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Abstract
The purpose of this article is to show a simple method of finding Z2-Betti numbers of oriented

Grassmannians. The actual calculation is performed by computing Z2-ranks of matrices defined
in a combinatorial way. For the reduction of problem from topology to matrix rank, we will
analyse Morse homology of certain functions on the oriented Grassmannians.

1. Introduction

1. Introduction
Let Grm,n be the Grassmannian of m-dimensional subspaces in (n + m)-dimensional real

vector space Rn+m, and G̃rm,n the Grassmannian of oriented m-dimensional subspaces in
R

n+m. We will simply call G̃rm,n an oriented Grassmannian. Since there exist canonical
diffeomorphisms between Grm,n and Grn,m, and between G̃rm,n and G̃rn,m, we will always
consider Grassmannians of (oriented) subspaces of dimension at most the half of the dimen-
sion of ambient vector spaces.

Grassmannian has been a central theme in geometry and topology. Their cohomological
structure is well understood by means of both Schubert cell decompositions and Stiefel-
Whitney characteristic classes of the tautological vector bundles. The Grassmannians can
be naturally embedded in linear spaces of matrices, where almost all linear functions re-
stricted to the image are perfect Morse functions on Grm,n, namely all Morse inequalities are
equalities for certain coefficient field in homology, and the unstable manifold decomposition
coincides with the Schubert cell decomposition.

In contrast, the cohomological structure of oriented Grassmannians G̃rm,n is still unclear
except for m = 1, 2, and even computing Z2-Betti numbers of G̃rm,n with m ≥ 3 has not been
completed. For recent researches on cohomological structure of oriented Grassmannians
G̃rm,n for m = 3, 4, see for example [2], [5] and [7], and references therein.

In order to calculate Z2-Betti numbers of G̃rm,n, we consider the following matrices: let
Lm,n be the set of Young diagrams fitting in an m× n rectangle, which has a natural ordering
and turns into a graded poset. Let Lm,n(k) be the set of elements of rank k in Lm,n. Denote
by δm,n(k) the adjacency matrix of the sub-bipartite graph with two vertex sets Lm,n(k) and
Lm,n(k + 1) extracted from the Hasse diagram of the poset Lm,n. We will denote by rm,n(k)
the Z2-rank of δm,n(k) (see Section 2). The rank generating function of the poset Lm,n is
the so-called q-binomial coefficient (see 2.1), namely the cardinality sm,n(k) of Lm,n(k) is
the coefficient of qk in the q-binomial coefficient. Then the matrix δm,n(k) is an sm,n(k) ×
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sm,n(k + 1) matrix whose entries are either 1 or 0. The Z2-rank of this matrix is at most
min{sm,n(k), sm,n(k + 1)}. These matrices are also called the incidence matrices of the poset
Lm,n (see [3, Definition 1.48]). The usual ranks (not the Z2-rank) of them are studied in
relation with problems in combinatorics such as the Sperner and Lefschetz properties. Here
our concern is the ranks rm,n(k) of these matrices as Z2-module homomorphisms. The author
could not find any results on the Z2-ranks rm,n(k) in the literature.

Denote by Rm,n(q) the generating function
∑mn

k=0 rm,n(k)qk of the series {rm,n(k)} of Z2-
ranks. The main theorem of this article (Theorem 2.1) states that the sum of the Z2-Poincaré
polynomial of oriented Grassmannian G̃rm,n and (1 + q)Rm,n(q) equals twice the q-binomial
coefficient. For the proof, we use Morse homology of a certain function on the oriented
Grassmannian. Even though the existence of perfect Morse functions on Grm,n is well-
known, we do not know whether perfect Morse functions on G̃rm,n exist or not. However if
we consider the composition of the above perfect Morse function on Grm,n with the canon-
ical double covering map G̃rm,n → Grm,n, we obtain a function on G̃rm,n whose boundary
operator of the corresponding Morse complex has a simple form (see (5.1)) which is closely
related to the matrix δm,n(k).

