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Abstract

In this paper, we give some conditions that insure the non-negativity of the solu-
tion of the relativistic Boltzmann equation in a full curved space-time, generalizing
thereby some previous results known in the flat Minkowski space-time and for the
non-relativistic Boltzmann equation.
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1 Introduction

It is clear that the unknown of the Boltzmann equation is the distribution function (or
the particle number density) f which is by definition a non-negative real valued function.

It therefore appears that when solving the Boltzmann equation, the non-negativity of f
should be insured. In many cases the non-negativity of solutions is proven when proving
the existence of solutions ([7,9,12]). But the proof of the non-negativity of solutions might
be a problem due to technical tools used to prove existence. This is the case when global
existence of solutions which are close to Maxwellian is studied ([15]) . In order to obtain
the non-negativity of the solutions f of the non-relativistic Boltzmann equation, Giraud [8]
used an appropriate decomposition f = M (1+F), and proved that for sufficiently small
initial data F0, there exists a solution F such that f is non-negative. Some other results
on non-negativity of solutions of the non-relativistic Boltzmann equation have been found
in 2001 by X. Lu and Y. Zhang [15]. They proved the non-negativity of mild solutions in
the case of collision kernels with angular cut-off and for both soft and hard potentials un-
der suitable assumptions. They further applied their results to derive the non-negativity of
some previous known solutions by showing that those known solutions satisfy the so called
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suitable assumptions. Many other works on classical non-relativistic Boltzmann equation
have been achieved by several authors who studied and proved non-negativity when proving
existence of solutions ([1,5,6,10,13,14]). In contrast to the many works on the classical
non-relativistic Boltzmann equation, the literature is relatively poor in the case of the rel-
ativistic Boltzmann equation (RBE). In this later case, M. Dudynski and Ekiel-Jezewska
[7] proved simultaneously the existence and non-negativity of global mild solutions in the
flat Minkowski space-time. N. Noutchegueme and E. Takou [12] obtained a global in time
solution of the relativistic Boltzmann equation in the Robertson-Walker space-time by us-
ing a method that preserves the necessary non-negativity physical property of the solution.
For the full curved space-time, D. Bancel and Y. Choquet Bruhat [3,4] proved the existence
and uniqueness of a local strong solution of the Boltzmann equation; but the non-negativity
of the solution was not proven. This paper aims at stating some suitable conditions un-
der which the solution of the relativistic Boltzmann equation in a full curved space-time is
non-negative.

The paper is organized as follows: section 2 is devoted to the relativistic Boltzmann
equation in a full curved space-time with specified conditions on the collision kernel. In
section 3, the main result is stated and proved. The paper also contains an appendix where
the existence of particles paths for the relativistic Boltzmann equation is rigorously proved.

2 The relativistic Boltzmann equation in a curved space-time

2.1 Notations and preliminaries

In all what follows, unless otherwise is specified, Greek indexes vary from 0 to 3 and Latin
ones from 1 to 3. The Einstein summation convention is used i.e., AαBα = ∑AαBα. A
space-time (M,g) is considered where M is a four dimensional time oriented manifold and
g is the metric tensor with signature (−,+,+,+) . (xα) denote the local coordinates on M
with x0 = t representing time and x =

(
xi
)

representing space. We consider the collisional
evolution of massive relativistic particles in absence of electromagnetic field. The time-
evolution of these particles is described by their distribution function f (also called the
particles number density) which is a non-negative real-valued function of the position (xα)
and the momentum (pα). The local coordinates on the phase space T M are denoted by
(xα, pα) . The following notations are used for convenience,

X = (t,x) , x =
(
x1,x2,x3) , P =

(
p0, p1, p2, p3) , p =

(
p1, p2, p3) .

For two vector fields U = (uα) and V = (vα), denote by

UV = gαβuαvβ, uv =
3
∑

i=1
uivi, |u|=

[
3
∑

i=1

(
ui
)2
] 1

2

,

〈U,V 〉=
∣∣∣(UV )2− (UU)(VV )

∣∣∣ 1
2
.

