Torse-Forming Projective N-Curvature Collineation in NP- F_{n}

C. K. Mishra*
Department of Mathematics and Statistics, Dr. R. M. L. Avadh University, Faizabad-224001, Uttar Pradesh, INDIA

GaUTAM LODHI ${ }^{\dagger}$
Department of Mathematics and Statistics, Dr. R. M. L. Avadh University, Faizabad-224001, Uttar Pradesh, INDIA

Abstract

In this paper we have defined torse-forming projective $N-$ curvature collineation and discuss the existence of torse-forming projective N - curvature collineation in $N P-F_{n}$ (normal projective Finsler space) and study the corresponding results for contra, concurrent and special concircular transformations.

AMS Subject Classification: 53B40; 53C60.
Keywords: Finsler spaces, $N P-F_{n}$, projective motion, torse-forming, contra, concurrent and special concircular transformations.

1 Introduction

Let $F n$ be an n-dimensional Finsler space equipped with 2 n line elements $\left(x^{i}, \dot{x}^{i}\right)$ and positively homogeneous metric function $F(x, \dot{x})$ of degree one in directional arguments \dot{x}^{i}. The normal projective covariant derivative of a vector field $X^{i}(x, \dot{x})$ with respect to \dot{x}^{k} is given by [1]

$$
\nabla_{k} X^{i}=\partial_{k} X^{i}-\left(\dot{\partial}_{j} X^{i}\right) \Pi_{k h}^{j} \dot{x}^{h}+X^{j} \Pi_{j k}^{i},
$$

where

$$
\Pi_{k h}^{i}=G_{k h}^{i}-\frac{\dot{x}^{i}}{n+1} G_{k h r}^{r}
$$

which form a connection called the normal projective connection and $\partial_{k}=\frac{\partial}{\partial_{x^{k}}}, \dot{\partial}_{k}=\frac{\partial}{\partial_{x^{k}}}$ preserve the vector character of X^{i}.

[^0]The functions $\Pi_{k h}^{i}, G_{k h}^{i}$ and $G_{k h r}^{r}$ are symmetric in their lower indices and are positively homogeneous of degree 0,0 and -1 respectively in their directional arguments. The functions $G_{k h}^{i}$ are the Berwald's connection parameters [2]. The derivatives $\dot{\partial}_{j} \Pi_{k h}^{i}$ denoted by $\Pi_{j k h}^{i}$ is given by

$$
\Pi_{j k h}^{i}=G_{j k h}^{i}-\frac{1}{n+1}\left(\delta_{j}^{i} G_{k h r}^{r}+\dot{x}^{i} G_{j k h r}^{r}\right),
$$

are symmetric in their lower indices and positively homogeneous of degree -1 in directional arguments and satisfy the following relations

$$
\left\{\begin{array}{l}
(a) \tag{1.1}\\
(b) \quad \Pi_{k h}^{i} \dot{x}^{k}=\Pi_{k k}^{i} \dot{x}^{k}=G_{h}^{i}, \\
(c) \\
\dot{x}_{j i}^{i} \Pi_{j h k}^{i}=0, \\
(d) \\
(e) \Pi_{j k i}^{i}=\Pi_{j i k}^{i}=G_{j k i}^{i}, \\
(e) \\
\Pi_{i k h}^{i}=\frac{2}{n+1} G_{i k h .}^{i}
\end{array}\right.
$$

Let us consider a point transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}(x), \tag{1.2}
\end{equation*}
$$

where v^{i} is a contravariant vector field. Then Lie-derivative of a tensor T_{j}^{i} and the connection coefficient $\Pi_{j k}^{i}$ are characterized by [1]

$$
£ T_{j}^{i}=v^{h}\left(\nabla_{h} T_{j}^{i}\right)-T_{j}^{h}\left(\nabla_{h} v^{i}\right)+T_{h}^{i}\left(\nabla_{j} \nu^{h}\right)+\left(\dot{\partial}_{h} T_{j}^{i}\right)\left(\nabla_{s} v^{h}\right) \dot{x}^{s}
$$

