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Abstract
We study criticalities of generalized Schrödinger operators in terms of the Schrödinger forms

induced by generalized Feynman-Kac perturbations of symmetric Markov processes, which
extend earlier work due to Takeda [26]. The related functional inequalities and analytic charac-
terizations of criticalities of Schrödinger forms are given. As applications, we establish some
maximum principles via the analytic characterization.

1. Introduction and main results

1. Introduction and main results
In this paper, we study subcriticality, criticality and supercriticality of the Schrödinger

forms induced by generalized Feynman-Kac perturbations and characterize their properties
in terms of the bottom of the spectrum relative to the Schrödinger form, with applications
to some maximum principles. The notion of criticalities for Schrödinger operators has been
extensively studied over the recent decades (see [21], [22], [23], [25], [27], [31] and the
references therein) which is closely related to the existence of harmonic functions in the
sense of Schrödinger operators.

Let E be a locally compact separable metric space and m a positive Radon measure on E
with full topological support. In [26], Takeda introduced a new way to define subcriticality,
criticality and supercriticality of the Schrödinger form with a local perturbation


μ( f , f ) = ( f , f ) −

∫
E

f 2 dμ, f ∈ (μ)(= ()).

through Doob’s h-transform, where ( ,()) is a symmetric regular Dirichlet form on
L2(E;m) and μ = μ+ − μ− is a signed Radon measure of Kato class of the symmetric Hunt
process X associated with ( ,()). It was shown in [26] that these definitions of criti-
calities are well-defined by the existence of superharmonic functions and the recurrence or
transience of h-transformed Dirichlet forms. Furthermore, some analytic chracterizations
for these definitions were studied in terms of the bottom of the spectrum λ(μ) of the time-
changed process of X by μ+: the Schrödinger form (μ,(μ)) is subcritical (resp. critical
and supercritical) if and only if λ(μ) > 1 (resp. = 1 and < 1). These characterizations were
then extended to more general cases containing non-local perturbations by Li [20]. Global
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property such as recurrence and transience of a symmetric Markov process is closely related
to some functional inequalities with respect to the associated Dirichlet form. Takeda estab-
lished a Poincaré-type inequality for the critical Schrödinger form by using an L2-version
of Oshima’s inequality and from which he extended the dichotomy result on diffusion pro-
cesses due to Pinchover and Tintarev [23] to more general symmetric Markov processes
([26, Theorem 3.2, Corollary 3.4 and Theorem 3.7]).

The purpose of this paper is to extend the previous results in [26] to the Schrödinger
form induced by the so-called generalized Feynman-Kac semigroup, with applications to
some maximum principles studied in [29], [30]. Before stating our results, let us explain the
necessary notations and some known facts. Let ( ,()) be a symmetric regular Dirichlet
form on L2(E;m) and X = (Xt,Px, ζ) the associated m-symmetric Hunt process on E, which
is assumed to satisfy (I) and (RSF) (see Section 2 for the definitions). Denote by (N,H)
be the Lévy system of X. We may and do assume throughout the whole exposition that
all considering measures and additive functionals are supposed to be in the strict sense.
Let μ1 and μ2 be positive smooth measures corresponding to positive continuous additive
functionals Aμ1

t and Aμ2
t of X, respectively. Set μ := μ1 − μ2. Let F1 and F2 be positive

symmetric bounded Borel functions on E × E vanishing on the diagonal. Set F := F1 − F2.
Then AF

t := AF1
t − AF2

t with AFi
t :=

∑
0<s≤t Fi(Xs−, Xs), (i = 1, 2) is an (discontinuous)

additive functional of X whenever it is summable. For a bounded continuous Borel function
u on E locally in () (loc() in notation), let Nu

t be the continuous additive functional
of zero quadratic variation appearing in the Fukushima decomposition of u(Xt) − u(X0) (see
(2.3) below). Note that Nu

t is not necessarily of bounded variation in general. It is natural
to consider the following generalized non-local Feynman-Kac functional by the additive
functionals At := Nu

t + Aμt + AF
t of the form

eA(t) := exp(At)(1.1)

because the process X admits many continuous additive functionals which do not have
bounded variations, and many discontinuous additive functionals. With (1.1), we define
the Feynman-Kac semigroup {PA

t }t≥0 and resolvent {RA
α}α>0 by

PA
t f (x) := Ex

[
eA(t) f (Xt)