(2.1)

The rest mass m > 0 of the particles is normalized to unity so that the equation of the future
sheet of the mass-shell Fx (P) of the particles at (xα) with momenta momenta P is given by

PP =−1, p0 > 0. (2.2)
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The condition p0 > 0 means that particles eject towards the future. The equation (2.2)
allows to express p0 in terms of p and (xα) through g. This gives

p0 =−
g0i pi +

[(
g0i pi

)2−g00
(
gi j pi p j +1

)] 1
2

g00
. (2.3)

Equation (2.3) shows that f is a function of (t,x, p) . The invariant volume element on
Fx (P) is (see [3,4]) ,

dP =
|g|

1
2

p0
d p,

where d p = d p1d p2d p3 and |g| stands for the absolute value of the determinant of g =(
gαβ

)
.

It is assumed that at a given position (xα) only two particles collide instantaneously and
that the collision only affects the momenta of the particles that change after the collision.
(This is the so called instantaneous, binary and elastic scheme due to Lichnerowicz and
Chernikov). Denote by (P,P∗) (resp.

(
P
′
,P

′
∗

)
) the momenta of two colliding particles be-

fore (resp. after) collision. The relation between precollisional and postcollisional momenta
is determined by the conservation law of momentum due to the elasticity of the collisions.
This conservation law reads

P+P∗ = P
′
+P

′
∗. (2.4)

Equation (2.4) is equivalent to the system

p0 + p0
∗ = p

′0 + p
′0
∗ , p+ p∗ = p

′
+ p

′
∗. (2.5)

It is easy to show the following relations

PP∗ = P
′
P
′
∗, 〈P,P∗〉=

〈
P
′
,P

′
∗

〉
. (2.6)

The relation
p0 + p0

∗ = p
′0 + p

′0
∗

is the conservation of energy and can be rewritten using (2.3) to give the following conser-
vation law

e+ e∗ = e
′
+ e

′
∗, (2.7)

where e stands for the energy and is defined by

e = e(t,x, p) =
[(

g0i pi)2−g00
(
gi j pi p j +1

)] 1
2
. (2.8)

Remark. The conservation law (2.7) is the generalization to the full curved space-time
of analogous ones known in Minkowski and Robertson-Walker space-times (see [7,12]).

For simplicity, denote by

f = f (t,x, p) , f∗ = f (t,x, p∗) , f
′
= f

(
t,x, p

′
)

, f
′
∗ = f

(
t,x, p

′
∗

)
. (2.9)
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2.2 The Boltzmann equation

In a curved space-time endowed with a metric g, the Cauchy problem for the Boltzmann
equation is (see [3,4]),

∂ f
∂t + pi

p0
∂ f
∂xi −

Γi
αβ

pα pβ

p0
∂ f
∂pi = C( f )

p0 in R+×R3×R3,

f (0,x, p) = f0 (x, p) on R3×R3.

(2.10)

Here Γi
αβ

are the Christoffel symbols associated to the metric g, defined by

Γ
ν

αβ
=

1
2

gνλ

(
∂gλβ

∂xα
+

∂gλα

∂xβ
−

∂gαβ

∂xλ

)
. (2.11)

C ( f )(t,x, p) is the non-linear collision operator which describes the rate of change of f due
to binary, instantaneous and elastic collisions. It is often formally written as the difference
between the gain term C+ ( f ) and the loss term C− ( f ) (see [4]) ,

C ( f )(t,x, p) = C+ ( f )(t,x, p)−C− ( f )(t,x, p) ,

where

C+ ( f )(t,x, p) =
R
R3 |g|

1
2 1

p∗0

[R
S2 f

′
f
′
∗S (t,x, p, p∗,ω)dω

]
d p∗,

C− ( f )(t,x, p) =
R
R3 |g|

1
2 1

p∗0
[
R

S2 f f∗S (t,x, p, p∗,ω)dω]d p∗.
(2.13)

S2 stands for the unit sphere in R3. S (t,x, p, p∗,ω) is the collision kernel (also called the
collision cross-section) which is a non-negative real-valued regular function. It will later
be assumed that S (t,x, p, p∗,ω) satisfies the following symmetry conditions for s ∈ R+,
x, p, p∗, p

