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Abstract

We shall study the equivalence problem for ordinary differential equations with
respect to the affine transformation group A(2,R).
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1 Introduction

Two differential equations are called equivalent if one can be transformed into another by
a certain change of variables. In particular this change of variables transforms solutions of
one equation into solutions of another. In general, the problem of equivalence of differential
equations consists in determining whether two equations are equivalent up to a given class
of transformations. W. Kryńsky [12] and B. Dubrov [7] examine differential equations up
to contact transformations. Sophus Lie was the first to use some approach to the problem of
equivalence of differential equations (description of invariants, computation of symmetry
group).

In [9] Fels considers the problem of equivalence between two systems of second-order
differential equations

d2xi

dt2 = f i(t,x j,
dx j

dt
) (1 ≤ i, j ≤ n) (1.1)

d2yi

ds2 = gi(s,y j,
dy j

ds
) (1 ≤ i, j ≤ n) (1.2)

under the pseudo-group of smooth invertible local point transformations

ψ
(
t,x j) =

(
s,yi) =

(
φ
(
t,x j) ,ϕi

(
t,x j))
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This notion of two systems being equivalent defines an equivalence relation on the set of
differential equations on the form (1.1). Fels was able to cast the question of equivalence be-
tween (1.1) and (1.2) into a question about the equivalence of associated exterior differential
systems on the jet space J1 (R,Rn) , at which point the Cartan’s method [4, 8, 10, 11, 15, 17]
be may applied. The problem of equivalence for n = 1 was originally solved by Cartan in
[4]. Chern in [6] investigated the two equivalence problems for systems under the restricted
pseudo-groups of smooth invertible local transformations which preserve the independent
variable as given by

ψ
(
t,x j) =

(
t,ϕi

(
x j)) and ψ

(
t,x j) =

(
t,ϕi

(
t,x j))

In [17] the authors reconsider an example in the plan brought up by E. Cartan, make the
situation precise and explore a case that Cartan did not consider.

In the previous papers [1, 2] the relationship between differential equations, Pfaffian
systems and geometric structures are studied. We have seen that every differential equation
can be expressed as a Pfaffian system satisfying the structure equation and that the inte-
gration of a given equation is deeply related to the structure equation. We shall show it by
means of interesting examples. My contribution here is the study of equivalence problem
for the family of ordinary equations with respect to the affine transformation group A(2,R)
(section 4). There exist 19 different types of first order ordinary differential equations which
admit at least 1- dimensional Lie groups in A(2,R). All the equations which belong to the
above types can be integrated by quadrature.

In the paper, by the word differentiable we mean always differentiable of classe C∞.
Acknowledgments. Special thanks go to Witold Respondek and Yuri Sachkov for his

encouragement and support.

2 Basic Definition, Examples

2.1 Pfaffian systems

In this subsection we will review some basic concepts and facts about Pfaffian systems
theory [3]. Let M be an differentiable manifold. F(M) denotes the ring of real-valued
differentiable functions on M and Λ1(M) the F(M)-module of all 1-forms (Pfaffian forms)
on M.

A F(M)-submodule Σ of Λ1(M) is called a Pfaffian system of rank n on M if Σ is
generated by n linearly independent Pfaffian forms θ1, . . . ,θn. A submanifold N of M is
said an integral manifold of Σ if i∗(θ) = 0 for all θ ∈ Σ, where i denotes the immersion N
↪→M. A differentiable function is said a first integral of Σ if the exterior derivate d f belongs
to Σ. By the symbol Σ = 〈θ1, . . . ,θn〉 we mean that the Pfaffian system Σ is generated by
linearly independent Pfaffian forms θ1 . . . ,θn defined on M.

For each Pfaffian systems Σ on M, we can construct the dual system, that is, the differen-
tiable subbundle D = D(Σ) of the tangent bundle T (M) on M such that the fiber dimension
of D is equal to dim(M)− n. Let Γ(D) be the sheaf of germs of local vector fields which
belong to D and Γ(D)x,x ∈ M, the stalk of Γ(D) at x. For x ∈ M, we defined the subspaces
Ch(D)x of Tx(M) by
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Ch(D)x =
{

Xx ∈ Dx;
[
X ′

x,Γ(D)x
]
⊆ Γ(D)x

}
where X denotes a vector field and X ′

x the germ at x determined by X . We suppose that
dimCh(D)x is constant on M. Thus, we obtain the subbundle Ch(D) of T (M) called the
Cauchy characteristic of D. The distribution characteristic of D is the module spanned by
all vector fields Y that belongs to D such that [Y,D]⊆D. The dual system Ch(Σ) of Ch(D)
is called the Cauchy characteristic system of Σ. The following theorem is due to E. Cartan.