]
, RA

α f (x) :=
∫ ∞

0
PA

t f (x) dt(1.2)

for any Borel measurable function f . Let  be the symmetric quadratic form defined by

( f , g) := ( f , g) + (u, fg) −( f , g),(1.3)

where

(u, fg) :=
1
2

∫
E

f dμ〈u,g〉 +
1
2

∫
E
g dμ〈u, f 〉,

( f , g) :=
∫

E
f (x)g(x)μ(dx) +

∫
E

∫
E

f (x)g(y)(eF(x,y) − 1)N(x, dy)μH(dx).

In view of Stollmann-Voigt’s inequality (see (2.2) below), we can see that ( f , g) is well-
defined under some mild conditions on u, μ and F.

Let X∗ be the subprocess of X killed by e−Aμ2t −AF2
t . Note that X∗ is a transient Markov

process under (I) of X provided μ2 + N(F2)μH is non-trivial. So we always assume the
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transience of X when μ2 + N(F2)μH = 0. Let S1
EK(X) (resp. S1

K(X) and S1
D(X)) denote the

class of positive smooth measures of extended Kato class (resp. of Kato class and of Dynkin
class) with respect to X. In addition, under the transience of X, we denote by S1

CK∞(X)
the family of Green-tight measures of Kato class with respect to X (see Section 2 for the
definitions). We make the following condition:

(A)∗
{
μ1 + N(e−F2 (eF1 − 1))μH ∈ S1

EK(X∗), μ〈u〉 ∈ S1
K(X∗),

μ2 + N(F2)μH ∈ S1
D(X).

Under (A)∗, the generalized Feynman-Kac semigroup {PA
t }t≥0 forms a strongly continuous

semigroup on L2(E;m) associated with the Schrödinger form (,()) (see [15, Lemma
2.1]).

In Section 3, we introduce the class of positive superharmonic functions of {PA
t }t≥0,


A
+ :=

{
h ∈ loc() ∩C(E) | h > 0 and PA

t h ≤ h
}
.

Suppose A
+ � ∅ and take h ∈ A

+ . Then the h-transformed semigroup {PA,h
t }t≥0 of {PA

t }t≥0

defined by PA,h
t f (x) := (1/h(x))PA

t ( f h)(x) is naturally Markovian and its associated qua-
dratic form (h,(h)) is given by{

(h) := { f ∈ L2(E; h2m) | f h ∈ ()},
h( f , g) := ( f h, gh), f , g ∈ (h).

Note that (h,(h)) is to be a regular Dirichlet form on L2(E; h2m) (Lemma 3.1). We
make the following definition for the subcriticality, criticality and supercriticality of the
Schrödinger form (,()) in terms of the transience or recurrence of (h,(h)), and the
emptyness of A

+ .

Definition 1.1. The Schrödinger form (,()) is said to be
(1) subcritical if A

+ � ∅ and (h,(h)) is transient for some h ∈ A
+ .

(2) critical if A
+ � ∅ and (h,(h)) is recurrent for some h ∈ A

+ .
(3) supercritical if A

+ = ∅.
We show that these classifications for criticalities of (,()) are well-defined (Propo-

sition 3.1). Furthermore, we will prove the following functional inequalities relative to the
subcriticality and criticality for (,()) which extend the previous results in [23], [26].
Let e() be the extended Schödinger space of (,()) (see Section 3).

Theorem 1.1. Suppose that A
+ � ∅ and (A)∗. Then the following dichotomy holds:

(1) There exists a strictly positive measurable function g on E such that∫
E

f 2g dm ≤ ( f , f ), f ∈ e().