and

$$
\begin{equation*}
£ \Pi_{j k}^{i}=\nabla_{j} \nabla_{k} v^{i}+N_{h j k}^{i} v^{h}+\Pi_{h j k}^{i}\left(\nabla_{l} v^{h}\right) \dot{x}^{l} \tag{1.3}
\end{equation*}
$$

respectively. The commutation formulae with respect to Lie-derivative and other for any tensor $T_{j k}^{i}$ are given by

$$
\left\{\begin{array}{l}
(a) \quad £\left(\nabla_{l} T_{j k}^{i}\right)-\nabla_{l} £\left(T_{j k}^{i}\right)=\left(£ \Pi_{l h}^{i}\right) T_{j k}^{h}-\left(£ \Pi_{j l}^{i}\right) T_{r k}^{i}-\left(£ \Pi_{k l}^{r}\right) T_{j r}^{i}, \\
\quad(b) \quad \dot{\partial}_{l}\left(£ T_{j k}^{i}\right)-£\left(\dot{\partial}_{l} T_{j k}^{i}\right)=0 .
\end{array}\right.
$$

The Lie-derivative of the normal projective curvature tensor $N_{k j h}^{i}$ expressed in the form

$$
\begin{equation*}
\nabla_{k}\left(£ \Pi_{j h}^{i}\right)-\nabla_{j}\left(£ \Pi_{k h}^{i}\right)=£ N_{k j h}^{i}+\left(£ \Pi_{k m}^{r}\right) \dot{x}^{m} \Pi_{r j h}^{i}-\left(£ \Pi_{j m}^{r}\right) \dot{x}^{m} \Pi_{r k h}^{i} . \tag{1.4}
\end{equation*}
$$

The corresponding curvature $N_{j k h}^{i}(x, \dot{x})$ as called by[1], the normal projective curvature tensor, is given by

$$
N_{j k h}^{i}=2\left\{\partial_{[j} \Pi_{k] h}^{i}+\Pi_{l h[j}^{i} \Pi_{k] m}^{l} \hat{x}^{m}+\Pi_{l[j}^{i} \Pi_{k] h}^{l}\right\},
$$

is skew-symmetric in j and k indices and satisfied the following relations

$$
\begin{cases}(a) & N_{j k h}^{i}=-N_{k j h}^{i}, \tag{1.5}\\ (b) & \dot{\partial}_{l} N_{j k h}^{i} \dot{x}_{l}=0, \\ (c) & N_{j k i}^{i}=2 N_{[k j]}, \\ (d) & N_{i k h}^{i}=N_{k k}, \\ (e) & N_{j j h}^{k}=-N_{i j h}^{i}, \\ (f) & N_{j k h}^{i} \dot{x}_{h}=H_{j k}^{i} .\end{cases}
$$

where $H_{j k}^{i}$ is Berwald curvature tensor deviation. It is connected to Berwald curvature tensor $H_{j k h}^{i}$ by

$$
\left\{\begin{array}{l}
\text { (a) } H_{j k h}^{i}=\dot{\partial}_{j} H_{k h}^{i}=\frac{2}{3} \dot{\partial}_{j} \dot{\partial}_{[k} H_{h]}^{i}, \tag{1.6}\\
\text { (b) } H_{j k h}^{i} \dot{x}^{j}=H_{k h}^{i} .
\end{array}\right.
$$

The Berwald's curvature tensor satisfies the Bianchi identity

$$
\begin{equation*}
H_{[j k h]}^{i}=H_{j k h}^{i}+H_{k h j}^{i}+H_{h j k}^{i}=0 . \tag{1.7}
\end{equation*}
$$

The commutation formulae for any general tensor, involving the curvature tensor are given as follows

$$
\begin{equation*}
2 \nabla_{[k} \nabla_{h]} T_{j}^{i}=N_{k h l}^{i} T_{j}^{l}-N_{k h j}^{l} T_{l}^{i}-\left(\dot{\partial}_{l} T_{j}^{i}\right) N_{k h m}^{l} \dot{x}^{m} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\dot{\partial}_{j} \nabla_{k}-\nabla_{k} \dot{\partial}_{j}\right) T_{h}^{i}=\Pi_{j k l}^{i} T_{h}^{l}-\Pi_{j k h}^{l} T_{l}^{i}-\Pi_{j k m}^{l} \dot{x}^{m}\left(\dot{\partial}_{l} T_{h}^{i}\right) . \tag{1.9}
\end{equation*}
$$

Definition 1.1.[4] The space F_{n} with normal projective connection parameter $\Pi_{h k}^{i}$ and normal projective curvature tensor $N_{j k h}^{i}$, is termed as normal projective Finsler space and usually denoted by $N P-F_{n}$.

