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Abstract
We will give a sequence of irreducible mutations converting Brauer star algebra to any two-

restricted star-to-tree complex.

1. Introduction

1. Introduction
Brauer tree algebras are important objects in the modular representation theory because

blocks with cyclic defect groups are Brauer tree algebras. Also it is known that for a block
of G with cyclic defect group P, its Brauer correspondent with respect to NG(P) is a Brauer
star algebra. In [7] Rickard showed that two Brauer tree algebras are derived equivalent if
and only if their Brauer trees have the same numbers of edges and exceptional multiplicities.
This implies that Broué’s abelian defect conjecture holds in the case of cyclic defect groups.
For the proof, for any Brauer tree algebra, Rickard constructed a tilting complex over the
Brauer tree algebra which induces a derived equivalence from the Brauer tree algebra to the
Brauer star algebra. Later, in [9], for any Brauer tree algebra by using pointing of the Brauer
tree, Schaps-Zakay constructed a lot of tilting complexes over Brauer star algebra which in-
duce equivalence opposite to the one constructed by Rickard, and the class of the complexes
includes the tilting complex which induces the inverse equivalence to the one induced by
Rickard tree-to-star complex. Also the class of Schaps-Zakay star-to-tree complexes is all
of the two-restricted star-to-tree complexes (Definition 2.13). In [8] by using pointings of
Brauer trees, Rickard-Schaps constructed tree-to-star complexes giving inverse equivalences
to those induced by the Schaps-Zakay star-to-tree complexes.

On the other hand, nowadays silting mutations are studied by many people, in particu-
lar, since mutations for tilting complexes over symmetric algebras produce various tilting
complexes, we are interested in the mutations in case of symmetric algebras. As one of
the results of the mutations, in [2] Aihara showed that if a symmetric algebra is of finite
representation type, then the algebra is tilting-connected (in fact, tilting-discrete). Hence
all tilting complexes over a Brauer tree algebra are controlled by mutations since Brauer
tree algebras are of finite representation type. Also, for a Brauer tree algebra AG associ-
ated to a Brauer tree G and for the Brauer star algebra B derived equivalent to AG, in [10]
Schaps-Zvi gave a sequence of the irreducible mutations which converts the stalk complex
B to the Schaps-Zakay star-to-tree complex corresponding to the reverse pointing or the left
alternating pointing of the Brauer tree G.

Our aim is to generalize their result and show that for any Brauer tree G and for any point-
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ing of G, we can find a sequence of irreducible mutations which converts the stalk complex
of the Brauer star algebra to the Schaps-Zakay star-to-tree complex corresponding to the
pointing. Since each Schaps-Zakay star-to-tree complex induces an inverse equivalence to
the one induced by the Rickard-Schaps tree-to-star complex for the same pointing, giving
a sequence of mutations which converts the stalk complex of the Brauer star algebra to the
Schaps-Zakay star-to-tree complex is equivalent to giving one to convert the stalk complex
of the Brauer tree algebra to the Rickard-Schaps tree-to-star complex. Therefore for any
Brauer tree G and any pointing of G, we give, in Algorithm 3.2, a sequence of irreducible
mutations which converts the stalk complex AG to the Rickard-Schaps tree-to-star complex
T corresponding to the pointing (Theorem 4.1).

Also, when considering mutations of Brauer tree algebras, the Kauer move (Definition
2.7) is important. The Kauer move tells us how the Brauer tree mutates when we apply an
irreducible mutation to Brauer tree algebra, that is, we can determine easily and explicitly the
Brauer tree of the endomorphism algebra of the tilting complex obtained by the irreducible
mutation. In that way, we want to determine easily and explicitly how to convert the Schaps-
Zakay star-to-tree complex by mutations. There, we introduce the Kauer move for pointed
Brauer trees, which is a local move for pointed Brauer tree G(p) converting it to another
pointed Brauer tree μεi (G(p)), where ε ∈ {+,−}, satisfying the following property, which tells
us how the two-restricted star-to-tree complex mutates by irreducible mutations (Theorem
4.3): Let G be a Brauer tree, G(p) a pointed Brauer tree of G and T (G(p)) a Schaps-Zakay
star-to-tree complex, then μεi (T (G(p)) � T (μεi (G(p)).

Throughout this paper, algebra means finite dimensional basic algebra. For an algebra
Γ, Γ-modules means finitely generated left Γ-modules, and we denote by k an algebraically
closed field, by A = AG a Brauer tree algebra associated to a Brauer tree G with e edges
numbered as 1, 2, . . . , e and by B a Brauer star algebra derived equivalent to A. Moreover, for
an algebra Γ, we denote by Db(Γ) the derived category of the complexes of finite generated
Γ-modules.

We now describe the organization of this paper.
In Sect. 2, we recall some facts on Brauer tree algebras, mutations, and pointed Brauer

trees.
In Sect. 3, we introduce a Kauer move for pointed Brauer trees, and give an algorithm

which define a sequence of the irreducible mutations from the pointed Brauer tree.
In Sect. 4, we prove the sequence of irreducible mutations obtained in Sect. 3 converts

the stalk complex to the Rickard-Schaps tree-to-star complex corresponding to the pointed
Brauer tree.

In Sect. 5, for a concrete pointed Brauer tree, we explain how to get the sequence of irre-
ducible mutations, and confirm that the sequence converts the stalk complex to the Rickard-
Schaps tree-to-star complex.

2. Preliminaries

2. Preliminaries2.1. Derived equivalences for Brauer tree algebras.
2.1. Derived equivalences for Brauer tree algebras. We recall first the definition of

Brauer tree algebras and their properties.
Let G be a finite connected tree. We say that G is a Brauer tree of type (e,m) (or simply

say Brauer tree) if G with e edges has the following additional structures:
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• a positive integer m attached to one vertex (we call the integer the exceptional mul-
tiplicity and the vertex the exceptional vertex).
• cyclic orderings of the edges incident to a given vertex (when we embed the tree

in the plane, this ordering is usually described by the counter-clockwise ordering or
the clockwise ordering around each vertex).

Throughout this paper, the cyclic orderings around the vertices will be counter-clockwise
orderings around vertices when we embed trees in a plane. Brauer tree algebras are defined
by using Brauer trees.

Definition 2.1. Given a Brauer tree G of type (e,m), we say that a k-algebra A is a Brauer
tree algebra associated to G if

• there is a one-to-one correspondence between the edges of G and the isomorphism
classes of simple A-modules.
• for every indecomposable projective module P, top P is isomorphic to soc P.
• for each indecomposable projective module P,

rad P/soc P � U(v1) ⊕ U(v2),

where v1 and v2 are the vertices adjacent to the edge corresponding to the simple
module S := top P and where U(vi) is a uniserial A-module (possibly zero) with the
following composition factors in the following order for i = 1, 2:
(1) T1,T2, . . . ,Tr in the case that vi is a non-exceptional vertex (where the sequence

S = T0,T1,T2, . . . ,Tr,Tr+1 = S is given by counter-clockwise counting the
edges emanating from a vertex vi for i = 1, 2).