′
, p

′
∗ ∈ R3, ω ∈ S2

S (s,x, p, p∗,ω)
p0 (s,x, p) p∗0 (s,x, p∗)

=
S (s,x, p∗, p,ω)

p0
∗ (s,x, p∗) p0 (s,x, p)

, (2.14)

S
(

s,x, p
′
, p

′
∗,ω
)

p′0 (s,x, p′) p′
∗0 (s,x, p′

∗)
=

∂(p, p∗)
∂(p′

, p′
∗)

S (s,x, p, p∗,ω)
p0 (s,x, p) p∗0 (s,x, p∗)

. (2.15)

This implies the relativistic analogue of the classical conservation laws for f (see (3.14)).
The system (2.10) describes the time evolution of the distribution function f = f (t,x, p) on
the phase space T M. The Boltzmann equation is a first order partial differential equation
with a non local source term. Different types of solutions can be considered, e.g. strong,
weak, mild, renormalized solutions. In this paper, the non-negativity of mild solutions of
(2.10) is considered. Those mild solution may be derived from the strong ones which are
shown to exist (see [3,4]). The definition of a mild solution of (2.10) will be recalled later.

Integrating (2.10) along the particles paths t 7→ (t,x+w, p+ z) , defined by

wi (t,x, p) =
Z t

0

Pi(s)
P0(s)

ds, zi (t,x, p) =−
Z t

0

Γi
αβ

Pα(s)P(s)

P0(s)
ds, (2.16)
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leads to the following mild form of (2.10) on R+×R3×R3,

f (t,x+w, p+ z) = f0 (x, p)+
R t

0

(
C( f )

p0 (s,x+w(s,x, p) , p+ z(s,x, p))
)

ds,

t ∈ R+, x, p ∈ R3.
(2.17)

Denote by
f # (t,x, p) = f (t,x+w(t,x, p) , p+ z(t,x, p)) .

Equation (2.17) then reads

f # (t,x, p) = f0 (x, p)+
Z t

0
K( f )# (s,x, p)ds, t ∈ R+, x, p ∈ R3, (2.18)

where

K( f )(t,x, p) =
C ( f )

p0 (t,x, p). (2.19)

The proof of the existence of particles paths defined by (2.16) is somewhat lengthy, requires
some technical tools and is given in the appendix. We now give the definition of mild
solutions of (2.10) .

Definition. A function f is called a mild solution of (2.10) on R+ ×R3 ×R3 with
measurable initial value f0 if f is measurable on R+×R3×R3 and for almost all (x, p) in
R3×R3, K±( f )# (.,x, p) are in L1

loc (R+) and (2.18) holds for each t ≥ 0.

2.3 Assumptions on the collision kernel

Consider the following change of variables

(t,x, p)→ (t,y,v) , (2.20)

where
y(t,x, p) = x+w(t,x, p) , v = p+ z(t,x, p) .

Here w and z are given by (2.16) . Let B, D, α, J, l and β be defined for

(s,y,v,v∗,ω) ∈ R+×R3×R3×R3×S2

as follows

B(s,y,v,v∗,ω) =
S (s,y,v,v∗,ω)

v0 (s,y,v)v∗0 (s,y,v∗)
, (2.21)

D(s,y,v,v∗) =
Z

S2
B(s,y,v,v∗,ω)dω, (2.22)

α(s) = esssup
(y,v)∈R3×R3

[Z
R3
|g(s,y)|

1
2

D(s,y,v,v∗)
v0(s,y,v)

| f∗|v0 (s,y,v∗)dv∗

]
, (2.23)

J (s,y,v) =
∣∣∣∣∂(s,x, p)

∂(s,y,v)

∣∣∣∣ , l (s,y,v) =
[(

p0J−1)(s,y,v)]′ , (2.24)
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β(s) = esssup
(y,v)∈R3×R3

|l (s,y,v)|J (s,y,v)
v0(s,y,v)

. (2.25)

The assumptions (2.14−15) can be rewritten as

B(s,y,v,v∗,ω) = B(s,y,v∗,v,ω) ,
B
(

s,y,v
′
,v

′
∗,ω
)

= ∂(v,v∗)
∂(v′ ,v′∗)

B(s,y,v,v∗,ω) . (2.26)

Moreover the functions α and β are assumed to satisfy the following conditions

α ∈ L1
loc (R+) , (2.27)

β ∈ L1
loc (R+) . (2.28)

For any real number r, let r+ and χ(r) be defined by

r+ = max(0,r), (2.29)

χ(r) =
{

0 if r ≤ 0,
1 if r > 0.