Theorem 2.1. Let Σ = 〈θ1, . . . ,θn〉 be a Pfaffian system.
1. If Σ is completely integrable, i.e. dθi = 0(modθ1, . . . ,θn) , (1 ≤ i ≤ n) , then Ch(Σ) =

Σ.
2. If Σ is not completely integrable, then there exist linearly independent Pfaffian forms

w1, . . . ,wm satisfying the following conditions:
(i) θ1, . . . ,θn,w1, . . . ,wm are also linearly independent;
(ii) (θ1, . . . ,θn,w1, . . . ,wm) forms a (local) generator of Ch(Σ);

(iii) dθi =
m

∑
j,k=1

Ci
jkwi ∧wk (

modθ1, . . . ,θn
)
, where Ci

jk denotes a differentiable

function (1≤ i ≤ n, 1≤ j,k ≤ m).
3. Ch(Σ) is completely integrable.
4. Let x1, . . . ,xn+m be independent first integrals of Ch(Σ). Then there exist linearly

independent Pfaffian forms ηi =
n+m

∑
j=1

Ai
j(x

1, . . . ,xn+m)dx j, i = 1, . . . ,n, such that (η1, . . . ,ηn)

forms a (local) generator of Σ.

By making use of Property 2, we can construct the Cauchy characteristic system Ch(Σ).

Definition 2.2. A system (w1, . . . ,wm) of linearly independent Pfaffian forms on M will be
said to be a solvable system of Σ = 〈θ1, . . . ,θn〉 if it satisfies the following conditions:

(i) (w1, . . . ,wm) forms a generator of Ch(Σ).
(ii) dw1 = 0 and dwp = 0mod(w1, . . . ,wp−1) for all p = 2, . . . ,m.

If we can find a solvable system of Σ, then m independent first integrals of Ch(Σ) are
given par quadrature.

2.2 Examples

In the subsection we shall consider by means of examples [2] the relation between the
differential equations, Pfaffian systems and structure equation.

a) Consider the Pfaffian system Σ = 〈θ〉, θ = dz + pdx + p2dy, on R4 = {(x,y,z, p)}.
We have dθ = d p∧ (dx+2pdy) and

w1 = d p, w2 = dx+2pdy, w3 = θ

determine the Cauchy characteristic system of Σ. We can find by quadrature three indepen-
dent first integrals as follows:

u1 = z+ xp+ yp2, u2 = x+2yp, u3 = p
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and θ itself is expressed as θ = du1−u2du3. The system (w1,w2,w3) is a solvable system
of Σ.

b) We consider an absolute parallelism w1,w2,w3,w4,w5,w6 on R6 satisfying the equa-
tions

dw1 = 0, dw2 = 0mod(w1,w2),
dw3 = w1∧w4 +w2∧w5 mod(w3), (2.1)

dw4 = 0mod(w3,w4,w5),
dw5 = w2∧w6 mod(w3,w4,w5).

Let x and y be two independent first integrals of the completely Pfaffian integrable system
w1 = w2 = 0; the form w3 is expressed as

w3 = a(dz− pdx−qdy), a 6= 0.

The functions x,y,z, p and q are independent first integrals of the completely integrable
Pfaffian system w1 = w2 = w3 = w4 = w5 = 0.Therefore w4 and w5 can be written by means
of the exterior derivatives dx,dy,dz,d p,dq and the formulas

d p− rdx− sdy = a1w4 +a2w5 +a3w3

dq− s′dx− tdy = a4w4 +a5w5 +a6w3

determine the functions r,s,s′, t and a′i s of the variables x,y,z, p,q and another u. From the
equation dw3 = w1 ∧w4 + w2 ∧w5(modw3), one can verify that the function s coincides
with s′. Moreover, the equations dw4 = 0, dw5 = w2∧w6 mod(w3,w4,w5) imply

rank
(

∂r
∂u

,
∂s
∂u

,
∂t
∂u

)
= 1.