(2) T1,T2, . . . ,Tr, S,T1,T2, . . . ,Tr, S,T1,T2, . . . ,Tr, where S occurs m − 1 times
and each T j occurs m times for each 1 ≤ j ≤ r in the case that vi is the
exceptional vertex with exceptional multiplicity m (where the sequence S =
T0,T1,T2, . . . ,Tr,Tr+1 = S is given by counter-clockwise counting the edges
emanating from a vertex vi for i = 1, 2).

The following proposition is easily checked but very essential.

Proposition 2.2 (see [7]). Let a Brauer tree algebra A associated to a Brauer tree G of
type (e,m). For non-isomorphic simple A-modules S and T ,

dim HomA(P(S), P(T )) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if the edges S and T have no vertex in common,
1 if the edges S and T have a non-exceptional vertex in common,
m if the edges S and T have the exceptional vertex in common.

There is a very important Brauer tree, which we call the Brauer star. The Brauer tree G of
type (e,m) is said to be Brauer star of type (e,m) if all e edges are adjacent to the exceptional
vertex. In particular, we call the Brauer tree algebra associated to the Brauer star a Brauer
star algebra.

We give a definition of a tilting complex before giving the statement on derived equiva-
lence of Brauer tree algebras.

Definition 2.3. Let Γ be a Noetherian ring. Let T be a bounded complex of projective
Γ-modules. We call T a tilting complex if T satisfies the following two conditions.
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(1) HomDb(Γ)(T,T [n]) = 0 for all n ∈ Z − {0}.
(2) The smallest triangulated full subcategory of Db(Γ) containing all direct summands

of finite direct sums of T is Kb(Γ-proj).

In [6], Rickard showed that two Noetherian rings Γ and Λ are derived equivalent if and
only if there exists a tilting complex over Γ with EndDb(Γ)(T ) � Λop. By using this result,
Rickard gave in [7] the following result.

Theorem 2.4 ([7]). Let Ai be a Brauer tree algebra associated to a Brauer tree Gi of
type (ei,mi) for i = 1, 2. Then A1 and A2 are derived equivalent if and only if e1 = e2 and
m1 = m2.

For the proof of this result, for any Brauer tree algebra A of type (e,m), Rickard con-
structed a tilting complex T over A whose opposite algebra of the endomorphism algebra of
T is isomorphic to the Brauer star algebra of type (e,m).

Definition 2.5. Let A be a Brauer tree algebra associated to a Brauer tree G of type
(e,m), and B a Brauer star algebra of type (e,m). A tilting complex T over A is a tree-to-star
complex if EndDb(A)(T ) � Bop. A tilting complex T̂ over B is a star-to-tree complex for A if
EndDb(B)(T̂ ) � Aop.

2.2. Mutations for Brauer tree algebras.
2.2. Mutations for Brauer tree algebras. In this section, let Γ be a basic finite dimen-

sional symmetric algebra.

Definition-Theorem 2.6 ([3]). Let T be a tilting complex of Γ-modules. For a decompo-
sition T = M ⊕ X, we take a triangle

X
f−→ M′ → Cone( f )→ X[1]

with a minimal left add M-approximation f : X → M′ of X, where M′ ∈ add M. Then
μ−X(T ) := M ⊕ Cone( f ) is a tilting complex again. We call it a left mutation of T with
respect to X. Dually we define a right mutation μ+X(T ) of T with respect to X. For a left
or right mutation μεX(T ) , where ε ∈ {+,−}, we call the mutation irreducible if X is an
indecomposable complex. Also we let mutation means both left mutation and right mutation.

Let A be a Brauer tree algebra associated to the Brauer tree GA. When considering the
opposite algebra of the endomorphism algebra of μ−i (A), the Kauer move plays an important
role. We recall the definition of the Kauer move.

Definition 2.7 (see [5, 1]). Let G be a Brauer tree. For G and an edge i of G, we call a
local move as in (i) or (ii) below a Kauer move at i:

(i) For an edge i of G, let ( j1, . . . , jn = j, i, j1) and (k1, . . . , km = k, i, k1) be cyclic orderings
of the two vertices adjacent to the edge i (possibly the edge i is an external edge, that
is, m = 1 and k1 = i). Let v, w be the vertices of the edges j, k, respectively, which are
not adjacent to the edge i. Let j′, k′ be the next edges before j, k in the cyclic orderings
at v, w, respectively.



Mutations and Pointed Brauer Trees 825

We define μ−i (G) as follows. Detach i from the two vertices adjacent to the edge i,
and attach the edge to v and w so that the cyclic orderings at v and w are (i, j, . . . , j′, i)
and (i, k, . . . , k′, i) respectively.

(ii) Dually, we define μ+i (G).

Next result, following from [5, 1], tells us the structure of the opposite algebra of the endo-
morphism algebra of μ−i (A).

Proposition 2.8 ([5, 1]). LetAG be a Brauer tree algebra associated to a Brauer tree G.
For any i and ε ∈ {+,−}, we have EndDb(AG)(μεi (AG)) � Aop

μεi (G).

Next, we consider the tilting connectedness for Brauer tree algebras.
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Definition 2.9. Let T1 and T2 be basic tilting complexes in Kb(Γ-proj). We say that
T1 and T2 are connected if T1 can be obtained from T2 by iterated irreducible mutations.
Also Kb(Γ-proj) is called tilting-connected if all basic tilting complexes in Kb(Γ-proj) are
connected to each other.

Theorem 2.10 ([2]). Let Γ be a finite dimensional symmetric algebra of finite represen-
tation type. Then Kb(Γ-proj) is tilting-connected.

In particular, since Brauer tree algebras are symmetric algebras of finite representation
type, the homotopy category Kb(A-proj) of a Brauer tree algebra A is tilting connected.
Hence, for tilting complex T over the Brauer tree algebra A, there is a sequence of mutations
(με1i1
, με2i2
, . . . , μεnin

) such that (μεnin
· · · με2i2

με1i1
)(A) � T . Our goal is to give such decompositions

for Rickard-Schaps tree-to-star complexes, a class of tree-to-star complexes, (the definition
of the Rickard-Schaps complexes can be seen in Section 2.3). For this problem, two types
of particular cases are done in [10]. To explain further, they gave sequences of mutations
with the required properties for the pointed Brauer trees with left alternating pointings or
reversed pointings (for the definitions of left alternating pointing and reversed pointing,
please refer to [10, Definition 2.18]). Our aim is that for any pointed Brauer tree G(p) and
the Rickard-Schaps tree-to-star complex given by the pointed Brauer tree G(p), we give a
required sequence of mutations from the pointed Brauer tree G(p). We will give the solution
of this problem in Theorem 4.1.

