȧi +2

[
ä
a

+2
(

ȧ
a

)2
]

Ai = 0. (2.34)

40) Determination of Θ

Here we need the detailed expressions of each side of the Einstein equations (2.2). Let
us introduce the Einstein tensor:

Sαβ = Rαβ−
1
2

Rgαβ. (2.35)
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We obtain, using (2.13), (2.14), (2.33), also see [7] or [8]:
S00 = 3

( ȧ
a

)2 ;
S11 = S22 = S33 =−2aä− (ȧ)2 ;
Sαβ = 0 i f α , β.

(2.36)

Next, expression (2.11) of ταβ gives, using Fi j = 0 given by (2.31) and which implies F i j =
gikg jlFkl = 0: 

τ00 = a2

2

3
∑

i=1

(
F0i
)2 ;

τ0i = 0;

τii = a4

(
1
2

3
∑
j=1

(
F0 j
)2−

(
F0i
)2

)
;

τi j =−a4F0iF0 j i f i , j.

(2.37)

Now, since gαβ = 0 if α , β, (2.36) gives, using (2.35): Rαβ− 1
2 Rgαβ +Λgαβ = 0 if α , β.

The Einstein equations (2.2) then impose that we must also have: T0i +τ0i=0 and Ti j +τi j=0
if i , j; expression (2.37) of ταβ then implies, using expression (2.8) of Tαβ, that we must
have: {

Θ0i =−ρu0ui;
Θi j =−ρuiu j +a4F0iF0 j i f i , j,

(2.38)

which shows, using u0 = −u0, ui = a2ui, the expressions (2.26) and (2.29) of ui and F0i,
that ρ and a determine Θ0i and Θi j for i , j.

Next, since g11 = g22 = g33 = a2, (2.36) shows that the Einstein equations (2.2) for
α = β = i have exactly the same left hand side which is:

L =−2äa− (ȧ)2 +Λa2. (2.39)

The Einstein equations (2.2) for α = β = i then impose that these equations must also have
the same right hand side, i.e., using (2.8):{

ρ(u1)2 +Θ11 + τ11 = ρ(u2)2 +Θ22 + τ22;
ρ(u2)2 +Θ22 + τ22 = ρ(u3)2 +Θ33 + τ33.

(2.40)

The expressions (2.26) and (2.29) of ui and F0i show that if we take:{
F01(0) = F02(0) = F03(0) , 0,
u1(0) = u2(0) = u3(0),

(2.41)

then we will have: {
F01 = F02 = F03,
u1 = u2 = u3,

(2.42)

and since ui = a2ui and F0i =−a2F0i, we will also have:{
F01 = F02 = F03,
u1 = u2 = u3.

(2.43)
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The expression of τii in (2.37) then implies, using (2.42) and (2.29):

τ11 = τ22 = τ33 =
a6(0)

(
F01(0)

)2

a2 . (2.44)

(2.43) and (2.44) show that (2.40) reduces to:

Θ11 = Θ22 = Θ33. (2.45)

Assumption (2.10) on Θ which gives Θ11 +Θ22 +Θ33 = 0 then implies, using (2.45) that:

Θ11 = Θ22 = Θ33 = 0. (2.46)

In what follows, we assume that (2.41) holds. Notice that F01(0) ,0 implies, given (2.29)
that F01 never vanishes so that the electromagnetic field is not trivial. By (2.38) and (2.46) it
appears that, between the ten independent components Θ00, Θ0i, Θi j of Θ, only Θ00 is still to
determine. For this purpose, we consider assumption (2.9) on Θ for β=0; i.e: ∇αΘα0 = ρu0.
We have, using (2.14): ∇αΘα0 = ∂0Θ00 + Γα

αλ
Θλ0 + Γ0

αλ
Θαλ = ∂0Θ00 + 3 ȧ

a Θ00, since by
(2.46), Θii = 1

a4 Θii = 0. Hence Θ00 satisfies:

Θ̇
00 +3

ȧ
a

Θ
00 = ρu0. (2.47)

But Θ00 = Θ00; then equation (2.47) determines Θ00.
50) Determination of a
According to what we said above, a will be determined by the Einstein equations (2.2),

which reduce, using (2.8), (2.46), the notation (2.35) to the two equations (2.2) for α = β=0
and α = β=1: {

S00 +Λg00 = 8π(ρ(u0)2 +Θ00 + τ00);
S11 +Λg11 = 8π(ρ(u1)2 + τ11).