Therefore the functions

r = r(x,y,z, p,q,u) , s = s(x,y,z, p,q,u) , t = t(x,y,z, p,q,u)

determine a system of second-order partial differential equations. This family of systems of
differential equations determined by an absolute parallelism satisfying (2.1) is the main sub-
ject of Cartan’s researches in his paper [4, 5]. For example, take the system of differential
equations

∂2z
∂x2 = 0 ,

∂2z
∂x∂y

= z− x
∂z
∂x

(2.2)

Putting on R6 = {(x,y,z, p,q, t)} , w1 = dx, w2 = dy, w3 = dz− pdx−qdy, w4 = d p−
(z− xp)dy, w5 = dq− (z− xp)dx− tdy and w6 = dt − (q− x(z− xp))dx we have the
structure equations
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dw1 = 0, dw2 = 0,

dw3 = w1∧w4 +w2∧w5,

dw4 = w2∧w3− xw2∧w4,

dw5 = w2∧w6 +w1∧w3− xw1∧w4,

dw6 = w1∧w5− xw1∧w3− x2w1∧w4 +Kw1∧w2,

where K = t − xq + x2(z− xp). The absolute parallelism satisfies the equations (2.1). It is
easy to see that the system

(
w2,w3,w4,w5,w6

)
forms a solvable system of Σ = 〈w3,w4,w5〉.

Five independent first integrals of the solvable system are given by quadrature as follows:

u1 = y, u2 = z− xp, u3 = p, u4 = q− x(z− xp), u5 = K ,

and we have [5]

w3− xw4 = du2−u4du1,

w4 = du3−u2du1,

w5− xw3 = du4−u5du1.

By the expression, the general integral surface of (2.2) is given by the formulas:

p = f (y), z− xp = f ′(y), q− x(z− xp) = f ′′(y), t− x(q− x(z− xp)) = f ′′′(y)

where f is a differentiable function and f ′, f ′′and f ′′′ denote its derivatives.

3 Equivalence

In the paper [2] , we have seen that every differential equation can be expressed as a Pfaffian
system satisfying the structure equation and the integration of a given equation is deeply
related to the structure equation. In this section, we shall consider the equivalence problem
for Pfaffian systems and hence for differential equations under the action of Lie groups.

Let M be a differentiable manifold, G be a Lie group acting on M on the left. For a
Pfaffian system Σ on M we set

g∗Σ =
{

L∗gθ ∈ Λ
1M; θ ∈ Σ

}
,

and
G(Σ) = {g ∈ G; g∗Σ = Σ } ,

where Lg denotes the left action of g ∈ G on M; g∗Σ is a Pfaffian system on M and G(Σ) is
a subgroup of G .

Two Pfaffian systems Σ1 and Σ2 on M are equivalent under the action of G if there is
an element g ∈ G such that g∗Σ1 = Σ2.
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Let F be a family of Pfaffian systems on M. The problems (Lie programme) to be
solved are as follows:

1) Determine the condition for the equivalence of the elements of F .
2) Classify the Pfaffian systems in F under the action of G.
3) For each Σ ∈ F , determine the structure of the subgroup G(Σ).
4) Research the relation between the integration of a Pfaffian system Σ and the structure

of the subgroup G(Σ), i.e., reduce the integration of a Pfaffian system Σ to auxiliary systems
obtained via the knowledge of the structure of G(Σ).
, In Section 4, we consider Problem 2, in the particular case where G = A(2,R).
For a Lie subgroup G′ of G, we set

F(G′) =
{

Σ ∈ F ; G(Σ) = G′} . (3.1)

For every Σ ∈ F(G′), G′ is the largest subgroup of G which leaves Σ invariant. It is possible
that F(G′) is an empty set.

Proposition 3.1. Let Σ, Σ1, Σ2 be Pffafian systems ∈ F and let G′ be a subgroup of G.
1. For any g ∈ G, G(g∗Σ) = g−1G(Σ)g.
2. If gG(Σ2)g−1 = G(Σ1) = G′ for an element g ∈ G, then Σ1 and g∗Σ2 are in F(G′).
3. The normalizer N(G′ : G) of G′ in G acts on F(G′).
4. If Σ1, Σ2 ∈ F(G′) and g∗Σ2 = Σ1 for an element g ∈G, then Σ1and Σ2 lie in the same

orbit determined by the action of N(G′ : G) on F(G′).

