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Abstract

Let (N,α) be a compact contact manifold and (N×R, d(etα)) its symplectization.
We show that the group G which is the identity component in the group of symplectic
diffeomorphisms φ of (N×R,d(etα)) that cover diffeomorphisms φ of N×S1 is sim-
ple, by showing that G is isomorphic to the kernel of the Calabi homomorphism of the
associated locally conformal symplectic structure.
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1 Introduction and statement of the results

The structure of the group of compactly supported symplectic diffeomorphisms of a sym-
plectic manifold is well understood [1], see also [2]. For instance, if (M,Ω) is a compact
symplectic manifold, the commutator subgroup [Di f fΩ(M)0,Di f fΩ(M)0] of the identity
component Di f fΩ(M)0 in the group of all symplectic diffeomorphisms, is the kernel of a
homomorphism from Di f fΩ(M)0 to a quotient of H1(M,R) ( The Calabi homomorphism)
and it is a simple group.

Unfortunately, the structure of the group of symplectic diffeomorphisms of a non com-
pact manifold, with unrestricted supports in largely unkown. In this paper, we study the
group Di f f

Ω̃
(N×R) of symplectic diffeomorphisms of the symplectization (N×R,d(etα))

of a compact contact manifold (N,α). Our main result is the following

Theorem 1.1. Let G be the subgroup of Di f f
Ω̃
(N×R) consisting of elements φ, isotopic to

the identity through isotopies φt in Di f f
Ω̃
(N×R), which cover isotopies φt of N×S1. Then

G is a simple group.
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Recall that a group G is said to be a simple group if it has no non-trivial normal sub-
group. In particular it is equal to its commutator subgroup [G,G].

For φ ∈ Di f f
Ω̃
(N×R), the 1-form

C̃(φ) = φ
∗(et

α)− et
α

is closed.
Let C(φ) denotes its cohomology class in H1(N×R,R)≈H1(N,R).
Let Di f f

Ω̃
(N×R)0 be the subgroup of Di f f

Ω̃
(N×R) consisting of elements that are iso-

topic to the identity in Di f f
Ω̃
(N×R).

The map φ 7→C(φ) , where φ ∈ Di f f
Ω̃
(N×R)0 is a surjective homomorphism

C : Di f f
Ω̃
(N×R)0 → H1(N,R)

(the Calabi homomorphism, see [1]).

Corollary 1.2. The group G is contained in the kernel of C.

Proof: Since G is simple, the kernel of the restriction C0 of C to G is either the trivial group
{id} or the whole group G. But KerC0 contains [G,G] 6= {1d}. Hence KerC0 = G.

Theorem 1.1 follows from the study of the structure of the group of diffeomorphisms
preserving a locally conformal symplectic structure. Each locally conformal symplectic
manifold (M,Ω), is covered in a natural way by a symplectic manifold (M̃,Ω̃). We analyze
the group of symplectic diffeomorphisms of M̃, which cover diffeomorphisms of M (Theo-
rem 2.1). Our results will be deducted from the fact that, if (N,α) is a contact manifold, then
N×S1 has a locally conformal symplectic structure and the associated symplectic manifold
covering N×S1 is precisely the symplectization. We show that the group G is isomorphic
to the kernel of the Calabi homomorphism for locally conformal symplectic geometry.

2 The structure of the group of diffeomorphisms covering lo-
cally conformal symplectic diffeomorphisms

A locally conformal symplectic form on a smooth manifold M is a non-degenerate 2-form
Ω such that there exists a closed 1-form ω satisfying:

dΩ =−ω∧Ω.

The 1-form ω is uniquely determined by Ω and is called the Lee form of Ω. The couple
(M,Ω) is called a locally conformal symplectic ( lcs, for short) manifold , see [3], [7], [11].

The group Di f f (M,Ω) of automorphisms of a lcs manifold (M,Ω) consists of diffeo-
morphisms φ of M such that φ∗Ω = f Ω for some non-zero function f . Here we will always
assume that f is a positive function. Such a diffeomorphism is said to be a locally conformal
symplectic diffeomorphism.

The group of conformal symplectic diffeomorphisms of a symplectic manifold (M,σ)
is defined as the group of diffeomorphisms φ of M such that φ∗σ = f σ for some smooth
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function f . If the dimension of M is at least 4, then f is a constant function ( see [9], or
[5]). If moreover M is compact, then f =±1.