(2.48)

Now, using (2.13), u0 =−u0, u1 = a2u1, (2.26), (2.29), (2.37), (2.42), (2.39), system (2.48)
can be written in terms of a:

3
(

ȧ
a

)2

−Λ = 8π

[
ρ(1+

c2
0

a2 )+
d2

0
a4 +Θ00

]
; (2.49)

−2
ä
a
−
(

ȧ
a

)2

+Λ = 8π

[
c2

0
3

ρ

a2 +
d2

0
3a4 ,

]
, (2.50)

where, using the expression of |F01(0)| provided by (2.30):{
c0 =

√
3a2(0)|u1(0)|;

d0 =
√

6
2 a3(0)|Ȧ1(0)+2 ȧ(0)

a(0)A1(0)|. (2.51)

Now, in order to simplify the problem, and given (2.30) and (2.41) we assume to take:{
Ai(0) = 0, i = 1,2,3;
Ȧ1(0) = Ȧ2(0) = Ȧ3(0) , 0.

(2.52)

By this assumption we justify in what follows, (2.51) gives:

d0 =
√

6
2

a3(0)|Ȧ1(0)|> 0. (2.53)

Notice that, given (2.52), the system (2.34) in Ai reduces to the single equation for i=1.
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2.2 Cauchy problem and constraints

We have to study the coupled system (2.49)-(2.50)-(2.27)-(2.34)-(2.47) in (a, ρ, A1, Θ00)
given that by (2.15), (2.26), (2.29), (2.31), (2.38), and (2.46) the solution will provide the
unknown u, F, Θ0i, Θi j.

Let the real numbers:

a0 > 0, ρ0 > 0, b0,B1
0 , 0, ω0,u1

0 (2.54)

be given. We look for solutions (a,ρ,A1,Θ00) on [0,T[, T ≤ +∞, of (2.49)-(2.50)-(2.27)-
(2.34)-(2.47) satisfying the relations:{

a(0) = a0; ȧ(0) = b0; ρ(0) = ρ0; A1(0) = 0;
Ȧ1(0) = B1

0 , 0; Θ00(0) = ω0;
(2.55)

called the initial conditions, and such that, in (2.26) for i=1, u1(0) = u1
0 and in (2.29), given

(2.30), (2.41) and (2.52), F01(0) = B1
0. This is the Cauchy problem for the considered

system with the prescribed initial data (2.54). Notice that in (2.54) and (2.55) we take
B1

0 , 0 and A1(0) = 0 according to (2.52).
Now, it is well known that equation (2.49) called the Hamiltonian constraint is satisfied

in the whole domain of the solutions of equation (2.50) called the Einstein evolution equa-
tion, if and only if, (2.49) is satisfied for t=0. This means, using (2.55), if the initial data
satisfy:

3
(

b0

a0

)2

−Λ = 8π

[
ρ0(1+

c2
0

a2
0
)+

d2
0

a4
0

+ω0

]
, (2.56)

called the initial constraint. It shows useful as we will see, to have in (2.49), Θ00 ≥ 0. But
solving equation (2.47) in Θ00 over [0,t], t > 0, yields, using (2.55):

Θ
00(t) =

(
a0

a(t)

)3
[

ω0 +
Z t

0

(
a(s)
a0

)3

(ρu0)(s)ds

]
, (2.57)

which shows, since a > 0, ρ > 0, u0 > 0, that we will have Θ00 ≥ 0 if we take ω0 ≥ 0.
But notice that ω0 cannot be chosen freely, since ω0 is linked to the other initial data by the
initial constraint (2.56). Also notice that by (2.51), (2.53) and u1(0) = u1