Proof. 1) and 2) may be clear. To prove 3), suppose that Σ ∈ F(G′) and g ∈ N(G′ : G).
From (3.1) and 1) of the proposition, we have

G(g∗Σ) = g−1G(Σ)g = g−1G′g = G′

and hence g∗Σ ∈ F(G′).
4) From (3.1) and 1) of proposition, we have

g−1G′g = g−1G(Σ2)g = G(g∗Σ2) = G(Σ1) = G′

and hence g ∈ N(G′ : G).
By virtue of this proposition, the equivalence probleme and the classification are re-

duced to the following problems:
(i) determine all conjugate classes of the subgroups of G.
(ii) For a representative G′ of each conjugate class, determine the set F(G′).
(iii) Observe the action of N(G′ : G) on F(G′).
Since there are, in general, many subgroups G′ of G such that F(G′) is empty set, this

reduction of the problems is not always the best one. Moreover, the Pfaffian systems to
be considered are not always defined globally on M . Therefore, instead of ordinary Lie
groups, we have to consider Lie pseudogroups [4, 13, 14, 16]. Then the subject of the study
is invariants of a Pfaffian system with respect to a given Lie pseudogroup. At this level, we
can recognize that the subgroup G(Σ) plays an important role in the problems.
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4 Equivalence with respect to the A(2,R)

Let G be a finite dimensional Lie group and let Σ be a left-invariant completely integrable
Pfaffian system on G. We denote by Ig(Σ) the maximal integral manifold through g∈G and
we set

Gg(Σ) = {h ∈ G; Lh(Ig(Σ)) = Ig(Σ)} ,

Since Σ is left-invariant, Gg(Σ), g ∈ G, are mutually conjugate in G.

4.1 Invariant forms of A(2,R)

Let A(2,R) be the affine transformation group on R2. By making use of the matrix repre-
sentation

A(2,R) =


x3 x4 x1

x5 x6 x2
0 0 1

 ; x3x6− x4x5 6= 0, xi ∈ R, i = 1,2, . . . ,6

 ,

we have a basis of invariant forms of A(2,R)

w1 =
1
D

(x6dx1− x4dx2) ,

w2 =
1
D

(x3dx2− x5dx1) ,

w3 =
1
D

(x6dx3− x4dx5) ,

w4 =
1
D

(x6dx4− x4dx6) ,

w5 =
1
D

(x3dx5− x5dx3) ,

w6 =
1
D

(x3dx6− x5dx4) ,

where we put D = x3x6− x4x5. We have then the structure equation

dw1 = w1∧w3 +w2∧w4,

dw2 = w1∧w5 +w2∧w6,

dw3 = −w4∧w5, (4.1)

dw4 = −w3∧w4−w4∧w6,

dw5 = w3∧w5 +w5∧w6,

dw6 = w4∧w5.

We remark that changing the basis of invariant forms by the formula
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w1 = a′w1 +b′w2, w2 = c′w2, w3 = w3 +
b′

a′
w5,

w4 =
a′

c′
w4− b′

c′
w3− b′2

a′c′
w5 +

b′

c′
w6, w5 =

c′

a′
w5, (4.2)

w6 = w6− b′

a′
w5,

where a′,b′ and c′ denote arbitrary constants with a′c′ 6= 0, the structure equation (4.1) does
not alter.

(
A(2,R),C = (w1, . . . ,w6)

)
determines a Cartan system.

4.2 Classification under action of A(2,R)

The systems to be considered are given by Σ = 〈dx2 − f (x1,x2)dx1〉 where f denotes a
differentiable function. In this paper I given some ideas for the classification. Since

dx2− f (x1,x2)dx1 = (x5− x3 f (x1,x2))w1 +(x6− x4 f (x1,x2))w2,

and

(x6− x4 f (x1,x2))−1(dx2− f (x1,x2)dx1 = (x6− x4 f (x1,x2))−1(x5− x3 f (x1,x2))w1 +w2,

then (x6 − x4 f )−1(x5 − x3 f ) forms a characteristic invariant system. By using this invari-
ant, we reduce the Cartan system to be submanifold M0 defined by the equation x5 −
x3 f (x1,x2) = 0. The equation to be integrated is now given by w2 = 0. On the submanilfold
M0 , we have

w5 = aw1 +bw2,

da = 2aw3−aw6 +u1w1 +u2w2, (4.3)

db = bw3 +aw4 +(u2−b2)w1 +u3w2.