2.3. Tilting complexes given by pointed Brauer trees.
2.3. Tilting complexes given by pointed Brauer trees. In [9], it was shown that there

is a one-to-one correspondence between the set of multiplicity-free two-restricted tilting
complexes for the Brauer star algebra of type (e,m) and the set of pointed Brauer trees of
type (e,m).

First we give the definition of the pointings and the pointed Brauer trees.

Definition 2.11 ([9]). A pointing of a Brauer tree consists of the choice of one sector at
each non-exceptional vertex. Then we give a point in that sector for indication. We call the
resulting tree with this additional structure a pointed Brauer tree.

We denote a pointed Brauer tree of a Brauer tree G by G(p). Also for a pointed Brauer
tree G(p) we denote the Brauer tree which forsakes the pointing of G(p) by G.

Remark 2.12. For the pointed Brauer tree G(p), we give the one-to-one correspondence
among the set of the points, the set of non-exceptional vertices, and the set of the edges
as follows. For a point of G(p), let the corresponding non-exceptional vertex be the non-
exceptional vertex which the point is on. For an edge of G(p), let the corresponding non-
exceptional vertex be the farther from the exceptional vertex of the non-exceptional vertices
on the end of the edge. We easily see that these correspondences give one-to-one correspon-
dence among the three sets.

Next we recall the definition of two-restricted tilting complexes.

Definition 2.13 ([9]). Let T̂ be a tilting complex over a Brauer star algebra B. We call T̂
a two-restricted tilting complex if any indecomposable direct summand of T̂ is a shift of the
following elementary complex, where the leftmost nonzero term is in degree 0.
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(1) Si : 0→ Qi → 0,

(2) T jk : 0→ Qj
h jk−−→ Qk → 0,

where the map hjk has maximal rank among homomorphisms from Qj to Qk.

In [9], it was shown that there is a one-to-one correspondence between the set of
multiplicity-free two-restricted tilting complexes for the Brauer star algebra of type (e,m)
and the set of pointed Brauer trees of type (e,m). We give the construction of the two-
restricted tilting complexes for the Brauer star algebra based on [9]. To give the construction,
we first give the definition of the vertex numbering.

Definition 2.14 ([9, Definition 4.1]). Let G(p) be a pointed Brauer tree. Then we number
each edge in the following way. We call the resulting numbering for the all edges the vertex
numbering.
(1) Pick an arbitrary branch at the exceptional vertex as a starting point, and we number the

exceptional vertex 0.
(2) Taking Green’s walk defined in [4] around the tree in the cyclic ordering, we assign a

number to each vertex whenever the corresponding point is reached.
(3) We number each edge the same number as the corresponding vertex (see Remark 2.12).

In [9], the authors introduced an algorithm constructing two-restricted tilting complexes
over Brauer star algebras from pointed Brauer trees by using vertex numberings. We explain
the algorithm based on [9].

Algorithm 2.15 ([9]). Let G(p) be a pointed Brauer tree of type (e,m). We define a
complex T̂i inductively on the distance from the exceptional vertex as follows, and put T̂ =⊕e

i=1 T̂i. Then T̂ is a two-restricted tilting complex over a Brauer star algebra B of type
(e,m) with endomorphism algebra the Brauer tree algebra associated to the Brauer tree G.
(1) For an edge i adjacent to the exceptional vertex, let T̂i be the stalk complex 0→ Qi → 0,

where Qi is in degree 0 and where B =
⊕e

i=1 Qi.
(2) For an edge i not adjacent to the exceptional vertex, let i1, i2, . . . , in−1, in = i be the

minimal path from the exceptional vertex to the edge i, and assume that we have T̂in−1 .
Let f (i j) be the vertex numbering of i j for each j. Then we distinguish two cases.

(2.a) If f (in−1) > f (i), we set T̂i = (0 → Qin−1 → Qi → 0)[ln], where [ln] is the shift
required to ensure that Qin−1 is in the same degree in T̂in−1 and T̂i.

(2.b) If f (in−1) < f (i), we set T̂i = (0 → Qi → Qin−1 → 0)[ln], where again [ln] is the
shift required to ensure that Qin−1 is in the same degree in T̂in−1 and T̂i.

Given a pointed Brauer tree, in [9], a two-restricted star-to-tree tilting complex T̂ is given,
which is unique up to cyclic permutations of the Brauer star. For this two-restricted star-
to-tree tilting complex T̂ corresponding to the pointed Brauer tree, in [8], Rickard-Schaps
give the construction of a folded tree-to-star complex T such that T induces an equivalence
inverse to the one induced by T̂ . The Rickard-Schaps tree-to-star complexes are given as
follows.

Algorithm 2.16 ([8]). Let G(p) be a pointed Brauer tree of type (e,m) and let A = AG

be a Brauer tree algebra associated to G. We define a complex Ti over A inductively on the
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distance from the exceptional vertex as follows, and put T =
⊕e

i=1 Ti. Then T is a tree-to-
star complex which induces an inverse equivalence of the one induced by the two-restricted
star-to-tree complex corresponding to the pointed Brauer tree G(p).
(1) For an edge i adjacent to the exceptional vertex, let Ti be the stalk complex 0→ Pi → 0,

where Pi is in degree 0, where A =
⊕e

i=1 Pi.
(2) For an edge i not adjacent to the exceptional vertex, let i1, i2, . . . , in−1, in = i be the mini-

mal path from the exceptional vertex to the edge i, and let f (i j) be the vertex numbering
of i j for each j. Then we distinguish two cases.

(2.a) If f (in−1) > f (i), we set Ti = (0 → Pi → Tin−1 → 0), where the map is induced
by a nonzero homomorphism from Pi → Pin−1 (the map is unique up to a scalar by
Proposition 2.2 since the vertex which the edges in−1 and i have in common is not a
exceptional vertex).

(2.b) If f (i j−1) < f (i j), we set Ti = (0 → Tin−1 → Pi → 0), where the map is induced by
a nonzero homomorphism from Pin−1 → Pi (the map is again unique up to a scalar
by Proposition 2.2 since the vertex which the edges in−1 and i have in common is
not a exceptional vertex).

3. Algorithm for a sequence of mutations

3. Algorithm for a sequence of mutations3.1. Kauer move for a pointed Brauer tree.
3.1. Kauer move for a pointed Brauer tree. In this section, we introduce a Kauer move

for a pointed Brauer tree to give a sequence of mutations converting a Brauer tree algebra
to the Rickard-Schaps tree-to-star complex.

Definition 3.1. We consider the following situation. Let G(p) be a pointed Brauer tree
of a Brauer tree G. For an edge i of G(p), let ( j1, . . . , jn = j, i, j1) and (k1, . . . , km = k, i, k1)
be cyclic orderings of the two vertices adjacent to the edge i. Let v, w be the vertices of
the edges j, k, respectively, which are not adjacent to the edge i. Let j′, k′ be the next edge
before j, k in the cyclic orderings at v, w, respectively.