(2.30)

It is easy to check that
r+ = rχ(r), (2.31)

f0 (x, p)≥ 0 implies
[
− f # (t,x, p)

]+
=

Z t

0

([
− f # (s,x, p)

]+)′
ds, (2.32)([

− f # (s,x, p)
]+)′

=−K( f )# (s,x, p)χ
(
− f # (s,x, p)

)
. (2.33)

From (2.32) and (2.33) it follows that

[
− f # (t,x, p)

]+
=−

Z t

0
K( f )# (s,x, p)χ

(
− f # (s,x, p)

)
ds. (2.34)

Notice that the assumption (2.26) holds for the kernel used in the flat Minkowski space-time
(see [2]) .

3 The main result

The main result is the following
Theorem. Let f be a mild solution of the system (2.10) on R+×R3×R3 with a non-

negative initial datum f0. Assume (2.26−28). Then f is non-negative on R+×R3×R3.

Proof. The proof uses similar tools to those introduced by X. Lu & Y. Zhang [15] for the
non-relativistic Boltzmann equation. It consists in three steps and uses the splitting of the
function u defined on R+ as follows,

u(t) =
ZZ

R3×R3

[
− f # (t,x, p)

]+ (
p0J−1)#

(t,x, p)dxd p. (3.1)
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It holds that
u(t) =

ZZ
R3×R3

[− f (t,y,v)]+ p0 (t,y,v)dydv. (3.1a)

Since p0 (t,y,v) is positive, it is sufficient for proving the non-negativity of f on R+×R3×
R3, to show that u(t) = 0 for any t ≥ 0.

Splitting of u(t)
From an integration by parts, using (2.33) and the non-negativity of f0, it holds that[[

− f # (s,x, p)
]+ (p0J−1

)# (s,x, p)
]t

0

=
R t

0

([
− f # (s,x, p)

]+)′ (p0J−1
)# (s,x, p)ds

+
R t

0
[
− f # (s,x, p)

]+((p0J−1
)# (s,x, p)

)′
ds

=−
R t

0 K( f )# (s,x, p)χ
(
− f # (s,x, p)

)(
p0J−1

)# (s,x, p)ds

+
R t

0
[
− f # (s,x, p)

]+((p0J−1
)# (s,x, p)

)′
ds.

(3.2)

Then by (3.1−2) and the non-negativity of f0 we get

u(t) = I1(t)+ I2(t), (3.3)

where

I1(t) =−
R t

0

(RR
R3×R3 K( f )# (s,x, p)χ

(
− f # (s,x, p)

)(
p0J−1

)# (s,x, p)dxd p
)

ds,

I2(t) =
R t

0

(RR
R3×R3

[
− f # (s,x, p)

]+((p0J−1
)# (s,x, p)

)′
dxd p

)
ds.

(3.4)

Treatment of I1(t)
By the change of variables (s,x, p)→ (s,y,v), it holds that

I1(t) =
Z t

0

(ZZ
R3×R3

[−K( f )(s,y,v)]χ(− f (s,y,v))
[
v0J−1](s,y,v)J (s,y,v)dydv

)
ds.

By (2.19) it follows that

I1(t)=
Z t

0

(ZZ
R3×R3

{Z
R3
|g(s,y)|

1
2

[Z
S2

(
− f

′
f
′
∗+ f f∗

)
χ(− f )

S
v0v∗0

dω

]
dv∗

}
v0dydv

)
ds.