2 Preliminaries

Torse-forming infinitesimal transformations in a Finsler space were discussed by R. B. Misra and C. K. Mishra [7]. Special concircular projective curvature collineation in recurrent Finsler space was introduced by S. P. Singh[6].

Definition 2.1.[5] A Finsler space Fn is said to admit N-curvature collineation, if there exist a vector field v^{i} such that

$$
£ N_{j k h}^{i}=0,
$$

We also consider an infinitesimal transformation of the form

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}(x), \quad \quad \nabla_{k} v^{i}=v^{i} \mu_{k}+\lambda \delta_{k}^{i} \tag{2.1}
\end{equation*}
$$

where λ is a scalar function and μ_{k} being any non null vector field. Such a transformation is called a torse-forming transformation[3].
In view of infinitesimal transformation (1.2) in [1], defined a projective motion, if there a homogeneous scalar function p of degree one in $\dot{x}^{\prime} s$ satisfying

$$
\begin{equation*}
£ \Pi_{j k}^{i}=2 \delta_{(j}^{i} p_{k)} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{j}=\dot{\partial}_{j} p \tag{2.3}
\end{equation*}
$$

and satisfy the conditions

$$
\begin{cases}(a) & \dot{x}^{k} p_{k}=p \tag{2.4}\\ (b) & \dot{x}^{k} p_{k j}=0\end{cases}
$$

Theorem 4.1 [3], have proved that the scalar function λ appearing in (2.1) is a point function.

$$
\begin{equation*}
\dot{\partial}_{l} \lambda=0 . \tag{2.5}
\end{equation*}
$$

We have the next particular cases:
A torse-forming transformation becomes
(1) a contra transformation, If $\lambda=0$ and $\mu_{j}=0$ in (2.1), such that

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}(x), \quad \nabla_{k} v^{i}=0 . \tag{2.6}
\end{equation*}
$$

(2) a concurrent transformation, If $\mu_{j}=0$ and $\lambda=c$ (c being a constant) in (2.1), such that

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}(x), \quad \nabla_{k} v^{i}=c \delta_{k}^{i} . \tag{2.7}
\end{equation*}
$$

(3) a special concircular transformation, If $\mu_{j}=0$ and $\lambda \neq$ constant in (2.1), such that

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}(x), \quad \nabla_{k} v^{i}=\lambda \delta_{k}^{i} . \tag{2.8}
\end{equation*}
$$

3 Torse-forming projective N-curvature collineation in $N P-F_{n}$

Definition 3.1. In $N P-F_{n}$, if the normal projective curvature tensor field $N_{j k h}^{i}$ satisfies the relation

$$
\begin{equation*}
£ N_{j k h}^{i}=0, \tag{3.1}
\end{equation*}
$$

where $£$ represents Lie-derivative defined by the transformation (2.1), which defines a projective motion, then the transformation (2.1) is called the torse-forming projective N-curvature collineation.

Differentiating (2.1) partially with respect to \dot{x}^{i} and applying the commutation formula (1.9), we have

$$
\begin{equation*}
\left(\dot{\partial}_{j} \nabla_{k}-\nabla_{k} \dot{\partial}_{j}\right) v^{i}=\left(\dot{\partial}_{j} \mu_{k}-\dot{\partial}_{k} \mu_{j}\right) v^{i}=\Pi_{j k l}^{i} v^{l} . \tag{3.2}
\end{equation*}
$$

Transvecting (3.2) by \dot{x}^{j} and using (1.1)(c), we get

$$
\left(\dot{\partial}_{j} \nabla_{k}-\nabla_{k} \dot{\partial}_{j}\right) \dot{x}^{j^{i}}=0 \quad \text { or } \quad\left(\dot{\partial}_{j} \mu_{k}-\dot{\partial}_{k} \mu_{j}\right) \dot{x}^{j} v^{i}=0 .
$$