In Section 6, we will deduce from Theorem 2.1 along with Lemma 6.1 that there exists
a positive integer κm,n ≤ nm/2 such that the Z2-Betti number bk(G̃rm,n) is equal to the dif-
ference sm,n(k) − sm,n(k − 1) for all positive integers k ≤ κm,n (Corollary 6.2). Regarding
the double covering G̃rm,n → Grm,n as a 0-dimensional sphere bundle, we obtain the Gysin
exact sequence

· · · → Hk−1(Grm,n)
∪w→ Hk(Grm,n)→ Hk(G̃rm,n)→ Hk(Grm,n)→ · · · ,

where w is the Stiefel-Whitney class of the R1-bundle associated to the S0-bundle. Since the
Poincaré polynomial of Grm,n equals the q-binomial coefficient, the existence of the integer

κm,n implies that the homomorphisms Hk−1(Grm,n)
∪w→ Hk(Grm,n) are injective for all k ≤ κm,n.

In Example 2.2 we find κ4,4 = 3 and κ5,5 = 10. The existence of κm,n is a consequence of
Lemma 6.1 which says that the Z2-rank rm,n(k) is maximal provided k < n. In this way, the
maximality of the rank rm,n(k) is closely related to the estimate of characteristic ranks of
oriented Grassmannians. For details, see for example [2], [5] and [7].

In this article, we will consider Grassmannians defined over the real field R, and homol-
ogy groups with coefficients in Z2 = Z/2Z.

2. Combinatorics and Main theorem

2. Combinatorics and Main theorem2.1. Young Lattice.
2.1. Young Lattice. The graded poset Lm,n of all Young diagrams fitting in an m × n

rectangle with a usual partial ordering has an alternative description, that will be suitable
for our presentation. Let Sm,n be the set of m-element subsets α = {α(1), · · · , α(m)} ⊂
{1, · · · ,m+ n} with α(1) < · · · < α(m), and for α and β ∈ Sm,n define a partial ordering α ≤ β
by the condition that α(i) ≤ β(i) for all i = 1, · · · ,m. The relation ≤ turns Sm,n into a graded
poset which is isomorphic to the Young lattice Lm,n. The isomorphism is given by assigning
to each α ∈ Sm,n the Young diagram with α(m − j) − (m − j) boxes in the j-th row.

The rank ρ(α) of α ∈ Sm,n is defined by
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ρ(α) =
m∑

i=1

(α(i) − i),

that satisfies 0 ≤ ρ(α) ≤ mn for all α ∈ Sm,n. Let Sm,n(k) be the subset of Sm,n consisting of
elements α of rank ρ(α) = k, and denote the cardinality sm,n(k) = |Sm,n(k)|, whose generating
function with respect to k is equal to the q-binomial coefficient;

(2.1)
mn∑
k=0

sm,n(k)qk =

[
n + m

m

]
q

=

m∏
i=1

1 − qn+i

1 − qi .

The sequence {sm,n(k)} is symmetric and unimodal. See [8].

2.2. Bipartite graph and biadjacency matrix.
2.2. Bipartite graph and biadjacency matrix. We linearize the set Sm,n(k) by the reverse

lexicographic ordering <rl for each k = 0, · · · ,mn; let α and β ∈ Sm,n(k), and set α <rl β if
and only if there exists an index j such that α(i) = β(i) for all i > j, and α( j) < β( j).

Define a matrix δm,n(k) whose entries are indexed by (α, β) ∈ Sm,n(k) × Sm,n(k + 1), and
satisfies

(2.2) (δm,n(k))α,β =
{

1 if α ≤ β,
0 otherwise.

The rank of δm,n(k) as a Z2-module homomorphism is denoted by rm,n(k), and the generating
function of the series rm,n(k) with respect to k is denoted by Rm,n(q);

(2.3) rm,n(k) = rankZ2 (δm,n(k)), and Rm,n(q) =
mn−1∑
k=0

rm,n(k)qk.