Let M̃ be the minimum regular cover of a locally conformal symplectic manifold (M,Ω)
over which the Lee form ω pulls to an exact form: i.e. if π : M̃ →M is the covering map,

π
∗
ω = d f = d(lnλ).

where λ = e f . It is easy to check that

Ω̃ = λπ
∗
Ω.

is a symplectic form on M̃.

The conformal class of Ω̃ is independent of the choice of λ [4]. : Indeed, if λ′ is another
function such that π∗ω = d(lnλ′), then λ′ = aλ for some constant a.

A diffeomorphism φ of M̃ is said to be fibered if there exists a diffeomorphism h of M
such that π◦φ = h◦π. We also say that φ covers h.

Theorem 2.1. If a diffeomorphism φ of M̃ covers a diffeomorphism h of M, then φ is con-
formal symplectic iff h is locally conformal symplectic

Proof: Suppose φ : M̃ → M̃ is conformal symplectic, and covers h : M → M. Then
φ∗(Ω̃) = aΩ̃ for some number a ∈ R. We have:

π
∗(h∗Ω) = φ

∗(π∗Ω) = φ
∗((1/λ)Ω̃) = (

1
λ
◦φ))aΩ̃ = a(

1
λ
◦φ)λπ

∗
Ω.

Let τ be an automorphism of the covering M̃ →M, then

τ
∗
π
∗(h∗Ω) = (π◦ τ)∗(h∗Ω) = π

∗(h∗Ω)

= τ
∗[(a

1
λ
◦φ)λ]τ∗π∗Ω = τ

∗[(a
1
λ
◦φ)λ]π∗Ω.

= a(
1
λ
◦φ)λπ

∗
Ω.

Therefore τ∗[(a 1
λ
◦φ)λ] = (a 1

λ
◦φ)λ) since π∗Ω is non-degenerate. Hence (a 1

λ
◦φ)λ) = u◦π,

where u is a basic function. We thus get π∗(h∗Ω) = π∗(uΩ). Since π is a covering map,
h∗Ω = uΩ.

Conversely if h ∈ Di f f (M,Ω), i.e. h∗Ω = uΩ for some function u on M, and φ is its lift on
M̃, then:

φ
∗
Ω̃ = φ

∗(λπ
∗
Ω) = (λ◦φ)φ∗π∗Ω = (λ◦φ)(π◦φ)∗Ω

= (λ◦φ)(h◦π)∗Ω = (λ◦φ)π∗h∗Ω = (λ◦φ)π∗(uΩ) = (
λ◦φ

λ
u◦π)Ω̃.

We just proved that if h ∈ Di f f (M,Ω), (h∗Ω = uΩ) is covered by φ, then φ∗(Ω̃) = aΩ̃

where a is the constant a = (λ◦φ

λ
u◦π).



On Symplectomorphisms of the Symplectization of a Compact Contact Manifold 69

Let Di f f
Ω̃
(M̃)C be the group of conformal symplectic of M̃ (a diffeomorphism φ of M̃

belongs to this group if φ∗Ω̃ = aΩ̃ for some positive number a).
The group Di f f

Ω̃
(M̃) of symplectic diffeomorphisms is the kernel of the homomor-

phism:
d : Di f f

Ω̃
(M̃)C → R+

sending φ to a ∈ R+ when φ∗Ω̃ = aΩ̃.
We consider the subgroups Di f f

Ω̃
(M̃)F

C , resp. Di f f
Ω̃
(M̃)F of Di f f

Ω̃
(M̃)C, resp. of

Di f f
Ω̃
(M̃) consisting of fibered elements.

Finally, let GC, resp G be the subgroups of Di f f
Ω̃
(M̃)F

C , resp. Di f f
Ω̃
(M̃)F consisting

of elements that are isotopic to the identity through these respective groups. We denote
by Di f f (M,Ω)0 the identity component in the group Di f f (M,Ω), endowed with the C∞

topology.

By Theorem 2.1, we have a homomorphism ρ : GC → Di f f (M,Ω)0. This homomor-
phism is surjective: indeed, any diffeomorphism isotopic to the identity lifts to a diffeomor-
phism of the covering space M̃. See for instance [6]. By Theorem 2.1, that lifting must be
a conformal symplectic diffeomorphism.