Since \dot{x}^{j} and v^{i} is non zero, it implies

$$
\left\{\begin{array}{cl}
(a) & \dot{\partial}_{j} \nabla_{k} v^{i}=\nabla_{k} \dot{\partial}_{j} v^{i}, \tag{3.3}\\
(b) & \dot{\partial}_{j} \mu_{k}=\dot{\partial}_{k} \mu_{j} .
\end{array}\right.
$$

The normal projective covariant differentiation of (2.1), we have

$$
\begin{equation*}
\nabla_{j} \nabla_{k} v^{i}=v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+v^{i}\left(\nabla_{j} \mu_{k}\right)+\lambda_{j} \delta_{k}^{i}, \tag{3.4}
\end{equation*}
$$

where

$$
\nabla_{j} \lambda=\lambda_{j} .
$$

If μ_{k} follows the invariance property with respect to normal projective covariant differentiation, such that

$$
\begin{equation*}
\nabla_{j} \mu_{k}=0 . \tag{3.5}
\end{equation*}
$$

In view of (3.5), the equation (3.4) reduces to

$$
\begin{equation*}
\nabla_{j} \nabla_{k} v^{i}=v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda_{j} \delta_{k}^{i} \tag{3.6}
\end{equation*}
$$

Interchanging the indices j and k in (3.6) and subtracting the equation thus obtained to (3.6), we have

$$
\begin{equation*}
2 \nabla_{[j} \nabla_{k]} v^{i}=\lambda_{j} \delta_{k}^{i}+\lambda \delta_{j}^{i} \mu_{k}-\lambda_{k} \delta_{j}^{i}-\lambda \delta_{k}^{i} \mu_{j} \tag{3.7}
\end{equation*}
$$

Using equation (3.7) in commutation formula (1.8), we get

$$
\begin{equation*}
N_{j k h}^{i} \nu^{h}=\lambda_{j} \delta_{k}^{i}+\lambda \delta_{j}^{i} \mu_{k}-\lambda_{k} \delta_{j}^{i}-\lambda \delta_{k}^{i} \mu_{j} \tag{3.8}
\end{equation*}
$$

Transvecting (3.8) by \dot{x}^{h}, we get

$$
\begin{equation*}
H_{j k}^{i} \nu^{h}=\left(\lambda_{j} \delta_{k}^{i}+\lambda \delta_{j}^{i} \mu_{k}-\lambda_{k} \delta_{j}^{i}-\lambda \delta_{k}^{i} \mu_{j}\right) \dot{x}^{h} \tag{3.9}
\end{equation*}
$$

in view of (1.5)(f).
Differentiating (3.9) partially with respect to \dot{x}^{l} and using (1.6)(a), we have

$$
\begin{equation*}
H_{l j k}^{i} \nu^{h}=\lambda \delta_{j}^{i} \mu_{k} \delta_{l}^{h}+\lambda \dot{\partial}_{l} \mu_{k} \delta_{j}^{i} \dot{x}^{h}-\lambda \delta_{k}^{i} \mu_{l j} \dot{x}^{h}-\lambda \delta_{k}^{i} \mu_{j} \delta_{l}^{h}+\lambda_{j} \delta_{k}^{i} \delta_{l}^{h}-\lambda_{k} \delta_{j}^{i} \delta_{l}^{h} \tag{3.10}
\end{equation*}
$$

Adding the expressions obtained by cyclic change of (3.10) with respect to indices l, j and k in cyclic order, we have