0, we have in (2.56):
c2

0 = 3a4
0(u

1
0)

2 and d2
0 = 3

2 a3
0(B

1
0)

2. Now, if the constants Λ, ρ0, a0, u1
0, B1

0 are given, we can

always choose |b0| sufficiently large to have k0 := 3
(

b0
a0

)2
−Λ−8π

[
ρ0(1+ c2

0
a2

0
)+ d2

0
a4

0

]
≥ 0

and this allow to define the positive number ω0 = k0
8π

, so that (2.56) holds.
In what follows, we assume that the initial constraint (2.56) with ω0 ≥ 0 holds, so that

we will always have:
Θ

00 ≥ 0. (2.58)

Then, the Hamiltonian constraint (2.49) is always satisfied and we will use it as a property of
the solutions of the evolution equation (2.50). Also notice that equality (2.56) makes sense
only if: Λ + 8π

[
ρ0(1+ c2

0
a2

0
)+ d2

0
a4

0

]
+ ω0 ≥, which shows that the cosmological constant Λ

has a lower bound which is strictly negative since d0 > 0, and that, (2.56) provides two
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possible choices of b0 = ȧ(0), called the initial velocity of expansion; namely b0 ≤ 0 and
b0 > 0. As we will see, this choice will play a key role, as far as the global existence of
solutions is concerned. Finally, notice that if we supposed A1(0) , 0 in expression (2.51) of
d0, then the initial constraint (2.56) would turn out to be a quadratic equation in b0, whose
resolution would require more severe assumptions on the initial data than taking A1(0) = 0
as assumed and adopted by (2.52).

2.3 Change of variables

Now, considering the whole system to study and in order to have an equivalent first order
system to which the standard theory applies, we set:

u = ȧ
a ,

v = 1
a2 ,

ω = Θ00,
φ = A1,

ψ = Ȧ1.

(2.59)

u is called the Hubble variable; (2.59) gives:

ä
a = u̇+u2,
v̇ =−2uv,
ω̇ = Θ̇00,
φ̇ = ψ,

ψ̇ = Ä1.

(2.60)

One then deduces from (2.49), (2.50), (2.27), (2.34) and (2.47) by a direct calculation, the
equivalent first order autonomous differential system in u, v, ρ, ω, φ and ψ:

(S)



3u2−Λ = 8π
(
ρ(1+ c2

0v)+d2
0v2 +ω;

)
(2.61)

u̇ =
Λ

2
− 3

2
u2− 4π

3
(c2

0ρv+d2
0v2); (2.62)

v̇ =−2uv; (2.63)

ω̇ =−3uω+ρ(1+ c2
0v)

1
2 ; (2.64)

ρ̇ =−
[
(1+ c2

0v)−
1
2 +u(2+

1
1+ c2

0v
)
]

ρ; (2.65)

φ̇ = ψ; (2.66)

ψ̇ =−5uψ−
[

Λ+3u2− 8π

3
(c2

0ρv+d2
0v2)

]
φ. (2.67)

We study the Cauchy problem for (S) with initial conditions deduced from (2.55) and (2.59):{
u0 := u(0) = b0

a0
,v0 := v(0) = 1

a2
0
,ω0 := ω(0)≥ 0,

ρ0 := ρ(0),φ0 := φ(0) = 0,ψ0 := ψ(0) = B1
0 , 0.

(2.68)
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Remark 2.1. Solving equation (2.63) in v over [0,t], t ≥0 gives, using (2.68): v(t) =
1
a2

0
exp(−2

R t
0 u(s)ds) > 0. Then also using (2.23), (2.58) and (2.59), we conclude that in

the first order differential system (S) above, the solutions v, ρ and ω always satisfy

v > 0; ρ > 0; ω≥ 0. (2.69)

Remark 2.2. Equation (2.61) which involves no derivatives is the Hamiltonian constraint
(2.49), written in terms of u, v, ρ and ω.