(3.5)
Here the following notations have been used for convenience

p0(s,y,v)≡ v0(s,y,v), p∗0(s,y,v∗)≡ v∗0(s,y,v∗). (3.6)

From lemma 2 established by X. Lu & Y. Zhang [15], it holds that(
−r

′
r
′
∗+ rr∗

)
χ(−r)≤

(
−r

′
r
′
∗

)+
− (−rr∗)+ + |r|(−r∗)

+ , (3.7)

for any real numbers r,r∗,r
′
,r

′
∗. (3.7) implies that

I1(t)≤ I1,1(t)+ I1,2(t), (3.8)
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where I1,1(t) and I1,2(t) are defined as follows,

I1,1(t) =
R t

0

(RR
R3×R3

{R
R3 |g(s,y)|

1
2

[R
S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
Bdω

]
dv∗

}
v0dydv

)
ds,

I1,2(t) =
R t

0

(RR
R3×R3

{R
R3 |g(s,y)|

1
2
[R

S2

[
| f |(− f∗)

+]Bdω
]

dv∗
}

v0dydv
)

ds.

It holds that

I1,1(t) =
Z t

0

{Z
R3
|g(s,y)|

1
2

[ZZZ
R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
Bv0dvdv∗dω

]
dy
}

ds.

(3.9)
By (2.26) and changing the role of v and v∗ we have,

RRR
R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0 (s,y,v)dvdv∗dω

=
RRR

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0 (s,y,v∗)dvdv∗dω.

(3.10)

Moreover, by the change of variables (v,v∗)−→
(

v
′
,v

′
∗

)
and using (2.26) we have,

RRR
R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0 (s,y,v)dvdv∗dω

=
RRR

R3×R3×S2

[
(− f f∗)

+− (− f
′
f
′
∗)

+
]

B
(

s,y,v
′
,v

′
∗,ω
)

v0
(

s,y,v
′
)

dv
′
dv

′
∗dω

=−
RRR

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0

(
s,y,v

′
)

dvdv∗dω.

(3.11)

Finally, changing once more the role of v and v∗, using (2.22) in the last equality of (3.11),
we haveRRR

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0 (s,y,v)dvdv∗dω

=−
RRR

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0

(
s,y,v

′
∗

)
dvdv∗dω.

(3.12)

It follows from (3.10−12) that

4
RRR

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0 (s,y,v)dvdv∗dω

=
RRR

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)×[

v0 (s,y,v)+ v0 (s,y,v∗)− v0
(

s,y,v
′
)
− v0

(
s,y,v

′
∗

)]
dvdv∗dω.

(3.13)

The conservation of the energy

v0 (s,y,v)+ v0 (s,y,v∗) = v0
(

s,y,v
′
)

+ v0
(

s,y,v
′
∗

)
therefore implies that,ZZZ

R3×R3×S2

[(
− f

′
f
′
∗

)+
− (− f f∗)+

]
B(s,y,v,v∗,ω)v0 (s,y,v)dvdv∗dω = 0. (3.14)
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From the definition of I1,1 (t) , (3.14) implies that

I1,1 (t) = 0. (3.15)

The term I1,2(t) is now handled. Since D(s,y,v,v∗) =
R

S2 B(s,y,v,v∗,ω)dω it holds that,

I1,2(t) =
Z t

0

(ZZZ
R3×R3×R3

|g(s,y)|
1
2 | f |(− f∗)

+ D(s,y,v,v∗,ω)v0 (s,y,v)dvdv∗dy
)

ds.

(3.16)
By the change of variables (v,v∗)−→ (v∗,v) and (2.26) we obtain,

I1,2(t) =
Z t

0

(ZZZ
R3×R3×R3

|g(s,y)|
1
2 | f∗|(− f )+ D(s,y,v,v∗,ω)v0 (s,y,v∗)dvdv∗dy

)
ds,

and then

I1,2(t)=
Z t

0

(ZZZ
R3×R3×R3

|g(s,y)|
1
2

D(s,y,v,v∗)
v0(s,y,v)

| f∗|v0 (s,y,v∗)(− f )+ v0(s,y,v)dvdv∗dy
)

ds.

(3.17)
Due to the assumption (2.27), (3.17) implies that,

I1,2(t)≤
Z t

0
α(s)

(ZZ
R3×R3

(− f )+ v0(s,y,v)dvdy
)

ds. (3.18)

Recall that, due to equalities (3.1a) and (3.6), it holds thatZZ
R3×R3

(− f )+ v0(s,y,v)dvdy = u(s).