Then we define a new pointed Brauer tree μ−i (G(p)) with the following properties.
(1) As a Brauer tree without pointing, μ−i (G(p)) = μ−i (G).
(2) (a) Let r(v) be a point on the vertex v.

(i) If r(v) is in the sector ( j, j′) in G(p), then r(v) is in the same sector in
μ−i (G(p)).

(ii) If r(v) is in the sector between ( j′, j) in G(p), then the point r(v) in
μ−i (G(p)) is in the sector ( j′, i).
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(b) Let r(w) be a point on the vertex w. We put the point r(w) in μ−i (G(p)) in the
same way as we put r(v) in μ−i (G(p)).

(c) Any other point in μ−i (G(p)) is in the same sector as the point in G(p).
We call this local move a Kauer move for the pointed Brauer tree at i.

Let A = AG be a Brauer tree algebra associated to a Brauer tree G. For a pointed Brauer
tree G(p) of the Brauer tree G, we get the Rickard-Schaps tree-to-star complex T from
the pointed Brauer tree G(p). Since the homotopy category of the Brauer tree algebra A
is tilting-connected by Theorem 2.10, there exists a sequence of mutations (μεnin

, . . . , με2i2
, με1i1

)
satisfying that (μεnin

· · · με2i2
με1i1

)(A) � T , where εl means + or − for each l. To find this sequence
of mutations, we give a following algorithm which will give us such a sequence of mutations
for the pointed Brauer tree G(p).

Algorithm 3.2. Let G be a Brauer tree, and G(p) a pointed Brauer tree of the Brauer tree
G.
1. Fix an arbitrary branch and denote all edges to which belong the branch by S1, . . . , Sk.
2. Take a Green’s walk around G(p) so that it meets another edge after meeting all S1, . . . , Sk.

Then we have the first vertex that one would meet the walk of the all vertices whose
corresponding edges belong to branches which are not leaves. If the edge corresponding
to the vertex is not adjacent to the exceptional vertex, we let j1 be the edge and let ε( j1)
be −. If the edge is adjacent to the exceptional vertex, taking a reverse Green’s walk
around G(p) so that it meets another edge after meeting all S1, . . . , Sk, we have the edge
corresponding to the first vertex with the same property and we let j1 the edge and let
ε( j1) be +.

3. Assume we have a sequence of mutations (με( jl−1)
jl−1
, . . . , μ

ε( j2)
j2
, μ
ε( j1)
j1

). Then we take the

same process as 2 for the pointed Brauer tree (με( jl−1)
jl−1
· · · με( j2)

j2
μ
ε( j1)
j1

)(G(p)) which is de-
fined in Definition 3.1, and we get the edge jl and the sign ε( jl).

4. We repeat the process 3 until (με( jn)
jn
· · · με( j2)

j2
μ
ε( j1)
j1

)(G(p)) gets to the Brauer star.
5. Putting ik := jn+1−k and εk := ε( jn+1−k), we get a sequence (μεnin

, . . . , με2i2
, με1i1

) of irreducible
mutations with (με1i1

με2i2
· · · μεnin

)(G(p)) a Brauer star.

On a sequences of mutations obtained from Algorithm 3.2, we prepare a permutation σl

associated to μεlil
and Lemma 3.4 about this permutation which will be helpful in proving

Theorem 4.1.
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Notation 3.3. Let A = An be a Brauer tree algebra associated to a Brauer tree G and let
G(p) be a pointed Brauer tree of the Brauer tree G and let (με1i1

, με2i2
, . . . , μεnin

) be a sequence
of mutations obtained from G(p) by Algorithm 3.2 and let Ak be the opposite algebra of
endomorphism algebra of the tilting complex (μεk+1

k+1μ
εk
k · · · μεnn )(An) for 0 ≤ k ≤ n − 1:

An

μεnin−−→ An−1 → · · · → A1

μ
ε1
i1−−→ A0.

Then, for each 1 ≤ l ≤ n and for the mutation Al

μ
εl
il−−→ Al−1 we define a permutation σl

associated to μεlil
of the indices {1, 2, . . . , e} of Al as follows:

(1) If il is a leaf, we let σl be the identity map.
(2) If il is not a leaf and εl = −, then we put σl = (il y), where y is the edge which is

next before il in the cyclic ordering at the vertex corresponding to il in the Brauer
tree of Ail

(3) If il is not a leaf and εl = +, then we put σl = (il y), where y is the edge which is
next after to il in cyclic ordering at the vertex corresponding to il in the Brauer tree
of Ail

Lemma 3.4. Let A be a Brauer tree algebra associated to a Brauer tree G and let
G(p) be a pointed Brauer tree of the Brauer tree G. For the pointed Brauer tree G(p),
let (με1i1

, με2i2
, . . . , μεnin

) be a sequence of mutations obtained from Algorithm 3.2:

A = An

μεnin−−→ An−1 → · · · → A2

μ
ε2
i2−−→ A1

μ
ε1
i1−−→ A0.

Moreover let f : {S1, S2, . . . , Se} → {1, 2, . . . , e} be the bijection mapping each index of an
edge to the edge numbering for the pointed Brauer tree G(p) (see Definition 2.14). Let σk

be a permutation associated to μεkik
, and put σ(n) := σ1σ2 · · ·σn. Then the cyclic ordering of

the Brauer star (με1i1
με2i2
· · · μεnin

)(G(p)) is given by < σ(n) f −1(1), σ(n) f −1(2), . . . , σ(n) f −1(e) > .

Proof. For 0 ≤ l ≤ n − 1, let fl : {S1, S2, . . . , Se} → {1, 2, . . . , e} be the bijection mapping
each index of an edge of (μεl+1

il+1
μεlil
· · · μεnin

(G(p))) to the vertex numbering of the pointed Brauer
tree in Definition 2.14, and put fn = f , where we determine each fl by the following Green’s
walk (recall the vertex numbering in Definition 2.14 depends on the choice of the branch
Green’s walk starts at):

• The case G(p) has at least two branches:
– We define each function fl by the Green’s walk with the same property as the

one in the processes 2 and 3 of Algorithm 3.2.
• The case G(p) has only one branch:

– If (μεkik
μεk−1

ik−1
· · · μεnin

(G(p))) has only one branch and (μεk+1
ik+1
μεkik
· · · μεnin

(G(p))) has two
branches, then we define the function fk by the Green’s walk around (μεk+1

ik+1
μεkik
· · ·

μεnin
(G(p))) starting at the branch to which the edge ik+1 belong. Then we denote

all edges which belong to the branch by Sr1 , . . . , Srk

– If both (μεlil
μεl−1

il−1
· · · μεnin

(G(p))) and (μεl+1
il+1
μεlil
· · · μεnin

(G(p))) have at least two
branches, we define the function fl by the Green’s walk around (μεl+1

il+1
μεlil
· · ·

μεnin
(G(p))) such that it meets another edge after meeting all Sr1 , . . . , Srk .