3 Global existence of solutions

Observe first of all that in the case Λ ≥ 0, since ρ0 > 0 and ω0 ≥ 0, the initial constraint

(2.56) gives, using (2.53): 3
(

b0
a0

)2
>

8πd2
0

a4
0

> 0, and this implies b0 , 0. So, we can only
take b0 < 0 or b0 > 0. Consider the first order differential system (S) to study; its right hand
side is a C∞ function of the variable (u,v,ρ,ω,φ,ψ) ∈ R6 and is then locally lipschitzian
with respect the R6-norm. The standard theory on the first order differential systems then
guarantees the local existence of a unique solution to the Cauchy problem. The problem
here is to prove, whether or not, this solution is global. We prove:

Proposition 3.1. 10) If Λ < 0, then the coupled Einstein-Maxwell system has no global
solution.

20) If Λ≥ 0 and b0 < 0, then the coupled Einstein-Maxwell system has no global solu-
tion.

Proof 10) Let Λ < 0 be given. Suppose the Einstein-Maxwell system has a global
solution over [0,+∞[. Then, by (2.50), a is of class C2 and by (2.59), u is of class C1 on
[0,+∞[. Now, equation (2.62) in u implies, since Λ < 0, and using (2.69):{

u̇ <−3
2 u2;

u̇≤ Λ

2 .
(3.1)

Integrating the second inequality (3.1) over [0,t], t > 0, yields u(t)≤ u0 + Λ

2 t, which implies
that u(t)−→−∞ as t −→+∞, since Λ < 0. So, there exists t0 > 0 such that u(t0) < 0. But
it is well known, given the first inequality (3.1), that if a function z satisfies:

ż =−3
2

z2; z(t0) = u(t0) < 0, (3.2)

then u(t)≤ z(t) for t ≥ t0; (3.2) shows that z is a decreasing function for t ≥ t0 and hence
z(t) ≤ z(t0) < 0 for t ≥ t0; then, z(t) , 0 for t ≥ t0 and the equation in z separates and
integrates over [t0, t] to give, using z(t0) = u(t0): z(t) = 2u(t0) [2+3u(t0)(t− t0)]

−1, which
shows that z(t) −→ −∞ as t −→< t∗ := t0− 2

3u(t0)
> t0. Since u(t) ≤ z(t) for t ≥ t0, we

conclude that u(t) −→−∞ as t −→< t∗. But this is impossible, since u being continuous
over [0,+∞[ should remain bounded on the line segment [t, t∗]. So there can exist no global
solution if Λ < 0.
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20) Let Λ≥ 0 and b0 < 0 be given. Suppose the Einstein-Maxwell system has a global
solution over [0,+∞[; then for the same reasons as in 10), u is class of C1 over [0,+∞[. Now
the Hamiltonian constraint (2.61) gives, since Λ≥ 0 and using (2.69) which gives v > 0:

3u2 ≥ 8πd2
0v2 > 0. (3.3)

(3.3) shows in particular that u never vanishes. So, since b0 < 0, (2.68) gives u(0) = u0 =
b0
a0

< 0, then u < 0, since u is continuous. Equation (2.63) in v then gives: v̇ = (−2u)v > 0,
since−u > 0 and v > 0. So v is an increasing function and this implies v≥ v0 > 0. We then
deduce from (3.3) that:

3u2 ≥ 8πd2
0v2

0 := γ0 > 0. (3.4)

Now (3.4) implies, since u is continuous: u≥
√

γ0
3 or u≤−

√
γ0
3 . But we know that u < 0.