So, inequality (3.18) gives

I1,2(t)≤
Z t

0
α(s)u(s)ds. (3.19)

Finally, the relations (3.8) , (3.15) and (3.19) imply that,

I1(t)≤
Z t

0
α(s)u(s)ds. (3.20)

Treatment of I2(t) =
R t

0

(RR
R3×R3

[
− f # (s,x, p)

]+×((p0J−1
)# (s,x, p)

)′
dxd p

)
ds

From (2.24) , it holds that

I2(t) =
Z t

0

(ZZ
R3×R3

[
− f # (s,x, p)

]+
l# (s,x, p)dxd p

)
ds.

By the change of variables (s,x, p)→ (s,y,v), it follows that

I2(t) =
Z t

0

(ZZ
R3×R3

[− f (s,y,v)]+ l (s,y,v)J (s,y,v)dydv
)

ds.

Therefore, we get

I2(t)≤
Z t

0

(ZZ
R3×R3

|l (s,y,v)|J (s,y,v)
v0(s,y,v)

[− f (s,y,v)]+ v0(s,y,v)dydv
)

ds. (3.22)
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Using (3.22) , assumption (2.28) implies that

I2(t)≤
Z t

0
β(s)u(s)ds. (3.23)

Combining the inequalities (3.20) and (3.23) together with equalities (3.3) and (3.4), the
following final estimate of u(t) is derived,

u(t)≤
Z t

0
[α(s)+β(s)]u(s)ds. (3.24)

By Gronwall’s lemma, the inequality (3.24) implies that u(t) = 0. Thus the theorem is
proved.

Appendix: Existence of characteristics with respect to the relativistic Boltzmann
equation

Consider the Boltzmann equation

p0 ∂ f
∂t

+ pi ∂ f
∂xi −Γ

i
αβ

pα pβ ∂ f
∂pi = C ( f ) . (A.1)

The characteristic system associated to equation (A.1) is

dt
ds

= p0,
dxi

ds
= pi,

d pi

ds
=−Γ

i
αβ

pα pβ,
d f
ds

= C ( f ) . (A.2)

The last equation of system (A.2) is automatically verified if the first three hold together
with equation (A.1). We can therefore focus on the following system

dt
ds

= p0,
dxi

ds
= pi,

d pi

ds
=−Γ

i
αβ

pα pβ. (A.3)

The solutions of system (A.3) are called particles paths or trajectories. Note that p0 is
known if gαβ and pi are known since

p0 =−
g0i pi +

[(
g0i pi

)2−g00
(
gi j pi p j +1

)] 1
2

g00
.

Moreover, under suitable regularity assumptions on the metric g, p0, pi

p0 ,
Γi

αβ
pα pβ

p0 are C∞

functions of xα and pi. Furthermore equation dt
ds = p0

(
with p0 > 0

)
shows that t can be

taken as an increasing parameter along the particles paths. The differential system (A.3)
can be written as follows,

dt
dτ

= 1,
dxi

dτ
=

pi

p0 ,
d pi

dτ
=−

Γi
αβ

pα pβ

p0 . (A.4)

Setting z =
(
t,xi, pi

)
and Y =

(
1, pi

p0 ,−
Γi

αβ
pα pβ

p0

)
, system (A.4) takes the following form
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dz
dτ

= Y (z) . (A.5)

As pi

p0 and
Γi

αβ
pα pβ

p0 are C∞ functions of z, the vector field Y (z) is locally lipschitz. The
local existence of particles paths therefore follows i.e., for any z0 =

(
t0,xi

0, pi
0

)
, there ex-

ists ε(z0) > 0 such that equation (A.5) has, for |τ| < ε(z0) , one and only one solution z
satisfying z(0) = z0. According to the system (A.4), the solution z(τ) is given by

z(τ) =
(
t (τ,z0) ,xi (τ,z0) , pi (τ,z0)

)
,

where

t (τ,z0) = τ+ t0,
xi (τ,z0) = xi

0 +
R

τ

0
pi

p0 (s)ds,

pi (τ,z0) = pi
0−

R
τ

0
Γi

αβ
pα pβ

p0 (s)ds.