and

dw1 = w1∧w3 +w2∧w4,

dw2 = w2∧w6,

dw3 = aw1∧w4 +bw2∧w4, (4.4)

dw4 = −w3∧w4−w4∧w6 +bw1∧w4,

dw6 = −2bw2∧w4 +u3w1∧w2,

where we put w6 = w6 − bw1 and a,b,u1,u2,u3 denote definite functions on M0. These
functions are all invariants of induced Cartan system.
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4.2.1 From now on, we shall determine all the equations which admit at least 2-
dimensional Lie subgroup of A(2,R) as an invariant group. Therefore we suppose
always that the forms w1, w2 are linearly independent.

I. The case a = 0. From (4.3) , we have u1 = u2 = 0. Moreover

du3 = u3w6 +u3w3−2bu3w1 + cw2 (4.5)

where c denotes a definite function on M.
1. b = 0. The manifold M0 is given by the maximal integral manifold of w5 = 0. Hence

we obtain the first type:

Σ : w5 = 0,

dw1 = w1∧w3 +w2∧w4,

dw2 = w2∧w6,

dw3 = 0,

dw4 = −w3∧w4−w4∧w6,

dw6 = 0.

Integrating the system Σ, we have the result:

Theorem 4.1. The equation y′ = c (constant) admits a 5-dimensional Lie subgroup in
A(2,R) and can be transformed to the equation y′ = 0 by an element of A(2,R).

2. b 6= 0. We can reduce M0 to the submanifold M1 defined by the equation b = const.(6=
0). Taking a′ = b, b′ = 0, c′ = b in (4.2) we can assume that the constant is equal to 1:
M1 = {g ∈ M0; b(g) = 1} . From (4.3), (4.4) and (4.5) we have on M1

w3 = w1−u3w2, w5 = w2,

du3 = u3w6−u3w1 +(c−u2
3)w

2,

dw1 = −u3w1∧w2 +w2∧w4, (4.6)

dw2 = w2∧w6,

dw4 = u3w2∧w4−w4∧w6,

dw6 = −2w2∧w4 +u3w1∧w2.

2.1. u3 = 0. From the second equation of (4.6) we have c = 0. We have thus obtained
the second type:

Σ : w3 = w1, w5 = w2.

dw1 = w2∧w4,

dw2 = w1∧w2 +w2∧w6,

dw4 = −w1∧w4−w4∧w6,

dw6 = −w2∧w4.

Integrating the system Σ, we obtain the result:
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Theorem 4.2. The equation y′ = (x + a)−1(y + b), a,b constants, admits a 4-dimensional
Lie subgroup in A(2,R) and can be transformed to y′ = x−1y by an element of A(2,R).

2.2. u3 6= 0. We can reduce M1 to be submanifold M2 defined by the equation u3 =
constant (6= 0). Taking a′ = 1, b′ = 0, c′ = u3 in (4.2), we can assume that the constant is
equal to 1. From (4.6) , we have on M2

w3 = w1−w2, w5 = w2, w6 = w1− ew2 (e = c−1),
de = −3w4 +(e−2)w1 + rw2,

dw1 = −w1∧w2 +w2∧w4, (4.7)

dw2 = −w1∧w2,

dw4 = (1− e)w2∧w4 +w1∧w4,

where r denotes a definite function on M2. The equations (4.7) does not determines a 3-
dimensional Lie group. By using the invariant e, we can reduce M2. Taking a′ = 1, b′ = 1,

c′ = (2−e)
3 in (4.2), we can reduce M2 to the manifold M3 = {g ∈ M2 ;e(g) = 2} . From (4.7)

we obtain on M3

w5 = w2, w3 = w1−w2, w6 = w1−2w2, w4 =
1
3

rw2,

dr = 2rw1 + r0w2 (4.8)

and

dw1 = −w1∧w2,

dw2 = −w1∧w2. (4.9)

Although the equations (4.9) do not contain any functions, the function r is an invariant
of the group. Therefore (4.8) and (4.9) determine a 2-dimensional Lie group if and only if
r is a constant on M3. In the case, we have r = 0 and

Σ : w3 = w1−w2, w4 = 0, w5 = w2, w6 = 2w1−2w2.

dw1 = −w1∧w2, dw2 =−w1∧w2.