We then have:

u≤−
√

γ0

3
. (3.5)

Equation (2.63) in v implies, using (3.5) and v≥ v0:

v̇ = (−2u)v≥ 2
√

γ0

3
v0 := h0 > 0. (3.6)

Integrating (3.6) over [0, t] yields: v(t)≥ h0t + v0 > 0 which implies that: v2(t)−→+∞ as
t −→+∞; (3.3) then implies that:

u2(t)−→+∞ as t −→+∞. (3.7)

Now equation (2.62) in u gives, since ρ > 0, v > 0:

u̇ <
Λ

2
− 3

2
u2 =−1

2
u2 +(

Λ

2
−u2). (3.8)

But by (3.7) Λ

2 −u2(t)−→−∞ as t −→+∞. So there exists t0 > 0 such that Λ

2 −u2(t) < 0
for t ≥ t0. Then (3.8) implies: u̇ <−1

2 u2 in [t0,+∞[. We then also use (3.5) and proceed as
in 10) to conclude to the non global existence. This completes the proof of proposition 2.1.
Next we prove:

Theorem 3.2. If Λ≥ 0 and b0 > 0, then the coupled Einstein-Maxwell system has a global
solution.

Proof Also following the standard theory on the first order differential system, to prove
that the coupled Einstein-Maxwell system has a global solution, it will be sufficient if we
could prove that every solution of the Cauchy problem for the differential system (S) re-
mains uniformly bounded on every bounded interval [0,T ], 0 < T < +∞.

So let Λ≥ 0 and b0 > 0 be given. Since Λ≥ 0 (3.3) still holds and implies that u never
vanishes. But since this time we have b0 > 0, (2.68) gives u(0) = u0 = b0

a0
> 0, then u > 0

since u is continuous.
10) Using u > 0 and v > 0, equation (2.63) in v gives: v̇ =−2uv < 0. So v is a decreasing

function and we have 0 < v≤ v0. Then v is bounded.
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20) Using u > 0, ρ > 0 and v > 0, equation (2.65) in ρ implies ρ̇ < 0; so ρ is a decreasing
function and (2.69) implies 0 < ρ≤ ρ0. Then ρ is bounded.

30) The Hamiltonian constraint (2.61) implies, since ρ > 0, v > 0 and ω≥ 0: 3u2 > Λ;
then 3u2

2 > Λ

2 and Λ

2 −
3u2

2 < 0. Equation (2.62) in u then implies, since ρv > 0, that u̇ < 0.
So u is a decreasing function and since u > 0, we have: 0 < u≤ u0. Then u is bounded.

40) Equation (2.64) in ω implies, using 0 < u≤ u0, 0 < v≤ v0, 0 < ρ≤ ρ0 and ω≥ 0:
|ω̇| ≤ 3u0ω+ p0, where p0 = ρ0(1+ c2

0v0)
1
2 . So we have by integration over [0, t]:

ω(t)≤ (ω0 + p0T )+3u0

Z t

0
ω(s)ds, t ∈ [0,T ]. (3.9)

But by Gronwall lemma, we have ω(t)≤ z(t) where z satisfies the integral equation:

z(t) = (ω0 + p0T )+3u0

Z t

0
z(s)ds, t ∈ [0,T ]. (3.10)

(3.10) is equivalent to: ż(t) = 3u0z(t) ; z(0) = ω0 + p0T , (0≤ t ≤ T ), which gives:

z(t) = (ω0 + p0T )exp3u0t ≤ (ω0 + p0T )exp3u0T .

Then we have: 0≤ ω(t)≤ (ω0 + p0T )exp3u0T . Then ω is uniformly bounded on [0,T].
50) Equation (2.67) in ψ gives, using the above results:

|ψ̇| ≤ 5u0|ψ|+Q0|φ|, (3.11)

where Q0 = Λ+3u2
0 + 8π

3 (c2
0ρ0v0 +d2

0v2
0) > 0. And then, add (3.11) and |φ̇|= |ψ| provided

by equation (2.66) in φ and integrate over [0,t] to obtain, using φ(0) = 0:

|φ(t)|+ |ψ(t)| ≤ |ψ0|+(5u0 +Q0 +1)
Z t

0
(|φ(s)|+ |ψ(s)|)ds, t ∈ [0,T ].