(A.6)

To prove the global existence of particles paths, it is enough to show that any solution of
the Cauchy problem

dz
dτ

= Y (z) , z(0) = z0, (A.7)

is contained in a fixed ball. Let T be a given real number such that T > 0. It is clear that
t (τ) = τ+ t0 is bounded for 0 ≤ τ ≤ T − t0.

The next step is to prove that xi (τ) = xi
0 +

R
τ

0
pi

p0 (s)ds is bounded.

Let x0 and xt be the projections of the points

y0 =
(
xi

0, pi
0
)

and
yt =

(
xi

t , pi
t
)

respectively. The distance d (x0,xt) is defined as the length of Γ where Γ : τ 7→ xi (τ) is
the projection of the flow of the vector field Y passing through z0 =

(
t0,xi

0, pi
0

)
and zt =(

t,xi
t , pi

t
)
. This implies that

d (x0,xt) =
Z t

t0

[
gi j (x(τ))

dxi

dτ

dx j

dτ

] 1
2

dτ. (A.8)

According to the system (A.4) , along Γ it holds

gi j (x(τ))
dxi

dτ

dx j

dτ
= gi j (x(τ))

pi

p0
p j

p0 . (A.9)

The hyperbolicity assumptions made by Y. Choquet-Bruhat and D. Bancel on g in [3,4]
insure that
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∃c > 0 : gi j
pi

p0
p j

p0 ≤ c. (A.10)

The hyperbolicity assumptions mentioned above are the following,

∃a,b > 0 : a |ξ|2 ≤ gi jξ
iξ j ≤ b |ξ|2 ,

−g00 ≥ a,−g00 ≥ a,
(A.11)

where

|ξ|2 =
3

∑
i=1

(
ξ

i)2
. (A.12)

Recall that the mass-shell on which the momenta of the particles are located has the equation

gαβ pα pβ =−1, p0 > 0. (A.13)

A lengthy calculation shows that equation (A.13) is equivalent to

gi j
(
wi + li)(w j + l j)=− 1

g00 −
(

1
p0

)2

, p0 > 0, (A.14)

where

wi =
pi

p0 , li =− g0i

g00 . (A.15)

From assumptions (A.11) and equation (A.14) one deduces that

a |w+ l|2 ≤ gi j
(
wi + li)(w j + l j)≤− 1

g00 ≤
1
a
. (A.16)

Therefore

|w+ l| ≤ 1
a
. (A.17)

From the inequality |w|− |l| ≤ |w+ l| , it follows due to inequality (A.17) that

|w| ≤ |l|+ 1
a
. (A.18)

The relations (A.11) and (A.15) imply that

∣∣li
∣∣≤ 1

a

∣∣g0i
∣∣ . (A.19)

If we assume that g is uniformly bounded as it is done in [3,4] , then l is bounded and so is
w. Now using assumptions (A.11) it follows that

gi j
pi

p0
p j

p0 = gi jwiw j ≤ b |w|2 .
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So as w is bounded, the inequality (A.10) is obtained. Coming back to equality (A.8) and
using inequality (A.10) it holds that

d (x0,xt)≤
√

c(t− t0)≤
√

c(T − t0) , for 0 ≤ t ≤ T. (A.20)

From this it follows that xi (τ) is bounded for 0 ≤ τ ≤ T − t0.

The last step is to prove that pi (τ) is bounded in R3.

To achieve this task, it is sufficient to show that

∃c > 0 : gi j pi p j ≤ c. (A.21)

Setting
v(τ) =

(
gi j pi p j +1

)
(τ,z0) ,

it holds that

dv
dτ

= 2gi j pi d p j

dτ
+ pi p j dgi j

dτ
= 2gi j pi d p j

dτ
+ pi p j ∂gi j

∂xα

dxα

dτ
. (A.22)

By (A.4) and (A.22), we gain

dv
dτ

= 2gi j pi

(
−

Γ
j
αβ

pα pβ

p0

)
+ pi p j

(
∂gi j

∂x0 +
∂gi j

∂xk
pk

p0

)
. (A.23)

Denote for simplicity,
∂gαβ

∂xγ
= gαβ,γ.