In Figure 1, elements αi of S4,4(4) are on the left, and elements β j of S4,4(5) on the right,
where αi <rl α j and βi <rl β j for i > j, and the first row shows {1, 2, 3, 8} = α1 and
β1 = {1, 2, 4, 8}. The line segments in the middle join pairs (αi, β j) satisfying αi ≤ β j, that is,
(αi, β j) with (δm,n(4))αi,β j = 1. For example, α2 is joined to β3, because β3(i) = α2(i) except
for i = 2, and β3(2) = 3 = α2(2) + 1. The Z2-rank of δ4,4(4) is

(2.4) r4,4(4) = rankZ2δ4,4(4) = rankZ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 4.

Fig.1. Example δ4,4(4). The bullets mark the positions of integers belong-
ing to αi’s on the left, and to βi’s on the right.
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2.3. Main theorem.
2.3. Main theorem. For a pair (m, n) of integers with 0 < m ≤ n, let G̃rm,n be the Grass-

mannian of oriented m-dimensional subspaces in Rm+n, and PG̃rm,n
(q) the Z2-Poincaré poly-

nomial of G̃rm,n;

PG̃rm,n
(q) =

mn∑
k=0

(
dimZ2 Hk(G̃rm,n)

)
qk.

We will prove the following in Section 5:

Theorem 2.1. The Z2-Poincaré polynomial PG̃rm,n
(q) and the polynomial Rm,n(q) defined

in (2.3) satisfy

PG̃rm,n
(q) + (1 + q)Rm,n(q) = 2

m∏
i=1

1 − qn+i

1 − qi .

Example 2.2. The Z2-Poincaré polynomials of G̃r4,4 and G̃r5,5. There are |S4,4| =
(

8
4

)
= 70

subsets α of {1, · · · , 8} of cardinality 4. The coefficients s4,4(k) of
[

8
4

]
q

are shown in the

second row in Table 1 below. We may calculate the Z2-ranks r4,4(k) of δ4,4(k) one by one
as in Figure 1 and (2.4), which are shown in the third row. By Theorem 2.1, we obtain the
Z2-Betti numbers bk = dimZ2 Hk(G̃r4,4), as shown in the last row. Since we have Poincaré
duality, we have shown the first half of the Z2-Betti numbers bk; k ≤ dim G̃r4,4/2 = 8.

Table 1. The Z2-Betti numbers bk = dimZ2 Hk(G̃r4,4).

k 0 1 2 3 4 5 6 7 8
s4,4(k) 1 1 2 3 5 5 7 7 8
r4,4(k) 1 1 2 3 4 5 6 6 6

bk 1 0 1 1 3 1 3 2 4

(cf. [7, Theorem 3.3].) We also show the Betti numbers of G̃r5,5 in Table 2.

Table 2. The Z2-Betti numbers bk = dimZ2 Hk(G̃r5,5).

k 0 1 2 3 4 5 6 7 8 9 10 11 12
s5,5(k) 1 1 2 3 5 7 9 11 14 16 18 19 20
r5,5(k) 1 1 2 3 5 7 9 11 14 16 18 18 20

bk 1 0 1 1 2 2 2 2 3 2 2 2 2

In Section 6.1, we will show that the Z2-ranks of δm,n(k) are maximal for small k’s. In
Tables 1 and 2, the Z2-ranks of δ4,4(k) with k = 4, 6, 7, 8 and δ5,5(11) are not maximal.

3. Morse functions on Grm,n

3. Morse functions on Grm,n
The main reference of this section is [4], where complex Grassmannians are treated in

detail, but the same idea can be applied for real Grassmannians.
We use notations in Section 2. Denote by Sym(N;R) the vector space of real symmetric
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matrices of size N = m + n, endowed with inner product defined by 〈X,Y〉 = trace(XY).
Given a diagonal matrix D = diag(a1, · · · , aN) satisfying

(3.1) a1 < · · · < aN ,

let hD : Sym(N;R) → R be a linear function defined by hD(X) = 〈X,D〉. Let {ei} be the
standard basis of RN .