Then, proceeding as for (3.9) we obtain: |φ(t)|+ |ψ(t)| ≤ |ψ0|exp [(5u0 +Q0 +1)T ] (t ∈
[0,T ]), which shows that φ and ψ are uniformly bounded on [0,T]. We then conclude to the
global existence of solutions over [0,+∞[. This completes the proof of theorem 2.2.

4 Asymptotic behavior

We prove:

Theorem 4.1. 1) If Λ ≥ 0 and b0 > 0, then the space-time which exists globally tends
to the vacuum at late times. In the case Λ = 0, suppose in addition that ω0 > 0.

2) If Λ > 0 and b0 > 0, then the mean curvature of the space-time admits a strictly
positive limit at late times.

1) We have to show, using expression (2.8) of Tαβ, that:

(ρuαuβ)(t)+Θαβ(t)+ ταβ(t)−→ 0 as t −→+∞. (4.1)

a) Suppose Λ > 0 and b0 > 0.
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Recall that b0 > 0 implies u = ȧ
a > 0; so the Hamiltonian constraint (2.49) implies,

using (2.69): 3
( ȧ

a

)2
> Λ > 0, from where we deduce: ȧ

a >
√

Λ

3 > 0. Integrating over [0,t]
yields:

a(t)≥ a0 exp(t

√
Λ

3
), (4.2)

which shows that a(t) −→ +∞ as t −→ +∞ with an exponential growth. Let us show that
each term in (4.1) tends to zero at late times.

i) Expression (2.37) of ταβ gives, using expression (2.29) of F0i:

|τ00| ≤
K
a4 ; τ0i = 0; |τi j| ≤

K
a2 ; i, j = 1,2,3, (4.3)

where K is an absolute constant depending only on the initial data. (4.2) then implies
ταβ(t)−→ 0 as t −→+∞.

ii) We deduce from equation (2.65) in ρ, using v > 0 and u = ȧ
a , that: ρ̇≤−2 ȧ

a ρ, which
integrates at once over [0,t] (t > 0) to give, using ρ > 0:

0 < ρ≤ ρ0

(a0

a

)2
. (4.4)

Now expression (2.15) of u0, expression (2.26) of ui give, using u0 =−u0, and ui = a2ui:

|u0| ≤
(

1+
c2

0
a2

) 1
2

; |ui| ≤ Ki, (4.5)

where Ki ≥ 0 is a constant depending only on the initial data; (4.4) and (4.5) give:
ρu2

0 ≤ ρ0
(a0

a

)2
(

1+ c2
0

a2

)
;

|ρu0ui| ≤ ρ0Ki
(a0

a

)2
(

1+ c2
0

a2

) 1
2

;

|ρuiu j| ≤ KiK jρ0
(a0

a

)2
.

(4.6)

(4.6) shows, using (4.2), that ρuαuβ)(t)−→ 0 as t −→+∞

iii) Expression (2.38) of Θ0i and Θi j give, using (4.6) and expression (2.29) of F0i: |Θ0i| ≤ Kiρ0
(a0

a

)2
(

1+ c2
0

a2

) 1
2

;

|Θi j| ≤ KiK jρ0
(a0

a

)2 + ci j
a2 , i , j,

(4.7)

where ci j ≥ 0 is a constant depending only on the initial data. Now concerning Θ00, we first
deduce from (4.5) using ȧ > 0 which implies a≥ a0, that:

u0 = |−u0| ≤
(

1+ c2
0

a2
0

) 1
2
.