In order to prove the lemma, we show that f −1
l−1 = σl f −1

l for each 1 ≤ l ≤ n.
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Case 1. il is a leaf.
We assume εl = −.

In this case, we have σl is the identity map by the definition of σl (see Notation 3.3). Also
by the definition of the construction of the sequence of mutations, in the minimal paths from
the exceptional vertex to the vertex corresponding to il in both Gl and Gl−1, all the points are
on the left on the minimal path because we choose il to correspond to the first point on the
right in the Green’s walk.

Hence we have fl(Sil) = fl−1(Sil). Also, for any edge Sj except Sil , we clearly have
fl(Sj) = fl−1(Sj). Hence we have fl = fl−1 which implies f −1

l−1 = id f −1
l = σl f −1

l as claimed.
The dual argument shows that the statement for εl = + holds.

Case 2. il is not a leaf.
We assume εl = −.

Let v be the vertex corresponding to the edge Sil in Gl, and let Sy be the edge which is next
before Sil in the cyclic ordering at v in Gl, and let u be the vertex corresponding to the edge Sy
in Gl. Then we have σl = (il y) by the definition. Also by the definition of the construction
of the sequence of mutations, in the minimal paths from the exceptional vertex to v in both
Gl and Gl−1, all the points are on the left. Hence the edge numberings of Sil in Gl and of Sy
in Gl−1 are the minimal numbers in the branches, which implies that fl(Sil) = fl−1(Sy). Also,
we clearly have both numbers corresponding to u in Gl and in Gl−1 are equal in whichever
sector the point corresponding to the vertex u are. Hence we have fl(Sy) = fl−1(Sil). For
another vertex we have the numbers of the vertex in both Gl and Gl−1 are equal, hence for
any vertex except v and u, we clearly have the edges corresponding to the vertex in both Gl

and Gl−1 have equal edge numberings. Hence we have fl(Sm) = fl−1(Sm) for any edge Sm

except Sil and Sy.
Thus we have that fl(Sy) = fl−1(Sil), fl(Sil) = fl−1(Sy) and fl(Sm) = fl−1(Sm) for any edge

Sm except Sy and Sil . Hence we have fl = fl−1σl, which implies that f −1
l = σ

−1
l f −1

l−1 = σl f −1
l−1,
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as claimed.
The dual argument shows that the statement for εl = + holds.

Now we have proven that f −1
l−1 = σl f −1

l for each 1 ≤ l ≤ n. On the other hand, for
0 ≤ k ≤ n − 1, putting Gk := (μεk+1

ik+1
μεkik
· · · μεnin

)(G) which is the Brauer tree of Ak and putting
Gn = G, we have

the cyclic ordering of G0 = the cyclic ordering of με1i1
(G1)

= the cyclic ordering of με1i1
με2i2

(G2)

= · · ·
= the cyclic ordering of με1i1

με2i2
· · · μεnin

(Gn).

Therefore we have that

the cyclic ordering of G0 =< f −1
0 (1), f −1

0 (2), . . . , f −1
0 (e) >

=< σ1 f −1
1 (1), σ1 f −1

1 (2), . . . , σ1 f −1
1 (e) >

=< σ1σ2 f −1
2 (1), σ1σ2 f −1

2 (2), . . . , σ1σ2 f −1
2 (e) >

= · · ·
=< σ1σ2 · · ·σn f −1

n (1), σ1σ2 · · ·σn f −1
n (2), . . . , σ1σ2 · · ·σn f −1

n (e) > . �

Example 3.5. We give an example of Lemma 3.4. We consider the following pointed
Brauer tree.

By Algorithm 3.2, we have a sequence (μ+1 , μ
+
2 , μ

−
3 , μ

−
4 ) of mutations and the following

pointed Brauer trees (the detailed calculation can be seen in Section 5):
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In this setting, the function fi : {S1, . . . , S5} → {1, . . . , 5} is defined as follows for each
0 ≤ i ≤ 4:

f4(S1) = 3, f4(S2) = 4, f4(S3) = 2, f4(S4) = 1, f4(S5) = 5,

f3(S1) = 3, f3(S2) = 4, f3(S3) = 1, f3(S4) = 2, f3(S5) = 5,

f2(S1) = 3, f2(S2) = 4, f2(S3) = 1, f2(S4) = 2, f2(S5) = 5,

f1(S1) = 4, f1(S2) = 3, f1(S3) = 1, f1(S4) = 2, f1(S5) = 5,

f0(S1) = 4, f0(S2) = 3, f0(S3) = 1, f0(S4) = 2, f0(S5) = 5.

In particular, the fuction f in the notation of Lemma 3.4 is f4 in this setting. Moreover the
permutations corresponding μ−4 , μ

−
3 , μ

+
2 , μ

+
1 are σ4 := (3 4), σ3 := id, σ2 := (1 2), σ1 := id

respectively (see Notation 3.3). The cyclic ordering of G0 is given by < S3, S4, S2, S1, S5 >.
It is certain that this cyclic ordering is equal to

< (1 2)(3 4) f −1(1), (1 2)(3 4) f −1(2), (1 2)(3 4) f −1(3), (1 2)(3 4) f −1(4), (1 2)(3 4) f −1(5) > .

4. Main Theorem

4. Main TheoremTheorem 4.1. Let A be a Brauer tree algebra associated to a Brauer tree G, let G(p) be a
pointed Brauer tree of G and let T be a Rickard-Schaps tree-to-star complex obtained from
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the pointed Brauer tree G(p). Then for a sequence of mutations (με1i1
, με2i2
, . . . , μεnin

) obtained
by the Algorithm 3.2, we have (με1i1

· · · μεn−1
in−1
μεnin

)(A) � T.

Proof. We defined a Kauer move for a pointed Brauer tree (see Definition 3.1). By using
this definition, we denote a pointed Brauer tree (μεk+1

ik+1
· · · μεn−1

in−1
μεnin

)(G(p)) by Gk(p), where
Gn(p) = G(p). Then we remark that G0(p) is the pointed Brauer tree of the Brauer star.
Moreover we let Ak be a Brauer tree algebra associated to the Brauer tree Gk of which Gk(p)
is the pointed Brauer tree.