3.1. A Morse function.
3.1. A Morse function. Let Grm,n be the Grassmannian of m-dimensional subspaces of

R
N . The standard embedding ϕ : Grm,n→Sym(N,R) is the mapping that assigns to each

V ∈ Grm,n a matrix �V ∈ Sym(N,R) satisfying �2
V = �V and �V (RN) = V , that is, the

orthogonal projection of RN onto V . We identify Grm,n and the image ϕ(Grm,n), and regard
it as a Riemannian manifold with the metric induced by ϕ.

Consider the composition F = hD ◦ ϕ :

Grm,n
ϕ−→ Sym(N,R)

hD−→ R.
Since the diagonal entries a1, · · · , aN are all distinct, F = hD ◦ ϕ is a Morse function. The
critical point set is given by

(3.2) Crt(F) = {Vα;α ∈ Sm,n},
where Vα is the coordinate subspace of RN corresponding to α ∈ Sm,n;

Vα = Reα(1) ⊕ · · · ⊕ Reα(m).

3.2. The gradient flow.
3.2. The gradient flow. The equation of the gradient flow of the Morse function F :

ϕ(Grm,n) → R is a restriction to the image ϕ(Grm,n) of the following ordinary differential
equation

dγ
dt

(t) = −γ(t)D(I − γ(t)) − (I − γ(t))Dγ(t)
in Sym(N,R). The solutions to this equation are the curves

R � t → e−tDV ∈ Grm,n.

This result was carefully explained for complex Grassmannians in [4, Theorem 3.1.1], and
the method can be applied to real Grassmannians, where we need only minor and natural
modifications such as replacing unitary group by orthogonal group. From this, we obtain
the stable and unstable manifolds of each critical point Vα in the same way as complex case
(cf. [ibid., Section3.1]).

The condition (3.1) implies that the Morse index of a critical point Vα ∈ Crt(F) equals
the rank of α

(3.3) ρ(α) =
m∑

i=1

(α(i) − i).

The stable and unstable manifolds, Ws(Vα) and Wu(Vα) respectively, of those critical points
Vα are exactly the Schubert cells of Grm,n with respect to the canonical filtration and the
orthogonal filtration of RN . The stable manifolds Ws(Vα) and the unstable manifolds Wu(Vβ)
intersect transversally, and hence F is a Morse-Smale function.



848 T. Ozawa

For a pair (α, β) ∈ Sm,n(k) × Sm,n(k + 1) with α ≤ β, the intersection Ws(Vα) ∩ Wu(Vβ)
consists of two gradient flow lines, which are obtained as follows: the condition α ≤ β
implies that there is a unique integer i such that α(i) + 1 = β(i) (cf. (2.2)). Those curves
are obtained by rotating eα(i) in the plane Reα(i) ⊕ Reβ(i) both positively and negatively and
leaving other basis vectors eα( j) fixed. Those curves are exactly the gradient flow lines from
Vβ to Vα in the intersection Ws(Vα) ∩Wu(Vβ), up to parametrization.

4. Morse homology

4. Morse homology
We recall the definitions of Morse complex and Morse homology. See [1] for details.

4.1. Morse complex and Morse homology.
4.1. Morse complex and Morse homology. Suppose f : M → R is a Morse-Smale

function on a closed Riemannian manifold M. Let Crtk( f ) be the set of all critical points
of f of Morse index k, and Ck( f ) the Z2-module freely generated by Crtk( f ). A homomor-
phism ∂k( f ) : Ck( f )→ Ck−1( f ), called boundary operator, is defined as follows: the matrix
element n(x, y) of ∂k( f ) corresponding to a pair (x, y) ∈ Crtk( f ) × Crtk−1( f ) is the number
modulo 2 of the gradient flow lines in Wu(x) ∩Ws(y);

∂k( f )〈x〉 =
∑

y∈Crtk−1( f )

n(x, y)〈y〉.