The relation
Γ

j
αβ

=
1
2

gλ j (gαλ,β +gβλ,α−gαβ,λ

)
,

implies that
2gi jΓ

j
αβ

= gαi,β +gβi,α−gαβ,i. (A.24)

It follows that

2gi j piΓ
j
αβ

pα pβ = pi pα pβ
(
gαi,β +gβi,α−gαβ,i

)
= 2pi pα pβgαi,β− pi pα pβgαβ,i.

(A.25)

The relations (A.24) and (A.25) imply that

dv
dτ

=− 2
p0 pi pα pβgαi,β +

1
p0 pi pα pβgαβ,i + pi p j

(
gi j,0 +

pk

p0 gi j,k

)
. (A.26)

The reduction of equation (A.26) gives

dv
dτ

=−2p0 pig0i,0 + p0 pig00,i− pi p jgi j,0. (A.27)

Now set



36 C. Tadmon

θ(τ) =
[(

g0i pi)2−g00v
]
(τ) = g0ig0 j pi p j −g00v. (A.28)

It holds that

dθ

dτ
= 2g0i pi

[
g0 j

d p j

dτ
+ p jg0 j,α

dxα

dτ

]
−g00

dv
dτ
− vg00,α

dxα

dτ

= 2g0i pi
[

g0 j

(
−

Γ
j
αβ

pα pβ

p0

)
+ p jg0 j,0 + p jg0 j,k

(
pk

p0

)]
−g00

(
−2p0 pig0i,0 + p0 pig00,i− pi p jgi j,0

)
− vg00,0− vg00,k

(
pk

p0

)
.

(A.29)

A straightforward and lengthy calculation shows that

dθ

dτ
=−p0 pi (g0ig00,0−2g00g0i,0 +g00g00,i)

+pi p j
(

2g0ig0 j,0 +g00gi j,0 + pk

p0 g0ig jk,0−2g0ig00, j

)
−vg00,0− pi

p0 vg00,i.

(A.30)

Using the fact that w =
(

pi

p0

)
is bounded, we have

∃c0 > 0 :
∣∣∣∣ pi

p0

∣∣∣∣≤ c0. (A.31)

Due to assumptions (A.11) and the definition of v, it holds that

a |p|2 ≤ gi j pi p j ≤ v.

From the relation
v =− 1

g00
(−g00v)≤ 1

a
θ.

it follows that ∣∣pi
∣∣≤ 1

a

√
θ. (A.32)

Since

p0 =−g0i pi +
√

θ

g00
,

it follows from assumptions (A.11) that

∣∣p0∣∣≤ 1
a

(∣∣g0i pi
∣∣+√

θ

)
.

So, if g is bounded, then

∃cg > 0 :
∣∣p0∣∣≤ cg

√
θ, (A.33)

where cg is a constant depending on g. Due to the presence of first derivatives of g in
equation (A.30), we assume that those derivatives are also uniformly bounded. Doing this,
we derive the following inequality from the relations (A.30) , (A.31) , (A.32) and (A.33)
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dθ

dτ
≤Cθ, (A.34)

where C is a constant depending on g and the first derivatives of g. Inequality (A.34) implies
that

θ(τ)≤ θ(0)+
Z

τ

0
Cθ(s)ds. (A.35)

Thus Gronwall’s lemma implies that

[θ(τ)]
1
2 ≤ [θ(0)]

1
2 exp

[
1
2

Z
τ

0
Cds

]
= [θ(0)]

1
2 exp

[
1
2

Cτ

]
. (A.36)

Finally θ satisfies the following inequality for 0 ≤ τ ≤ T − t0, 0 ≤ t0 < T,

θ(τ)≤ [K (T )]2 , (A.37)

where K (T ) = [θ(0)]
1
2 exp

[1
2CT

]
. Coming back to the definitions of

v(τ) =
(
gi j pi p j +1

)
(τ) ,

and
θ(τ) =

[(
g0i pi)2−g00v

]
(τ) ,

we get

(
gi j pi p j)(τ) < v(τ)≤ 1

a
θ(τ)≤ [K (T )]2

a
,

which is the desired inequality (A.21) .
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