(2) For any ϕ ∈ Bb(E) with compact support on E and h ∈ A
+ satisfying

∫
E ϕh dm � 0,

there exists a strictly postive function g ∈ L1(E;m) and a constant C > 0 such that

1
C

∫
E

f 2g dm ≤ ( f , f ) +C
(∫

E
fϕ dm

)2

, f ∈ e().
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Define the bottom of the spectrum of the Schrödinger form (,()) by

λ(η) := inf
{
( f , f )

∣∣∣∣∣∣ f ∈ (),
∫

E
f 2dη = 1

}
,(1.4)

where η := ηu,μ,F = μ1 + N(e−F2 (eU+F1 − U − 1))μH +
1
2μ

c
〈u〉 with U(x, y) := u(x) − u(y).

In Section 4, we give analytic characterizations for the criticality and subcriticality of
(,()) in terms of the bottom of the spectrum (1.4) by proving the existence of the
superharmonic functions in each cases. The main result is the following:

Theorem 1.2. Assume that μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X).
Then the quadratic form (,()) is

(1) subcritical, if and only if λ(η) > 0.
(2) critical, if and only if λ(η) = 0.
(3) supercritical, if and only if λ(η) < 0.

In a series of papers [28], [29], [30], the author obtained a necessary and sufficient condi-
tion for several maximum principles for Schrödinger operators with local perturbations. In
Section 5, we partially extend the results in [29], [30] to the case of generalized Feynman-
Kac perturbation by applying the criticalities of generalized Schrödinger forms obtained in
the previous section. In particular, we prove that the analytic characterzation for the subcriti-
cality of (,()) is equivalent to several maximum principles (Theorem 5.2 and Corollary
5.1).

Throughout this paper, we use the following notations: For a, b ∈ R, a ∧ b := min{a, b}
and a ∨ b := min{a, b}. We denote by Bb(E) (resp. Cb(E)) the space of bounded Borel
functions (resp. the space of bounded continuous functions) on E.

2. Preliminaries

2. Preliminaries
Let E be a locally compact separable metric space and m a positive Radon measure on

E with full topological support. Let ∂ be a point added to E so that E∂ := E ∪ {∂} is the
one-point compactification of E. The point ∂ also serves as the cemetery point for E. Let
( ,()) be a symmetric regular Dirichlet form on L2(E;m). A function f on E is said to
be locally in () (denoted as f ∈ loc()) if for any relatively compact open set G of E
there exists an element fG ∈ () such that f = fG m-a.e. on G. Let e() be the family
of m-measurable functions f on E such that | f | < ∞ m-a.e. and there exists an -Cauchy
sequence { fn}∞n=1 of functions in () such that limn→∞ fn = f m-a.e.. We call e() the
extended Dirichlet space of ( ,()).

Let X = (Ω,F,Ft, Xt,Px, ζ) be the m-symmetric Hunt process on E generated by
( ,()). Here F and Ft are the minimal (augmented) admissible filtration of X and ζ
is the lifetime of X, ζ := inf{t > 0 | Xt = ∂}. Here and in the sequel, unless mentioned other-
wise, we use the convention that a function defined on E takes the value 0 at ∂. Let denote
by {Pt}t≥0 and {Rα}α≥0 the transition semigroup and the resolvent of X which are defined by

Pt f (x) = Ex[ f (Xt)], Rα f (x) =
∫ ∞

0
e−αtPt f (x)dt.

Throughout this paper, we always assume that X satisfies the following properties:
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(I) (Irreducibility): If a Borel set B ⊂ E is Pt-invariant, that is, Pt(1B f ) = 1BPt f m-
a.e. for any f ∈ L2(E;m) ∩ Bb(E) and t > 0, then B satisfies either m(B) = 0 or
m(Bc) = 0.