Theorem 4.1. The boundary operators satisfy ∂k−1( f ) ◦ ∂k( f ) = 0, and the resulting
homology group H∗(C∗( f ), ∂∗( f )) is isomorphic to the singular homology group H∗(M).

(For a proof, see [ibid, Section 7].) The chain complex (C∗( f ), ∂∗( f )) is called the Morse
complex of (M, f ), and the homology of Morse complexes is called the Morse homology.

4.2. Morse homology on Grassmannians.
4.2. Morse homology on Grassmannians. The function F : Grm,n → R in the previous

section is Morse-Smale, and for all pairs (α, β) ∈ Sm,n(k) × Sm,n(k + 1) with α ≤ β the
intersection Ws(Vα) ∩Wu(Vβ) consists of two gradient flow lines. Since we are working in
Z2, all boundary operators ∂k(F) are null homomorphisms. Therefore, from (3.2) and (3.3),
it follows that the Z2-Poincaré polynomial of Grm,n is equal to

PGrm,n(q) =
mn∑
k=0

(
dimZ2 Hk(Grm,n)

)
qk =

m∏
i=1

1 − qn+i

1 − qi .

(cf. Equation (2.1).)
We remark that the Poincaré polynomial of the complex Grassmannian Grm,n(C) equals

PGrm,n(q
2), since Grm,n(C) also decomposes into the Schubert cells labeled by the set Sm,n,

and the real dimension of the corresponding cell is equal to 2ρ(α) for each α ∈ Sm,n.

5. Morse homology on ˜Grm,n

5. Morse homology on ˜Grm,n
Let π : G̃rm,n→Grm,n be the canonical double covering map. We investigate the Z2-Morse

complex of the function F̃ := F ◦π : G̃rm,n → R, where F : Grm,n → R is defined in Section
3 by using a diagonal matrix D = diag(a1, · · · , am+n) satisfying (3.1), and continue to use
notations in Section 2.

5.1. Proof of Theorem 2.1.
5.1. Proof of Theorem 2.1. Let {V±α } ⊂ G̃rm,n be the pre-image π−1(Vα). Then the Z2-

module of chains in the Morse complex (Ck(F̃), ∂̃k) is
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Ck(F̃) =
⊕
α∈Sm,n(k)

Z2〈V+α 〉 ⊕ Z2〈V−α 〉,

whose dimension equals 2sm,n(k).
Let (α, β) be a pair in Sm,n(k) × Sm,n(k + 1), and assume α ≤ β. The pre-images in G̃rm,n

of the intersection Ws(Vα) ∩Wu(Vβ) consist of four gradient flow lines, two of which issue
from V+β and converge to different critical points V±α , and the other two issue from V−β and
converge to different ones V±α as well (cf. Figure 2).

Fig.2. Double cover of gradient flow lines.

We conclude that the k-th boundary operator is given by

(5.1) ∂̃k = δm,n(k) ⊗
(

1 1
1 1

)
.

This implies that the Z2-ranks of ∂̃k and δm,n(k) coincide, and that

dimZ2 Hk(G̃rm,n) = dimZ2 ker ∂̃k − dimZ2 image ∂̃k−1

=
(
2sm,n(k) − rm,n(k)

) − rm,n(k − 1).

This completes the proof of Theorem 2.1. �

6. Corollary

6. Corollary
In general the Z2-rank rm,n(k) of δm,n(k) in (2.2) is not necessarily maximal;

rm,n(k) ≤ min{sm,n(k), sm,n(k + 1)}.
Recall that the sequence {sm,n(k)}k is unimodal and symmetric in k. For a given positive
integer κ, if they are maximal for all 0 ≤ k ≤ κ, then the first κ + 1 Z2-Betti numbers are
given by

bk(G̃rm,n) = sm,n(k) − sm,n(k − 1).

Table 1 shows r4,4(k) = s4,4(k) holds for k ≤ 3, but not for k = 4, and Table 2 shows
r5,5(k) = s5,5(k) holds for k ≤ 10, but not for k = 11.