Integrating the system Σ, we obtain the result:

Theorem 4.3. Let f be a function satisfying the Clairaut equation

y = x f +
a f 2 +b f + c

α f +β
with a, b, c, α, β constants.

Then y′ = f (x,y) admits a 2-dimensional Lie group in A(2,R) and can be transformed
to y′ = x− (x2−2y)

1
2 by an element A(2,R).
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II. The case a 6= 0. We go back to the manifold M0. Suppose that b 6= 0 on M0 . Consider
the submanifold N0 defined by the equation b = const (6= 0). By setting

w1 = bw1 +
b2

a
w2, w2 =

b
a

w2, w3 = w3 +
b
a

w5,

w4 = aw4−bw3− b2

a
w5 +bw6, w5 =

1
a

w5, w6 = w6− b
a

w5,

we can assume that a = 1,b = 0 on M0. Therefore we have only to examine the case a 6= 0,
b = 0 on M0. We can reduce M0 to the submanifold

N0 = {g ∈ M0; a(g) = 1,b(g) = 0}

on which we have

w4 = −u2w1−u3w2, w5 = w1, w6 = 2w3 +u1w1 +u2w2,

dw1 = w1∧w3 +u2w1∧w2, (4.10)

dw2 = 2w2∧w3−u1w1∧w2,

dw3 = −u3w1∧w2.

By differentiating (4.9) we obtain

du1 = u1w3 + v1w1 + v2w2,

du2 = 2u2w3 + v3w1 + v4w2, (4.11)

du3 = 3u3w3 + v5w1 + v6w2,

0 = −v5 + v4 +2(u1u3−u2
2),

0 = v2− v3 +3u3.

1. u1 = u2 = u3 = 0. From (4.10), we have

Σ : w4 = 0, w5 = w1, w6 = 2w3.

dw1 = w1∧w3,

dw2 = 2w2∧w3,

dw3 = 0.

Integrating the system Σ, we obtain the result:

Theorem 4.4. The equations of this type can be transformed to y′ = x by an element of
A(2,R) and admit a 3-dimensional Lie group in A(2,R).

2. u1 6= 0, u2 = 0, u3 = 0. We reduce N0 to the submanifold defined by the equation
u1 = const.(6= 0). From (4.11) we have v2 = v3 = v4 = v5 = v6 = 0 and hence
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Σ : w3 =− v1

u1
w1, w4 = 0, w5 = w1, w6 = (u1−

2v1

u1
)w1.

dw1 = 0,

dw2 = −(u1−
2v1

u1
)w1∧w2,

dv1 = 0(modw1).

If these equations determine a 2-dimensional Lie group, v1 must be a constant. In this
case, integrating the system Σ, we obtain the result:

Theorem 4.5. All the equations in this case are transformed by an element of A(2,R) to
one the following three types

i) y′ = logx, ii) y′ = ex, iii) y′ = xa (a const. 6= 0,1), which admit 2-dimensional Lie
group in A(2,R).

3. u1 = 0, u2 6= 0, u3 = 0. We reduce N0 to the submanifold defined by the equation
u2 = const.(6= 0). From (4.11), we have v4 = 2u2

2 and otherwise vi = 0 and hence

Σ : w3 =−u2w2, w4 =−u2w1, w5 = w1, w6 =−u2w2.

dw1 = 0, dw2 = 0.

3.1. The case u2 � 0. We can assume always u2 = 1. Integrating the system Σ, we
obtain the result:

Proposition 4.6. All the equations in this type are transformed by an element of A(2,R) to
the equation y′ =−xy−1, which admits a 2-dimensional Lie group in A(2,R).

3.2. The case u2 � 0. We can assume u2 =−1. Integrating the system Σ we obtain the
result:

Proposition 4.7. All equations in this case are transformed by an element of A(2,R) to the
equation y′ =−x−1y, which admits a 2-dimensional Lie group in A(2,R).

4. u1 = u2 = 0, u3 6= 0. From (4.11) we have vi = 0, i = 1,2,3,4. Since v2−v3 +3u3 = 0,
this contradicts the assumption u3 6= 0.

5. u1 = 0, u2 6= 0, u3 6= 0. We reduce N0 to the submanifold defined by the equations u2
= const.(6= 0), u3 = const.(6= 0). We can assume u3 = 4. From (4.11), we have v1 = v2 = 0,
v3 = 12, v4− v5 = 2u2

2 and

0 = 2u2w3 +12w1 + v4w2, (4.12)

0 = 12w3 + v5w1 + v6w2.