(RSF) (Resolvent Strong Feller Property) : Rα(Bb(E)) ⊂ Cb(E) for any/some α > 0.
The process X is said to satisfy the absolute continuity condition ((AC) in abbreviation) if the
transition kernel pt(x, dy) of X is absolutely continuous with respect tom, that is, pt(x, dy) =
pt(x, y)m(dy) for any x ∈ E and t > 0. Under (AC), there exists a non-negative jointly
measurable α-order resolvent kernel Rα(x, y) defined for all x, y ∈ E and α > 0. Moreover,
Rα(x, y) is α-excessive in x ∈ E and in y ∈ E (see Lemma 4.2.4 in [10]). Since α �→
Rα(x, y) is decreasing for each x, y ∈ E, one can define 0-order resolvent kernel R0(x, y) :=
limα→0 Rα(x, y) provided X is transient. We simply write R(x, y) for R0(x, y) and call the
Green function of X. For a non-negative Borel measure ν, we write

Rαν(x) :=
∫

E
Rα(x, y)ν(dy)

and Rν(x) := R0ν(x). In particular, Rα f (x) := Rα( fm)(x) for any f ∈ Bb(E). We remark that
(RSF) implies (AC).

A Dirichlet form ( ,()) on L2(E;m) is said to be transient if there exists a bounded
m-integrable function g strictly positive m-a.e. on E such that∫

E
| f |g dm ≤ √

( f , f ), for any f ∈ ()

([10, (1.5.6)]). A Dirichlet form ( ,()) on L2(E;m) is said to be recurrent if the constant
function 1 belongs to e() and (1, 1) = 0 ([10, Theorem 1.6.3(iii)]).

A positive Radon measure ν on E is of positive-order finite energy integral if∫
E

R1ν(x)ν(dx) :=
∫ ∫

E×E
R1(x, y)ν(dx)ν(dy) < ∞.(2.1)

We denote by S0(X) the set of all positive Radon measure of positive-order finite energy
integral ([10, (2.2.1)]). Let S00(X) be the set of ν ∈ S0(X) such that ν(E) < ∞ and
supx∈E R1ν(x) < ∞. A positive Radon measure ν on E of 0-order finite energy integral
(ν ∈ S(0)

0 (X) in notation) can be similarly defined by the validity of (2.1) with R(x, y) instead
of R1(x, y) under the transience of ( ,()). Similarly, we also define S(0)

00 (X) with R(x, y)
instead of R1(x, y).

An increasing sequence {Kn}∞n=1 of compact sets is called a generalized compact nest if
for any compact set K, limn→∞ Cap(K \ Kn) = 0. We call a non-negative Borel measure ν
on E smooth if there exists a generalized compact nest {Kn}∞n=1 such that ν(E \⋃∞n=1 Kn) = 0
and 1Kn ·ν ∈ S00(X) (cf. [10, Theorem 2.2.4]). We denote by S(X) the family of all smooth
measures. A non-negative Borel measure ν on E is said to be smooth in the strict sense if
there exists a sequence {En}∞n=1 of Borel sets increasing to E such that 1En ·ν ∈ S00(X) for
each n and Px(limn→∞ σE\En ≥ ζ) = 1 for any x ∈ E, where σE\En = inf{t > 0 | Xt ∈ E \ En}.
We denote by S1(X) the totality of the smooth measures in the strict sense ([10, Section
5.1]).

A measure ν ∈ S1(X) is said to be of Dynkin class (resp. of Green-bounded) of X if for
some α > 0, supx∈E Rαν(x) < ∞ (resp. supx∈E Rν(x) < ∞ under the transience of X). We
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denote by S1
D(X) (resp. S1

D0
(X)) the family of measures of Dynkin class (resp. of Green-

bounded). Note that every measure ν ∈ S1
D(X) is a Radon measure on E on account of

the regularity of ( ,()) and the Stollmann-Voigt inequality ([24, Theorem 3.1]): For
ν ∈ S1

D(X) and α > 0, ∫
E

f 2dν ≤ ‖Rαν‖∞α( f , f ), f ∈ (),(2.2)

where α(·, ·) := (·, ·) + (·, ·)m. This inequality also holds for f ∈ e(), ν ∈ S1
D0

(X) and
α = 0.