If G is a Brauer tree whose all edges except one edge i1 are adjacent to the exceptional
vertex, then the statement holds (see the proof of Theorem 4.1 in [10] and its dual argument).
In this case, T is isomorphic to με1i1

(A). We assume as our induction that the statement holds
if the sequence of mutations is length n − 1. Then for a sequence of mutations and Brauer
tree algebras which reaches the Brauer star algebra A0

An−1

μ
εn−1
in−1−−−→ An−2 → · · · → A1

μ
ε1
i1−−→ A0,

it holds that (με1i1
· · · μεn−1

in−1
)(A) � T (n−1), where T (n−1) is the Rickard-Schaps tree-to-star com-

plex obtained from the pointed Brauer tree Gn−1(p). In particular, since EndDb(An−1)(T (n−1)) �
Bop where B is the basic Brauer star algebra Morita equivalent to A0 with cyclic order-
ing of the exceptional vertex < f −1

n−1(1), f −1
n−1(2), . . . , f −1

n−1(e) >, by Lemma 3.4, for each
1 ≤ j ≤ e, the j-th component of (σ1σ2 · · ·σn−1)(με1i1

· · · μεn−1
in−1

)(An−1) is isomorphic to the
j-th component of T (n−1), where each σ j is a permutation defined in Notation 3.3. In other
words, for the indecomposable summand P(n−1)

j of An−1 and T (n−1)
j of T (n−1), it holds that

(με1i1
· · · μεn−1

in−1
)(P(n−1)
σ1σ2···σn−1( j)) � T (n−1)

j . From the isomorphism (σ1σ2 · · ·σn−1)(με1i1
· · ·

μεn−1
in−1

)(An−1) � T (n−1), we have
(σn−1 · · ·σ2σ1)(μ−εn−1

in−1
· · · μ−ε2i2

μ−ε1i1
)(A0) � T̂ (n−1), where T̂ (n−1) is the Schaps-Zakay star-to-

tree complex obtained from the pointed Brauer tree Gn−1(p) which induces the inverse equiv-
alence to the tilting by the Rickard-Schaps tree-to-star complex T (n−1) obtained from the
pointed Brauer tree Gn−1(p) (we remark that σ−1

j = σ j for each j since σ j is a transposition).
Then to prove the statement for n it is enough to show that (σnσn−1 · · ·σ2σ1)(μ−εnin

μ−εn−1
in−1
· · ·

μ−ε2i2
μ−ε1i1

)(A0) is isomorphic to the star-to-tree complex T̂ (n) obtained from Gn(p) which in-
duces the inverse equivalence to the tilting by the tree-to-star complex T (n).
Case 1. in is a leaf.

We prove the statement for −εn = + or equivalently εn = −. The dual argument shows
that the statement for the other case holds.

In the pointed Brauer tree Gn−1(p) of An−1, let v be the closer vertex on both ends of
in from the exceptional vertex and let < in, y, . . . , x > be the cyclic ordering around v in
Gn−1(p).

Since EndDb(An)(μ−in(An)) � Aop
n−1, by the choice of in and the definition of the Kauer move
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for the pointed Brauer tree, in the pointed Brauer tree Gn(p) corresponding to An, the point
which one first meets on a Green’s walk in the branch is the one corresponding to in. Hence
the point corresponding to the edge x is in the sector (y, x) in both Gn−1(p) and Gn(p). The
star-to-tree complex given by the pointed Brauer tree is determined by the minimal path with
points from the exceptional vertex to each edge, but we clearly have, for any edge j except
in, the minimal path with points from the exceptional vertex to the vertex corresponding to
j in Gn−1(p) coincide with the one in Gn(p). Hence we have

⊕
j�in

T̂ (n−1)
j �

⊕
j�in

T̂ (n)
j .

We prove that μ+in(T̂
(n−1)
in

) � T̂ (n)
in

. Now we put An−1 =
⊕

i Q(n−1)
i , where each Q(n−1)

i is an
indecomposable projective An−1-module. Then we have

μ+in(Q
(n−1)
in

) = [Q(n−1)
y → Q(n−1)

in
] = Cone

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(n−1)
y

↓
Q(n−1)

in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−1],

where Q(n−1)
y is in degree 0. Also for a derived equivalence Fn−1 : Db(An−1) → Db(B)

induced by T (n−1), it holds that T̂ (n−1)
in

= Fn−1(Q(n−1)
in

). Also for the vertex numberings
fn−1(x), fn−1(y) and fn−1(in) of x, y and in in the pointed Brauer tree of An−1, we have fn−1(x) >
fn−1(y) and fn−1(x) > fn−1(in), so we have Fn−1(Q(n−1)

y ) � [Qx → Qy] and Fn−1(Qin) � [Qx →
Qin] where each Qi is an indecomposable B-module with B =

⊕
i Qi and where, in the re-

spective complexes, Qy and Qin are in the degree d(n−1)(y) − 1 = d(n−1)(in) − 1. Thus we
have

μ+in(T̂
(n−1)
in

) = μ+in(Fn−1(Q(n−1)
in

))

= Fn−1(μ+in(Q
(n−1)
in

))

= Cone

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fn−1(Q(n−1)
y )
↓

Fn−1(Q(n−1)
in

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−1]

= Cone

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qx → Qy
|| ↓

Qx → Qin

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−1]

= Qy → Qin

where in the last complex the degree of Qy is d(n−1)(y) − 1 + 1 − 1 = d(n−1)(y) − 1.
On the other hand, by the construction from the pointed Brauer tree Gn(p) of An, we have

T̂ (n)
y = Qx → Qy

T̂ (n)
in
= Qy → Qin .

where in T̂ (n)
in

, Qy is in degree d(n)(y) − 1. Now both minimal paths with points from the
exceptional vertex to the vertex corresponding to y in An−1 and An coincide, so we have
d(n)(y) = d(n−1)(y). Hence we have T̂ (n)

in
� μ+in(T̂

(n−1)
in

). Therefore we conclude that T̂ (n) �
μ+in(T̂

(n−1)) in the case that in is a leaf.

Case 2. il is not a leaf.
We prove the statement for −εn = + or equivalently εn = −. The dual argument shows

that the statement for the other case holds.
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First, for the proof, we fix the following notation for the pointed Brauer tree Gn−1(p) of
An−1. Of the two ends of the edge in in Gn−1(p) we denote the vertex closer to the exceptional
vertex by v. Let < in, x1, . . . , xk > be the cyclic ordering at v in Gn−1(p), where the edge
corresponding to v is xk. We denote the farther vertex from the exceptional vertex on both
ends of the edge in in Gn−1(p) by u. Let < in, y1, . . . , yl > be the cyclic ordering at u. Let
w be the vertex corresponding to y1. Let < y1, z1, . . . , zm > be the cyclic ordering at w in
Gn−1(p).