The expression (2.57) of Θ00 = Θ00 then implies, using (4.4):

Θ
00(t)≤

(
a0

a(t)

)3[
ω0 +M0

Z t

0
a(s)ds

]
, (4.8)
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where M0 = ρ0
a0

(
1+ c2

0
a2

0

) 1
2
. But since a is an increasing function, we have a(s) ≤ a(t) for

s ∈ [0, t], so that (4.8) gives:

Θ
00(t)≤

ω0a3
0

a3(t)
+a3

0M0
t

a2(t)
. (4.9)

But (4.2) implies that t
a2(t) −→ 0 as t −→+∞. We then deduce from (4.7), (4.9) and (2.46)

which gives Θ11 = Θ22 = Θ33 = 0, that Θαβ −→ 0 as t −→+∞, and (4.1) follows.
b) Suppose Λ = 0 and b0 > 0. We then add in this case ω0 > 0. Expression (2.57) of

Θ00 then implies, since ρu0 > 0 that:

Θ
00(t) >

a3
0

a3 ω0 > 0. (4.10)

Now the Hamiltonian constraint (2.49) with Λ = 0 gives, using ρ > 0:

3
( ȧ

a

)2
> 8πΘ00 > Θ00.

(4.10) then implies: 3
( ȧ

a

)2
>

a3
0

a3 ω0 > 0. We then deduce, since

(b0 > 0) =⇒ (ȧ > 0)

that:
ȧa

1
2 > δ0 > 0, (4.11)

where δ0 =
(

a3
0ω0
3

) 1
2
> 0. Observe that ȧa

1
2 = 2

3

˙̂
a

3
2 , then integrating (4.11) over [0,t], t > 0,

yields:

a(t) >

(
3
2

δ0

) 2
3

t
2
3 . (4.12)

(4.12) shows that a(t)−→ 0 as t −→+∞ with a slow growth. The proof of (4.1) in the case
Λ = 0, b0 > 0, ω0 > 0 then follows the same lines as the case Λ > 0, b0 > 0, except for Θ00

for which (4.9), which remains valid, implies this time, using (4.12):

Θ
00(t)≤

ω0a3
0

a3(t)
+

M̃0

t
1
3

, (4.13)

where M̃0 = a3
0M0

(3
2 δ0
)− 4

3 ; (4.13) shows that Θ00(t) = Θ00(t)−→ 0 as t −→+∞ and this
completes the proof of point 1) in theorem (4.1).

2) Suppose Λ > 0 and b0 > 0.
The mean curvature of the space-time is a scalar function H defined by H = −gi jKi j,

where Ki j is the second fundamental form defined in the present case by Ki j = −1
2 ġi j.

Expression (2.13) of gαβ and gαβ gives: K11 = K22 = K33 =−ȧa; Ki j = 0 for i , j. We then
have giiKii = −3 ȧ

a and H = 3 ȧ
a . We deduce from the Hamiltonian constraint (2.49), since

by (4.2), (4.4) and (4.9) we have: 1
a2 −→ 0, ρ−→ 0, Θ00 −→ 0 as t −→+∞:(

ȧ
a

)2

(t)− Λ

3
=

(
ȧ
a
−
√

Λ

3

)(
ȧ
a

+

√
Λ

3

)
(t)−→ 0 as t −→+∞. (4.14)
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(4.14) implies: 
(

9
( ȧ

a

)2−3Λ

)
(t) =

(
3 ȧ

a −
√

3Λ

)(
3 ȧ

a +
√

3Λ

)
(t) =

(H−
√

3Λ)
(

3 ȧ
a +

√
3Λ

)
(t)−→ 0 as t −→+∞.

(4.15)

But since ȧ
a > 0 we have 3 ȧ

a +
√

3Λ >
√

3Λ > 0. (4.15) then implies that H(t) −→
√

3Λ

as t −→+∞, which means that the mean curvature H admits the strictly positive limit
√

3Λ

at late times. This completes the proof of theorem 3.1.

Remark 4.2. If Λ > 0 and b0 > 0, this property of H together with (4.2) which shows an
exponential growth of the cosmological expansion factor a, confirm from a mathematical
point of view, the acceleration phenomenon of the expansion of the universe. This recalls
somewhat the Hubble low according to which stars constantly go away from each other.
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