6.1. Low dimensional Betti numbers.
6.1. Low dimensional Betti numbers. We only confirm the rank rm,n(k) is maximal in a

restricted range.

Lemma 6.1. For any k < max{m, n}, it holds that rm,n(k) = sm,n(k).
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Proof. The notation <rl stands for the reverse lexicographic ordering in Sm,n(k) as used in
Section 2.2. Suppose k < max{m, n}. Consider, for each α ∈ Sm,n(k), the maximal element
maxrl{β ∈ Sm,n(k + 1)|α ≤ β} with respect to the ordering <rl. For α1 and α2 ∈ Sm,n(k), we
have, if α1 <rl α2,

maxrl{β ∈ Sm,n(k + 1)|α2 ≤ β} <rl maxrl{β ∈ Sm,n(k + 1)|α1 ≤ β}.
(This does not necessarily hold for k ≥ max{m, n}.) This implies the biadjacency matrix
δm,n(k) is in echelon form provided the matrix is formed by using reverse lexicographic
ordering for both rows and columns, and has no zero rows. Therefore the rank is maximal.
By unimodality and symmetricity of sm,n(k), the inequality sm,n(k) ≤ sm,n(k + 1) holds for
any k < max{m, n}. (Recall we are assuming that 2 ≤ m ≤ n.) Therefore we have rm,n(k) =
sm,n(k). �

Corollary 6.2. If 2 ≤ m ≤ n, then the Z2-Poincaré polynomial PG̃rm,n
(q) and the formal

power series
∏m
�=2(1 − q�)−1 coincide up to degree max{m, n} − 1.

Proof. Theorem 2.1 states that the k-th Betti number bk(G̃rm,n) equals 2sm,n(k) − rm,n(k) −
rm,n(k − 1) for any k. Therefore Lemma 6.1 implies

bk(G̃rm,n) = sm,n(k) − sm,n(k − 1)

for k < max{m, n}, where we set sm,n(−1) = 0. The q-binomial coefficient times the factor
1 − q coincides with

∏m
�=2(1 − q�)−1 up to degree max{m, n} − 1. �

Remark that G̃r1,n, where m = 1, is a sphere of dimension n, and the Poincaré polynomial
PG̃r1,n

(q) is 1 + qn. For reference, we record the formal power series
∏m
�=2(1 − q�)−1 for

m = 3, 4, 5;
3∏
�=2

(1 − q�)−1 = 1 + q2 + q3 + q4 + q5 + 2q6 + q7 + 2q8 + 2q9 + 2q10 + · · · ,
4∏
�=2

(1 − q�)−1 = 1 + q2 + q3 + 2q4 + q5 + 3q6 + 2q7 + 4q8 + 3q9 + 5q10 + · · · ,
5∏
�=2

(1 − q�)−1 = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 5q9 + 7q10 + · · · .

6.2. Infinite dimensional oriented Grassmannians.
6.2. Infinite dimensional oriented Grassmannians. Immediately from Corollary 6.2,

we deduce the following for infinite dimensional oriented Grassmannians G̃rm,∞ (cf. [6,
Theorem 12.4]) :

Corollary 6.3. If 2 ≤ m, then the Z2-Poincaré polynomial PG̃rm,∞(q) of the oriented Grass-

mannian G̃rm,∞ equals the formal power series

PG̃rm,∞(q) =
m∏
�=2

(1 − q�)−1.

Proof. The infinite dimensional oriented Grassmannian G̃rm,∞ is the direct limit of the
sequence of natural embeddings
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· · · ↪→ G̃rm,n ↪→ G̃rm,n+1 ↪→ · · · ,
which are compatible with CW-complex structures defined by Schubert cells of the natural
filtration of Rm+n’s. If n is sufficiently large, then all cells of dimension less than or equal to
k of G̃rm,∞ is contained in G̃rm,n. Hence the homology groups of dimension less than k of
G̃rm,∞ and G̃rm,n coinside. Therefore Corollary 6.2 gives the stable Betti numbers of G̃rm,∞.

�
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