Let A be the group of automorphisms of the covering π : M̃ → M. For any τ ∈ A,
(λ ◦ τ)/λ is a constant cτ independent of λ and the map τ 7→ cτ is a group homomorphism
[5]

c : A→ R+

Let us denote by ∆⊂ R+ the image of c and by K ⊂ A its kernel.
For τ ∈ A, we have:

τ
∗
Ω̃ = τ

∗(λπ
∗
Ω) = (λ◦ τ)τ∗π∗Ω = (λ◦ τ)π∗Ω = ((λ◦ τ)/λ)(λπ

∗
Ω) = cτΩ̃.

This shows that
Kerρ = A.

Each element h ∈ Di f f (M,Ω)0 lifts to an element φ ∈ GC and two different liftings differ
by an element of A. Hence the mapping h 7→ d(φ) is a well defined map

L∗ : Di f f (M,Ω)0 → R/∆.

It is a homomorphism since a lift of φψ differs from the product of their lifts by an element
of A.

Let L(M,Ω) be the Lie algebra of locally conformal symplectic vector fields. These are
of vector fields X such that LX Ω = µX Ω for some function µX on M. Here LX stands for the
Lie derivative in the direction X .

Let Ω be a lcs form with Lee form ω on a manifold M. One verifies that for all X ∈
L(M,Ω), the function

l(X) = ω(X)+µX

is a constant, and that the map

l : L(M,Ω)→ R; X 7→ l(X)
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is a Lie algebra homomorphism, called the extended Lee homomorphism [1], see also [3],
[5].

We need now to recall the definition of the Lichnerowicz cohomology [7]. This is the
cohomology of the complex of differential forms Λ(M) on a smooth manifold with the de
Rham differential replaced by dω, dωθ = dθ+ω∧θ, where ω is a closed 1-form on M. We
denote this cohomology by : H∗

ω(M).
If (M,Ω) is a locally conformal symplectic form with Lee form ω, the equation dΩ =

−ω∧Ω says that the 2-form Ω is dω closed, and hence defines a class [Ω] ∈ H2
ω(M).

Proposition 2.2. Let Ω be a lcs form with Lee form ω on a smooth manifold M. The ex-
tended Lee homomorphism is surjective iff the Lichnerowicz cohomology class [Ω]∈H2

ω(M)
is zero, i.e. iff Ω is dω - exact.

Proposition 2.2 is essentially due to Guedira-Lichnerowicz [7] and Vaisman [11]. Its
proof can be found in several places [4], [5], [8].

Let φt be a smooth family of locally conformal symplectic diffeomorphisms with φ0 =
idM, and let Xt be the family of vector fields defined by:

Xt(φt(x)) =
d
dt

(φt(x)).

Then Xt is a family of locally conformal symplectic vector fields : there exists a smooth
family of functions µXt such that LXt Ω = µXt Ω.

The mapping:

φt 7→
Z 1

0
l(Xt))dt

induces a well defined homomorphism L̃ from the universal covering U(Di f f (M,Ω)0) of
Di f f (M,Ω)0 to R, and therefore induces a homomorphism

L : Di f f (M,Ω)0 → R/Γ

where Γ⊂ R is the image by L̃ of the fundamental group of Di f f (M,Ω)0.

This integration of the extended Lee homomorphism l : L(M,Ω)→ R was considered
in [8].

Another integration of the extended Lee homomorphism was constructed in [4], [5]. It
is shown there that the subgroups ∆ and Γ of R below are the same and that the homomor-
phisms L∗ and L above coincide.

We will need the following result of Haller and Rybicki [8]:

Theorem 2.3. Let (M,Ω) be a compact lcs manifold with [Ω] = 0 ∈H2
ω(M), where ω is the

Lee form of Ω, then
1. KerL = [Di f f (M,Ω)0,Di f f (M,Ω)0].
2. There is a surjective homomorphism S from KerL to a quotient of H1

ω(M) whose
kernel is a simple group.
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The homomorphism S is an analogue of the Calabi homomorphism [1], and the the-
orem above is a generalization to locally conformal symplectic manifolds of the results
on symplectic manifolds in [1]. The definition of the homomorphism S is recalled in the
appendix.