A measure ν ∈ S1(X) is said to be in the Kato class (resp. extended Kato class) with
respect to X if limα→∞ supx∈E Rαν(x) = 0 (resp. limα→∞ supx∈E Rαν(x) < 1) and denote by
S1

K(X) (resp. S1
EK(X)) the family of measures of Kato class (resp. of extended Kato class).

Clearly, S1
K(X) ⊂ S1

EK(X) ⊂ S1
D(X) and S1

D0
(X) ⊂ S1

D(X).

Now we recall the notion of Green-tight measures of Kato class ([2, Definition 2.2]).

Definition 2.1. Suppose that X is transient. A measure ν ∈ S1(X) is said to be a Green-
tight measure of Kato class with respect to X if for any ε > 0 there exists a Borel subset
K = K(ε) of E with ν(K) < ∞ and a constant δ > 0 such that for all ν-measurable set B ⊂ K
with ν(B) < δ,

sup
x∈E

R(1B∪Kcν)(x) = sup
x∈E

∫
B∪Kc

R(x, y) ν(dy) < ε.

We denote by S1
CK∞(X) the family of Green-tight measures of Kato class with respect to

X. It is known in [2, Proposition 2.2] that S1
CK∞(X) ⊂ S1

D0
(X) and S1

CK∞(X) ⊂ S1
K(X).

We say that a positive continuous additive functional (PCAF in abbreviation) in the strict
sense Aνt of X and a measure ν ∈ S1(X) are in the Revuz correspondence if they satisfy for
any t > 0, f ∈ Bb(E), ∫

E
f (x)ν(dx) =↑ lim

t↓0
1
t

Em
[∫ t

0
f (Xs) dAνs

]
.

It is known that the family of equivalence classes of the set of PCAFs in the strict sense and
the family of positive measures belonging to S1(X) are in one to one correspondence under
the Revuz correspondence ([10, Theorem 5.1.4]).

Let (N(x, dy),Ht) be a Lévy system for X, that is, N(x, dy) is a kernel on (E,B(E)) and
Ht is a PCAF with bounded 1-potential such that for any nonnegative Borel function φ on
E × E vanishing on the diagonal and any x ∈ E,

Ex

⎡⎢⎢⎢⎢⎢⎣∑
s≤t

φ(Xs−, Xs)

⎤⎥⎥⎥⎥⎥⎦ = Ex

[∫ t

0

∫
E
φ(Xs, y)N(Xs, dy) dHs

]
.

To simplify notation, we will write

Nφ(x) :=
∫

E
φ(x, y)N(x, dy).

Let μH be the Revuz measure of the PCAF Ht. Then the jumping measure J and the killing
measure κ of X are given by
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J(dxdy) =
1
2

N(x, dy)μH(dx) and κ(dx) = N(x, {∂})μH(dx).

These measures feature in the Beurling-Deny decomposition of  : for f , g ∈ e(),

( f , g) = 
c( f , g) +

∫
E×E

( f (x) − f (y))(g(x) − g(y))J(dxdy) +
∫

E
f (x)g(x)κ(dx),

where c is the strongly local part of  .

Lemma 2.1. The condition μ2 + N(F2)μH ∈ S1
D(X) always implies μ2 + N(F2)μH ∈

S1
D0

(X∗).

Proof. For notational convenience, let AN(F2)μH
t :=

∫ t
0 N(F2)(Xs)dHs. Note that MF2

t :=
AF2

t −AN(F2)μH
t is a martingale additive functional under N(F2)μH ∈ S1

D(X). Denote by R∗ the
0-order resolvent of X∗. Then

R∗(μ2 + N(F2)μH)(x) = Ex

[∫ ∞

0
e−Aμ2t −AF2

t d
(
Aμ2

t + AN(F2)μH
t

)]

≤ Ex

[∫ ∞

0
e−Aμ2t dAμ2

t

]
+ Ex

[∫ ∞

0
e−AF2

t dAN(F2)μH
t

]

= 1 − Ex

[
e−Aμ2ζ

]
+ Ex

[∫ ∞

0
e−AF2

t dAN(F2)μH
t

]
.