Since EndDb(An)(μ−in(An)) � Aop
n−1, by Definition 3.1 of a Kauer move for the pointed Brauer

tree, the first point in the branch which we meet on a Green’s walk around the pointed Brauer
tree Gn(p) is the point corresponding to in (see above figures). Also the point corresponding
to xk is in the sector (x1, xk) in both Gn(p) and Gn−1(p). By the Kauer move for the pointed
Brauer tree, in the pointed Brauer tree Gn−1(p), the point corresponding to y1 is in the sector
(y1, z1) and the point corresponding to in is in the sector (y1, in). We remark that σn = (in y1)
(see Notation 3.3). We prove that T̂ (n) � μ+in(μ

−εn−1
in−1
· · · μ−ε1i1

(A0)) under the assumption that
μ−εn−1

in−1
· · · μ−ε1i1

(A0) � T̂ (n−1).
By the construction of Schaps-Zakay star-to-tree complexes from pointed Brauer trees,

T̂ (n)
y1 = [Qy1 → Qin], where Qin is in the degree d(n)(in) − 1. Also by the construction,

T̂ (n−1)
y1 = [Qin → Qy1 ], where Qy1 is in degree d(n−1)(y) − 1 = d(n−1)(in). Hence

σn(T̂ (n−1)
y1

) = σn[Qin → Qy1 ] = [Qy1 → Qin],

where in the last complex, Qin is in degree d(n−1)(in). Since d(n−1)(in) = d(n)(in) − 1, we
conclude T̂ (n)

y1 � σn(T̂ (n−1)
y1 ).

Next we prove that T̂ (n)
in
� μ+in(T̂

(n−1)
in

). By the construction of star-to-tree complex from the
pointed Brauer tree Gn(p), we have T̂ (n)

in
= [Qx1 → Qin], where Qx1 is in degree d(n)(x1) − 1.

We calculate μ+in(T̂
(n−1)
in

). Put An−1 =
⊕

Q(n−1)
i , where each Q(n−1)

i is an indecomposable
projective An−1-module. Then we have μ+in(Q

(n−1)
in

) = [Q(n−1)
x1 ⊕ Q(n−1)

y1 → Q(n−1)
in

], where
Q(n−1)

in
is in degree 1. Hence denoting a derived equivalence induced by T (n−1) by Fn−1 :

Db(An−1)→ Db(A0), since the image of Q(n−1)
in

under the equivalence is T̂ (n−1)
in

, we have

μ+in(T̂
(n−1)
in

) � μ+in(Fn−1(Q(n−1)
in

))

� Fn−1(μ+in(Q
(n−1)
in

))

� Fn−1(Q(n−1)
x1
⊕ Q(n−1)

y1
→ Q(n−1)

in
)

� Fn−1(Cone

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(n−1)
x1 ⊕ Q(n−1)

y1

↓
Q(n−1)

in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
)[−1]
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� Cone(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fn−1(Q(n−1)
x1 ) ⊕ Fn−1(Q(n−1)

y1 )
↓

Fn−1(Q(n−1)
in

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
)[−1]

Here, since Fn−1(Q(n−1)
x1 ), Fn−1(Q(n−1)

y1 ) and Fn−1(Q(n−1)
in

) are T̂ (n−1)
x1 , T̂ (n−1)

y1 and T̂ (n−1)
in

respec-
tively, by the construction of Schaps-Zakay star-to-tree complexes from pointed Brauer
trees, we have

Fn−1(Q(n−1)
x1 ) = [Qxk → Qx1 → 0 → 0]

Fn−1(Q(n−1)
y1 ) = [0 → Qin → Qy1 → 0]

Fn−1(Q(n−1)
in

) = [Qxk → Qin → 0 → 0],

where the all underlined terms are in degree d(n−1)(x1) − 1. Hence we have

Cone(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fn−1(Q(n−1)
x1 ) ⊕ Fn−1(Q(n−1)

y1 )
↓

Fn−1(Q(n−1)
in

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
)[−1] � [Qx1 → Qy1 ],

where Qx1 is in the degree d(n−1)(x1) − 1. Thus we conclude that σn(μ+in(T̂
(n−1)
in

)) � T̂ (n)
in

.
Next we prove T̂ (n)

ys � σn(μ+in(T̂
(n−1)
ys )) for 1 < s ≤ l. Since μ+in mutates only the inde-

composable summand T̂in , we have only to show that T̂ (n)
ys � σn(T̂ (n−1)

ys ). Suppose the point
corresponding to y1 is in the sector (y1, ys) in the pointed Brauer tree Gn(p). Then the min-
imal paths from the exceptional vertex to the vertex corresponding to ys in Gn and Gn−1 are
as follows.

Then by the construction of star-to-tree complex from the pointed Brauer tree Gn−1(p), we
have that T̂ (n−1)

ys = [Qys → Qin], where Qin is in the degree d(n−1)(in) − 1, and that T̂ (n)
ys =

[Qys → Qy1 ], where Qy1 is in the degree d(n)(in) − 2. Here, since d(n)(in) = d(n−1)(in) + 1,
we have d(n)(in) − 2 = d(n−1)(in) − 1. Also, since σn = (in y1), we have σn(T̂ (n−1)

ys ) � T̂ (n)
ys .

Similar argument shows the statement of the case the point corresponding to y1 is in the
sector (ys, y1) in the pointed Brauer tree Gn(p) (in the case, the rightmost points in Gn−1(p)
and Gn(p) in the above figure will be reversed).

Next we prove T̂ (n)
zs � σn(μ+in(T̂

(n−1)
zs )) for 1 ≤ s ≤ m. Similar to above argument, we prove

that T̂ (n)
zs � σn(T̂ (n−1)

zs ). Then the minimal paths from the exceptional vertex to the vertex
corresponding to zs in Gn and Gn−1 are as follows.
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Then by the construction of star-to-tree complex from the pointed Brauer trees Gn−1(p) and
Gn(p), we have that T̂ (n−1)

zs = [Qzs → Qy1 ], where Qy1 is in degree d(n−1)(y1) − 1, and that
T̂ (n)

zs = [Qzs → Qin], where Qin is the degree d(n)(in) − 1. Also since d(n)(in) = d(n−1)(y1), we
have σn(T̂ (n−1)

zs ) � T̂ (n)
zs .

Finally, we can easily see that the statement for another edge holds by the construction of
star-to-tree complexes. �

For the pointed Brauer tree G(p) of a Brauer tree G and Brauer tree algebra A = AG,
Rickard-Schaps tree-to-star complex of A-modules obtained from G(p) induces an inverse
equivalence to the one by the Schaps-Zakay star-to-tree complex obtained by G(p). Hence
we have the following by Theorem 4.1.

Corollary 4.2. Let A be a Brauer tree algebra associated to a Brauer tree G and let G(p)
be a pointed Brauer tree of G and let T̂ be Schaps-Zakay star-to-tree complex obtained from
the pointed Brauer tree G(p). Then for a sequence of mutations (με1i1

, με2i2
, . . . , μεnin

) obtained
by the Algorithm 3.2, we have (μ−εnin

· · · μ−ε2i2
μ−ε1i1

)(B) � T̂ where B is the Brauer star algebra
derived equivalent to A.