As a consequence of these constructions and results, we have the following

Theorem 2.4. Let (M,Ω) be a compact lcs manifold with Lee form ω and such that [Ω] =
0 ∈ H2

ω(M). Then:
1. d and L∗ are surjective.
2. We have the following exact sequence:

{1} −→ K −→ G−→ KerL∗ −→ {1}

3. KerL∗ ≈ [Di f f (M,Ω)0,Di f f (M,Ω)0].

Proof

Let θ be a 1-form such that Ω = dωθ and let X be defined by iX Ω = θ. Then X ∈ L(M,ω)
and l(X) = 1. Hence L is surjective. The horizontal lift X̃ of X to M̃ is a complete vector
field, and if h is its time 1 flow, then d(h) = 1. Hence the mapping d is surjective.

Since L is equal to L∗, point 3 is just a part of Haller-Rybicki theorem.

Let h,g ∈ Di f f (M,Ω)0 and their lifts φ,ψ on M̃. Let a,b ∈ R such that φ∗Ω̃ = aΩ̃,
ψ∗Ω̃ = bΩ̃. Then the commutator hgh−1g−1 lifts to φψφ−1ψ−1,and (φψφ−1ψ−1)∗Ω̃ =
b−1a−1baΩ̃ = Ω̃. Hence all of KerL∗ lifts to G since KerL≈ [Di f f (M,ω)0,Di f f (M,Ω)0].
This finishes the proof that the sequence 2 is exact.

3 The symplectization of a contact manifold

Let α be a contact form on a smooth manifold N. Let p1, p2 be the projections from M =
N × S1 to the factors N,S1. If µ is the canonical 1-form on S1 such that

R
S1 µ = 1, then

Ω = dθ+ω∧θ, where θ = p∗1α,ω = p∗2µ, is a lcs form on M = N×S1.

The hypothesis of Theorem 3 are satisfied for M = N×S1, where N is a compact contact
manifold and Ω = dωθ as above.

The minimum cover M̃ is N ×R, the projection π : N ×R → N× S1 is the standard
projection : π(x, t) = (x,e2πit), and π∗ω = dt, λ = et . We have: Ω̃ = λπ∗Ω = et(dα +dt ∧
α) = d(etα). Hence (M̃,Ω̃) is the symplectization (N×R,d(etα)).

Here A consists of maps γn(x, t) = (x,n+ t), for all n ∈ Z. We have γ∗nΩ̃ = d(γ∗n(e
tα)) =

d(e(t+n)α = enΩ̃. Hence γn ∈ Kerc = K iff n = 0, i.e. Kerc = {id}. This and Theorem 2.1
(2) show that

G = Di f f
Ω̃
(N×R)F

0 ≈ KerL

The last step is to show that KerL is a simple group. The Calabi homomrphism S takes
KerL to a quotient of H1

ω(N×S1), as one can see in the appendix. But we know that:

H∗
ω(N×S1)≈ 0
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Indeed, take an exact 1-form σ on N and consider ω′ = ω + p∗1σ. Then H∗
ω(N × S1) ≈

H∗
ω′(N×S1) since ω and ω′ are cohomologous. By the Kunneth formula for the Lichnerow-

icz cohomology, H i
ω′(N×S1)≈⊕(H j

µ(S1)⊗H i− j
σ (N). But is known that H j

µ(S1) = 0 for all
j [7], [8], [3]. Therefore H∗

ω′′(N×S1)≈ H∗
ω(N×S1) = {0}.

Hence, KerS = KerL is a simple group. This ends the proof of Theorem 1.1.

Appendix

For completeness, we recall briefly the Calabi homomorphism in lcs geometry[8]: an el-
ement φ̃ of the universal covering of KerL can be represented by an isotopy φt ∈Di f f (M,Ω)
with tangent vector fields Xt ∈ Kerl. Recall that Xt is defined by : Xt(φt(x)) = d

dt (φt(x)).
This implies that dω(i(Xt)Ω) = 0, since

dω(i(Xt)Ω) = d(i(Xt)Ω)+ω∧ (i(Xt)Ω) =

LXt Ω− i(Xt)(−ω∧Ω)+ω∧ (i(Xt)Ω)

= (µXt +ω(Xt))Ω = l(Xt)Ω = 0.

One shows that

[
Z 1

0
(i(Xt)Ω)dt] ∈ H1

ω(M)

depends only on φ̃, and that the correspondence

φ̃ 7→ [
Z 1

0
(i(Xt)Ω)dt]

is a surjective homomorphism from the universal cover of KerL to H1
ω(M). This defines a

surjective homomorphism S : KerL→ H1
ω(M)/Λ, where Λ is the image of the fundamental

group of KerL
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