$$
\begin{align*}
0= & \lambda \delta_{j}^{i} \mu_{k} \delta_{l}^{h}+\lambda \dot{\partial}_{l} \mu_{k} \delta_{j}^{i} \dot{x}^{h}-\lambda \delta_{k}^{i} \dot{\partial}_{l} \mu_{j} \dot{x}^{h}-\lambda \delta_{k}^{i} \mu_{j} \delta_{l}^{h} \tag{3.11}\\
& +\lambda_{j} \delta_{k}^{i} \delta_{l}^{h}-\lambda_{k} \delta_{j}^{i} \delta_{l}^{h}+\lambda \delta_{k}^{i} \mu_{l} \delta_{j}^{h}+\lambda \dot{\partial}_{j} \mu_{l} \delta_{k}^{i} \dot{x}^{h} \\
& -\lambda \delta_{l}^{i} \dot{\partial}_{j} \mu_{k} \dot{x}^{h}-\lambda \delta_{l}^{i} \mu_{k} \delta_{j}^{h}+\lambda_{k} \delta_{l}^{i} \delta_{j}^{h}-\lambda_{l} \delta_{k}^{i} \delta_{j}^{h} \\
& +\lambda \delta_{l}^{i} \mu_{j} \delta_{k}^{h}+\lambda \dot{\partial}_{k} \mu_{j} \delta_{l}^{i} \dot{x}^{h}-\lambda \delta_{j}^{i} \dot{\partial}_{k} \mu_{l} \dot{x}^{h}-\lambda \delta_{j}^{i} \mu_{l} \delta_{k}^{h} \\
& +\lambda_{l} \delta_{j}^{i} \delta_{k}^{h}-\lambda_{j} \delta_{l} \delta_{k}^{h} .
\end{align*}
$$

in view of (1.7).
Using (3.3)(b) in (3.11), we obtain

$$
\begin{align*}
0= & \lambda \delta_{j}^{i} \mu_{k} \delta_{l}^{h}-\lambda \delta_{k}^{i} \mu_{j} \delta_{l}^{h}+\lambda_{j} \delta_{k}^{i} \delta_{l}^{h}-\lambda_{k} \delta_{j}^{i} \delta_{l}^{h} \tag{3.12}\\
& +\lambda \delta_{k}^{i} \mu_{l} \delta_{j}^{h}-\lambda \delta_{l}^{i} \mu_{k} \delta_{j}^{h}+\lambda_{k} \delta_{l}^{i} \delta_{j}^{h}-\lambda_{l} \delta_{k}^{i} \delta_{j}^{h} \\
& +\lambda \delta_{l}^{i} \mu_{j} \delta_{k}^{h}-\lambda \delta_{j}^{i} \mu_{l} \delta_{k}^{h}+\lambda_{l} \delta_{j}^{i} \delta_{k}^{h}-\lambda_{j} \delta_{l}^{i} \delta_{k}^{h}
\end{align*}
$$

Contracting indices h and l in (3.12), we derive

$$
\begin{equation*}
(n-2)\left(\lambda \delta_{j}^{i} \mu_{k}-\lambda \delta_{k}^{i} \mu_{j}+\lambda_{j} \delta_{k}^{i}-\lambda_{k} \delta_{j}^{i}\right)=0, \tag{3.13}
\end{equation*}
$$

Contracting indices i and k in (3.13), we drive

$$
\begin{equation*}
(n-2)(n-1)\left(\lambda_{j}-\lambda \mu_{j}\right)=0 \tag{3.14}
\end{equation*}
$$

for $n>2$, the equation (3.14) yields

$$
\begin{equation*}
\lambda_{j}=\lambda \mu_{j} \tag{3.15}
\end{equation*}
$$

Differentiating (3.15) partially with respect to \dot{x}^{l} and using (2.5), we find

$$
\begin{equation*}
\dot{\partial}_{l} \mu_{j}=0 \tag{3.16}
\end{equation*}
$$

In view of (3.16), the equation (3.8) immediately reduces to

$$
\begin{equation*}
N_{j k h}^{i} v^{h}=0 \tag{3.17}
\end{equation*}
$$

Applying (2.1), (2.2), (1.1)(c), (3.6) and (3.15) in (1.3), we obtain

$$
\begin{equation*}
\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}=v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda \mu_{j} \delta_{k}^{i}+N_{h j k}^{i} \nu^{h}+\Pi_{h j k}^{i} \nu^{h} \mu \tag{3.18}
\end{equation*}
$$

where $\mu_{l} \dot{x}^{l}=\mu$.
Transvecting (3.18) by \dot{x}^{h} and using (1.1)(c), we get

$$
\begin{equation*}
\left(\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}\right) \dot{x}^{h}=\left(v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda \mu_{j} \delta_{k}^{i}\right) \dot{x}^{h}+N_{h j k}^{i} v^{h} \dot{x}^{h} \tag{3.19}
\end{equation*}
$$