By this equations, we obtain

v4 =
72
u2

+2u2
2, v5 =

72
u2

, v6 =
6
u2

(
72
u2

+2u2
2).
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Substituting these values to (4.12) we have

w3 =− 6
u2

w1− (
36
u2

2
+u2)w2.

Substituting this equation to the last equation of (4.10) we have u2 = −3. Hence we
have

Σ : w3 = 2w1−w2, w4 = 3w1−4w2, w5 = w1, w6 = 2w3−3w2.

dw1 = −4w1∧w2, dw2 =−4w1∧w2.

Integrating the system Σ, we obtain the result:

Theorem 4.8. The equation of this type can be transformed by an element of A(2,R) to
y′ = x−1y+ x4, which admits a 2-dimensional Lie group in A(2,R).

6. u1 6= 0, u2 = 0, u3 6= 0. We reduce N0 to the submanifold defined by the equations
u1 = const.(6= 0), u3 = const.(6= 0). We can assume u1 =−3. By the same argument as in
the case 5, we have

Σ : w3 = 2w1−u3w2, w4 =−u3w2, w5 = w1, w6 = w1−2u3w2.

dw1 = −u3w1∧w2, dw2 =−w1∧w2.

Integrating the system Σ, we obtain the result:

Theorem 4.9. i) If u3 = 1, the equations of this type are transformed by an element of
A(2,R) to y′ = x−1y+ x.

ii) If u3 6= 1, the equations of this type are transformed by an element of A(2,R) to the
equation

y′ =
−u3x+ 2

√
2(1−u3)y+u3x2

1−u3
.

7. u1 6= 0, u2 6= 0, u3 6= 0. By the same argument as in the case 5, we have

Σ : w3 =−1
2

u1w1−u2w2, w4 =−u2w1, w5 = w1, w6 = 2w3 +u1w1 +u2w2.

dw1 = dw2 = 0.

Integrating the system Σ, we have the result:

Proposition 4.10. The equations of this type are transformed by an element of A(2,R) to
the equation

y′ =
−2x+u1y

2u2y
.
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8. u1 6= 0, u2 6= 0, u3 6= 0. By the same argument as in the case 5 , we can determine vi

,1 ≤ i ≤ 6. In particular, we have

v1 =
u1(6u2−2u2

1 +u1u2
2)

2u2
2−3u1

, v2 =
u1(18−4u1u2 +2u3

2)
2u2

2−3u1
.

If 2u2
2 = 3u1, then u1 = 6, u2 = 3, u3 = 2, v1 = 2 and v2 = 1. We have

w3 =− v1

u1
w1− v2

u1
w2.

Substituting this relation to the last equation of (4.10) we have a certain algebraic equa-
tion with respect to the quantities u1,u2. Hence we obtain

Σ : w3 =− v1

u1
w1− v2

u1
w2, w4 =−u2w1−u3w2, w5 = w1, w6 = 2w3 +u1w1 +u2w2.

dw1 = (u2−
v2

u1
)w1∧w2, dw2 =−(u1−

2v1

u1
)w1∧w2.

Integrating the system Σ, we obtain the result:

Theorem 4.11. The equations of this type are transformed by an element of A(2,R) to
y′ = x−1y+ xa (a const 6= 4,1,0,−1), which admits a 2-dimensional Lie group in A(2,R).

4.2.2. As for the determination of the equations admitting a 1-dimensional Lie group
in A(2,R), we can use the method developed in section 3. Here is the table of the
standard forms and the invariant groups. We denote by a the parameter of a 1-dimensional
Lie group.

Standard Forms Invariant Groups

y′ = F(x) X = x, Y = y+a

y′ = y
x F( yr

xs ) X = arx, Y = asy

y′ = yF(ye−x) X = x+a, Y = eay

y′ = y
x +F(x) X = x,Y = ax+ y

y′ = y
x +F(xer y

x ) X = earx, Y = aearx+ eary

y′ = y−xF(x2+y2)
x+yF(x2+y2) rotation group

y−xy′
x+yy′ = F

(
y−x tan(r log 2

√
x2+y2)

x+y tan(r log 2
√

x2+y2)

)
1-dimensional conformal transformation group
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