By the proof of Theorem 4.1, we get the following theorem.

Theorem 4.3. Let G be a Brauer tree, G(p) a pointed Brauer tree of G, μεi (G(p)) a pointed
Brauer tree obtained by applying the Kauer move for pointed Brauer trees (Definition 3.1),
where ε ∈ {+,−}, and T̂ (G(p)) a two-restricted star-to-tree complex corresponding to G(p).
Assume that the sum of all distance of the edges of μεi (G(p)) from the exceptional vertex is
strictly smaller than that of G(p). Then the star-to-tree complex obtained by applying the
mutation μεi to T̂ (G(p)) is isomorphic to the star-to-tree complex corresponding to μεi (G(p)).
In other words we get the following isomorphism:

μεi (T̂ (G(p))) � T̂ (μεi (G(p))).

5. Example

5. Example
We shall give an example. We shall use the following notation. Let G be the underlying

Brauer tree of the following pointed Brauer tree G(p), and let A = AG be the Brauer tree
algebra associated to the Brauer tree G.

For simplicity, we denote the projective cover of the simple A-module Si by Pi for each
1 ≤ i ≤ 5. By using this notation, let A =

⊕5
i=1 Pi be a decomposition of A as a direct sum

of indecomposable projective modules. The Rickard-Schaps tree-to-star complex T given
by the pointed Brauer tree is as follows:
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P4 → P1 ⊕ P3 ⊕ P5 → P2

⊕
P4 → P3 ⊕ P5 → P2

⊕
P4 → P3 ⊕ P5

⊕
P4 → P5

⊕
P5

We shall give a sequence of mutations converting A to T .
To find such a sequence of mutations, we apply Algorithm 3.2. The first point the Green’s

walk around the Brauer tree G(p) from the exceptional vertex would meet is the point cor-
responding to the edge S4. Hence the first mutation of the required sequence is μ−4 . The
Kauer move for the pointed Brauer tree μ−4 converts G(p) to the following pointed Brauer
tree (Definition 3.1):

Similarly, the first point the Green’s walk around the Brauer tree μ−4 (G(p)) from the ex-
ceptional vertex would meet is the point corresponding to the edge S3. Hence the second
mutation of the required sequence is μ−3 . The Kauer move for the pointed Brauer tree μ−3
converts μ−4 (G(p)) to the following pointed Brauer tree:

Next, we consider the third mutation of the required sequence. The first point the Green’s
walk around the Brauer tree (μ−3μ

−
4 )(G(p)) from the exceptional vertex would meet is the

point corresponding to the edge S4. However the edge S4 is adjacent to the exceptional
vertex. Hence we take the reverse Green’s walk instead of the Green’s walk. The point
the reverse Green’s walk around the Brauer tree (μ−3μ

−
4 )(G(p)) from the exceptional vertex

would meet first is the point corresponding to S2. Hence the third mutation is μ+2 , and the
mutation converts the pointed Brauer tree (μ−3μ

−
4 )(G(p)) to the following pointed Brauer tree:
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Similarly we get the fourth mutation μ+1 converting the pointed Brauer tree (μ+2μ
−
3μ
−
4 )(G(p))

to the following pointed Brauer tree:

Hence by Theorem 4.1, we get (μ+1μ
+
2μ
−
3μ
−
4 )(A) � T . In fact, we can check the following

calculation process:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

⊕
P2

⊕
P3

⊕
P4

⊕
P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μ−4−−−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

⊕
P2

⊕
P3

⊕
P4 → P3 ⊕ P5

⊕
P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μ−3−−−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

⊕
P2

⊕
P4 → P5

⊕
P4 → P3 ⊕ P5

⊕
P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μ+2−−−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

⊕
P4 → P1 ⊕ P3 ⊕ P5 → P2

⊕
P4 → P5

⊕
P4 → P3 ⊕ P5

⊕
P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μ+1−−−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P4 → P3 ⊕ P5 → P2

⊕
P4 → P1 ⊕ P3 ⊕ P5 → P2

⊕
P4 → P5

⊕
P4 → P3 ⊕ P5

⊕
P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We remark that the resulting tree-to-star complex (μ+1μ
+
2μ
−
3μ
−
4 )(A) coincides with the Rickard-

Schaps tree-to-star complex T when ignoring the indices of direct summands of the com-
plexes. We shall find a permutation to make the indices of (μ+1μ

+
2μ
−
3μ
−
4 )(A) coincide with

that of T . By the proof of Theorem 4.1, we know that the permutation σ obtained by
composing the permutations corresponding to μ−4 , μ

−
3 , μ

+
2 and μ+1 (see Notation 3.3) converts
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the index of each projective module of (μ+1μ
+
2μ
−
3μ
−
4 )−1(A0) = (μ+4μ

+
3μ
−
2μ
−
1 )(A0) to that of T̂ ,

where T̂ is the star-to-tree complex obtained from the pointed Brauer tree G(p) which in-
duces an inverse equivalence to the one by Rickard-Schaps tree-to-star complex T , and
where A0 is the Brauer star algebra associated to the Brauer star μ+1μ

+
2μ
−
3μ
−
4 (G). Since the

indices of the projective modules of the Brauer star algebra correspond the indices of di-
rect summands of tree-to-star complex, the inverse σ−1 of the permutation converts the in-
dices of direct summands of (μ+1μ

+
2μ
−
3μ
−
4 )(A) to that of T . The permutations corresponding

μ−4 , μ
−
3 , μ

+
2 , μ

+
1 are (3 4), id, (1 2), id respectively. Hence the permutation σ converting the

indices of (μ+4μ
+
3μ
−
2μ
−
1 )(A0) to those of T̂ is (3 4)(1 2). Hence the required permutation is

σ−1 = (1 2)(3 4). Thus we get that (1 2)(3 4)(μ+1μ
+
2μ
−
3μ
−
4 )(A) coincides with T completely.

Indeed, putting μ := μ+1μ
+
2μ
−
3μ
−
4 , for the Rickard-Schaps tree-to-star complex T =

⊕5
i=1 Ti

and for the complex
⊕5

i=1 μ(Pi) it holds that Ti � μ(P(3 4)(1 2)(i)) for each 1 ≤ i ≤ 5:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 = P4 → P1 ⊕ P3 ⊕ P5 → P2

⊕
T2 = P4 → P3 ⊕ P5 → P2

⊕
T3 = P4 → P3 ⊕ P5

⊕
T4 = P4 → P5

⊕
T5 = P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ(P1) = P4 → P3 ⊕ P5 → P2

⊕
μ(P2) = P4 → P1 ⊕ P3 ⊕ P5 → P2

⊕
μ(P3) = P4 → P5

⊕
μ(P4) = P4 → P3 ⊕ P5

⊕
μ(P5) = P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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