Differentiating (3.19) partially with respect to \dot{x}^{l}, we have

$$
\begin{align*}
\left(\delta_{j}^{i} p_{l k}+\delta_{k}^{i} p_{l j}\right) \dot{x}^{h}+\left(\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}\right) \delta_{l}^{h}= & \left(v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda \mu_{j} \delta_{k}^{i}\right) \delta_{l}^{h} \tag{3.20}\\
& \left(\dot{\partial}_{l} N_{h j k}^{i}\right) \dot{x}^{h} v^{h}+N_{l j k}^{i} v^{h}
\end{align*}
$$

Transvecting (3.20) by \dot{x}^{l} and using (1.5)(b) and (2.4)(b), we derive

$$
\begin{equation*}
\left(\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}\right) \dot{x}^{h}=\left(v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda \mu_{j} \delta_{k}^{i}\right) \dot{x}^{h}+N_{l j k}^{i} v^{h} \dot{x}^{l} \tag{3.21}
\end{equation*}
$$

Contracting the indices h and k in (3.21), we get

$$
\begin{equation*}
\delta_{j}^{i} p+\dot{x}^{i} p_{j}=v^{i} \mu_{j} \mu+\lambda \delta_{j}^{i} \mu+\dot{x}^{i} \lambda \mu_{j} \tag{3.22}
\end{equation*}
$$

in view of (3.17).
Differentiating (3.22) partially with respect to \dot{x}^{k}, we obtain

$$
\begin{equation*}
\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}+\dot{x}^{i} p_{k j}=v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda \mu_{j} \delta_{k}^{i} \tag{3.23}
\end{equation*}
$$

Contracting i and k in equation (3.23) and using (2.4)(b), we have

$$
\begin{equation*}
(n+1)\left(p_{j}\right)=v^{h} \mu_{j} \mu_{h}+(n+1) \lambda \mu_{j} \tag{3.24}
\end{equation*}
$$

Differentiating (3.24) covariantly with respect to indices x^{k} and using equations (2.5) and (3.16), we get

$$
(n+1)\left(p_{k j}\right)=0
$$

which implies

$$
\begin{equation*}
p_{k j}=0 \tag{3.25}
\end{equation*}
$$

In view of equation (3.25), the equation (3.23) may be written as

$$
\begin{equation*}
\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}=v^{i} \mu_{j} \mu_{k}+\lambda \delta_{j}^{i} \mu_{k}+\lambda \mu_{j} \delta_{k}^{i} \tag{3.26}
\end{equation*}
$$

Equations (3.18) and (3.26) gives

$$
\begin{equation*}
\left(N_{h j k}^{i}=\Pi_{h j k}^{i} \mu\right) v^{h}=0 \tag{3.27}
\end{equation*}
$$

Since v^{h} is non zero, therefore the equation (3.27) implies

$$
\begin{equation*}
N_{h j k}^{i}=\Pi_{h j k}^{i} \mu . \tag{3.28}
\end{equation*}
$$

Interchanging the indices j and k in equation (3.28) and subtracting the equation thus obtained to (3.28), we obtain

$$
\begin{equation*}
\left(N_{h j k}^{i}-N_{h k j}^{i}\right)=0 \tag{3.29}
\end{equation*}
$$

Transvecting (3.29) by v^{j} and using (3.17), we get

$$
\begin{equation*}
v^{j} N_{h j k}^{i}=0 . \tag{3.30}
\end{equation*}
$$

Since v^{h} is a non zero Lie-invariant vector for infinitesimal transformation (1.2), we have

$$
\begin{equation*}
£ v^{j}=0 . \tag{3.31}
\end{equation*}
$$

Taking the Lie derivative of (3.30) and noting (3.31), we get

$$
\begin{equation*}
v^{j} £ N_{h j k}^{i}=0 \tag{3.32}
\end{equation*}
$$

which implies

$$
\begin{equation*}
£ N_{h j k}^{i}=0 \tag{3.33}
\end{equation*}
$$

Thus we state:
Theorem 3.1. In $N P-F_{n}(n>2)$, the torse-forming transformation (2.1), which admits projective motion, is the torse-forming projective N-curvature collineation.

4 The study of some other transformations

Case 1 In $N P-F_{n}$, the contra transformation (2.6), which defines projective motion and admits the relation (3.1), is called contra projective N-curvature collineation.

In view of (2.6) the commutation formula (1.8) gives

$$
\begin{equation*}
N_{j k h}^{i} v^{h}=0 \tag{4.1}
\end{equation*}
$$

Contracting (4.1) with respect to indices i and j and using (1.5)(d), we get

$$
\begin{equation*}
N_{k h} \nu^{h}=0 \tag{4.2}
\end{equation*}
$$

Using equations (2.2) and (2.6) in (1.3), we obtain

$$
\begin{equation*}
\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}=N_{h j k}^{i} v^{h} \tag{4.3}
\end{equation*}
$$

Contracting indices i and j in (4.3) and using (1.5)(e) and (1.5)(d), we get

$$
\begin{equation*}
(n+1) p_{k}=N_{h k} v^{h} \tag{4.4}
\end{equation*}
$$

Transvecting (4.4) by v^{k} and using (4.2), we get

$$
\begin{equation*}
(n+1) p_{k} v^{k}=0 \tag{4.5}
\end{equation*}
$$

Since v^{k} is non zero, therefore the equation (4.5) implies

$$
\begin{equation*}
(n+1) p_{k}=0 \tag{4.6}
\end{equation*}
$$

for $n \geq 1$, (4.6) gives

$$
\begin{equation*}
p_{k}=0 \tag{4.7}
\end{equation*}
$$

In view of (2.2) and (4.7), the equation (2.3) reduces to

$$
\begin{equation*}
£ N_{k j h}^{i}=0 \tag{4.8}
\end{equation*}
$$

Accordingly we state:
Theorem 4.1. In $N P-F_{n}(n \geq 1)$, the contra transformation (2.6), which admits projective motion, is the contra projective N-curvature collineation.

Case 2 In $N P-F_{n}$, the concurrent transformation (2.7), which defines projective motion and admits the relation (3.1), is called concurrent projective N-curvature collineation.

Theorem 4.2. In $N P-F_{n}(n \geq 1)$, the concurrent transformation (2.7), which admits projective motion, is the concurrent projective N-curvature collineation.

Proof. The proof is analogous to theorem (4.1).
Case 3 In $N P-F_{n}$, the special concircular transformation (2.8), which defines projective motion and admits the relation (3.1), is called special concircular projective N-curvature collineation.

In view of (2.8) the commutation formula (1.8) gives

$$
\begin{equation*}
\lambda_{j} \delta_{k}^{i}-\lambda_{k} \delta_{j}^{i}=N_{j k h}^{i} v^{h} \tag{4.9}
\end{equation*}
$$

Transvecting (4.9) by \dot{x}^{h} and using (1.5)(f), we get

$$
\begin{equation*}
\left(\lambda_{j} \delta_{k}^{i}-\lambda_{k} \delta_{j}^{i}\right) \dot{x}^{h}=H_{j k}^{i} \nu^{h} \tag{4.10}
\end{equation*}
$$

Differentiating (4.10) Partially with respect to \dot{x}^{l}, we have

$$
\begin{equation*}
\left(\lambda_{j} \delta_{k}^{i}-\lambda_{k} \delta_{j}^{i}\right) \delta_{l}^{h}=H_{l j k}^{i} v^{h} \tag{4.11}
\end{equation*}
$$

in view of (1.6)(a) and (2.5).
Adding the expressions obtained by cyclic change of (4.11) with respect to indices l, j and k in cyclic order and using equation (1.7), we have

$$
\begin{equation*}
\left(\lambda_{j} \delta_{k}^{i}-\lambda_{k} \delta_{j}^{i}\right) \delta_{l}^{h}+\left(\lambda_{k} \delta_{l}^{i}-\lambda_{l} \delta_{k}^{i}\right) \delta_{j}^{h}+\left(\lambda_{l} \delta_{j}^{i}-\lambda_{j} \delta_{l}^{i}\right) \delta_{k}^{h}=0 \tag{4.12}
\end{equation*}
$$

Contracting (4.12) with respect to indices h and l, we drive

$$
\begin{equation*}
(n-2)\left(\lambda_{j} \delta_{k}^{i}-\lambda_{k} \delta_{j}^{i}\right)=0 \tag{4.13}
\end{equation*}
$$

for $n>2$, the equation (4.13) gives

$$
\begin{equation*}
\lambda_{j} \delta_{k}^{i}=\lambda_{k} \delta_{j}^{i} \tag{4.14}
\end{equation*}
$$

From (4.9) and (4.14), we get

$$
\begin{equation*}
N_{j k h}^{i} v^{h}=0 . \tag{4.15}
\end{equation*}
$$

Using (2.2) and (2.8) in (1.3), we obtain

$$
\begin{equation*}
\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}=\lambda_{j} \delta_{k}^{i}+N_{h j k}^{i} v^{h} . \tag{4.16}
\end{equation*}
$$

Transvecting (4.16) by v^{k} and using (4.15), we get

$$
\begin{equation*}
\delta_{j}^{i} p_{k} v^{k}+p_{j} v^{i}=\lambda_{j} v^{i} . \tag{4.17}
\end{equation*}
$$

Transvecting (4.17) by \dot{x}^{k} and using (2.4)(a), we obtain

$$
\begin{equation*}
\delta_{j}^{i} p v^{k}+p_{j} v^{i} \dot{x}^{k}=\lambda_{j} \dot{x}^{k} v^{i} . \tag{4.18}
\end{equation*}
$$

Contracting indices j and k in (4.18) and using (2.4)(a), we get

$$
\left(2 p-\lambda_{j} \dot{x}^{j}\right) v^{i}=0,
$$

which implies

$$
\begin{equation*}
2 p=\lambda_{j} \dot{x}^{j} . \tag{4.19}
\end{equation*}
$$

In view of (4.19) and (4.14) the equation (4.16) reduces to

$$
\begin{equation*}
N_{h j k}^{i} v^{h}=0 . \tag{4.20}
\end{equation*}
$$

Contracting indices i and k in equation (4.14), we get

$$
\begin{equation*}
(n-1) \lambda_{j}=0, \tag{4.21}
\end{equation*}
$$

for $n>1$, equation (4.21) give

$$
\begin{equation*}
\lambda_{j}=0 \tag{4.22}
\end{equation*}
$$

From equations (4.16), (4.20), (4.22) and (2.2), we get

$$
\begin{equation*}
£ \Pi_{j k}^{i}=\delta_{j}^{i} p_{k}+\delta_{k}^{i} p_{j}=0 . \tag{4.23}
\end{equation*}
$$

In view of equation (4.23), the equation (1.4) immediately reduces to

$$
\begin{equation*}
£ N_{k j h}^{i}=0 . \tag{4.24}
\end{equation*}
$$

Accordingly we have:
Theorem 4.3. In $N P-F_{n}(n>2)$, the special concircular transformation (2.8), which admits projective motion, is the special concircular projective N-curvature collineation.

Acknowledgement The authors would like to thank Prof. Dr. V. Balan and to the referees for their useful suggestions and comments.

References

[1] K. Yano, The theory of Lie-derivatives and its Applications. North Holland, (1955).
[2] H. Rund, The Differential geometry of Finsler spaces. Springer-Verlag, (1959).
[3] R. B. Misra, F. M. Meher and N. Kishore, On a recurrent Finsler manifold with a concircular vector field. Acta Math. Acid. Sci. Hungar, 32(1978), 287-292.
[4] F. M. Meher, Projective motion in an RNP-Finsler space. Tensor, N. S. 22 (1971), 117-120.
[5] U. P. Singh and A. K. Singh, On the N-curvature collineation in Finsler space. Annales de la Soc. Sci. de Bruxelles, 95, 69-77.
[6] S. P. Singh, Special concircular projective curvature collineation in recurrent Finsler space. Istanbul Univ. Fak. Mat. Der. 60(2001), 93-100.
[7] R. B . Misra and C. K. Mishra, Torse-forming infinitesimal transformation in Finsler space. Tensor, N. S. Vol. 65 (2004).

[^0]: *E-mail address: chayankumarmishra@yahoo.com
 ${ }^{\dagger}$ E-mail address: lodhi_gautam@rediffmail.com