Since the third term of the last sentence is estimated by

Ex

[∫ ∞

0
e−AF2

t dAN(F2)μH
t

]
= lim

t→∞Ex

[∫ t

0
e−AF2

s dAN(F2)μH
s

]
= lim

t→∞Ex

[∫ t

0
e−AF2

s dAF2
s

]

= lim
t→∞Ex

⎡⎢⎢⎢⎢⎢⎣∑
s≤t

e−AF2
s F2(Xs−, Xs)

⎤⎥⎥⎥⎥⎥⎦
≤ lim

t→∞Ex

⎡⎢⎢⎢⎢⎢⎣∑
s≤t

e−AF2
s

(
eF2(Xs−,Xs) − 1

)⎤⎥⎥⎥⎥⎥⎦
≤ lim

t→∞Ex

⎡⎢⎢⎢⎢⎢⎣∑
s≤t

−Δ
(
e−AF2

s

)⎤⎥⎥⎥⎥⎥⎦
= lim

t→∞Ex

[
1 − e−AF2

t

]
= 1 − Ex

[
e−AF2

ζ

]
≤ 1,

we see that supx∈E R∗(μ2 + N(F2)μH)(x) ≤ 2 < ∞. �

Let us consider a bounded Borel function u ∈ loc() ∩ C(E) satisfying μ〈u〉 ∈ S1
D(X).

In [16, Theorem 6.2(2)], we proved that the additive functional u(Xt) − u(X0) admits the
following strict decomposition:

u(Xt) − u(X0) = Mu
t + Nu

t t ∈ [0, ζ[ Px-a.s. for all x ∈ E,(2.3)

where Mu
t is a square integrable martingale additive functional in the strict sense on the

random time interval [[0, ζ]] (see [4] for the definition) and Nu
t is a continuous additive func-

tional (CAF in abbreviation) in the strict sense which is locally of zero energy. Mu
t can be

decomposed as
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Mu
t = Mu,c

t + Mu, j
t + Mu,κ

t ,(2.4)

where Mu, j
t , Mu,κ

t and Mu,c
t are the jumping, killing and continuous part of Mu

t respectively.
Those are defined Px-a.s. for all x ∈ E by [16, Theorem 6.2(2)]. Let μ〈u〉, μc

〈u〉, μ
j
〈u〉 and μκ〈u〉 be

the smooth Revuz measures associated with the quadratic variational processes (or the sharp
bracket PCAFs in the strict sense) 〈Mu〉t, 〈Mu,c〉t, 〈Mu, j〉t and 〈Mu,κ〉t respectively. Then

μ〈u〉(dx) = μc
〈u〉(dx) + μ j

〈u〉(dx) + μκ〈u〉(dx).

Note that ( f , f ) = 1
2ν〈 f 〉(E) with ν〈 f 〉 := μc

〈 f 〉 + μ
j
〈 f 〉 + 2μκ〈 f 〉 provided f ∈ e().

3. Schrödinger forms and their related inequalities

3. Schrödinger forms and their related inequalities
Let us introduce a class of superharmonic functions:


A
+ :=

{
h ∈ loc() ∩C(E) | h > 0 and PA

t h ≤ h
}
.

Assume that A
+ � ∅. For h ∈ A

+ , define the quadratic form (h,(h)) on L2(E; h2m) by{
(h) := { f ∈ L2(E; h2m) | f h ∈ ()},
h( f , g) := ( f h, gh), f , g ∈ (h).

(3.1)

By a similar way of [26, Lemmas 2.3, 2.4 and 2.5], we can see that ()∩C0(E) = ()∩
C0(E) = (h) ∩ C0(E) provided the condition (A)∗. Here C0(E) denotes the space of
continuous functions on E with compact support.

Lemma 3.1. Assume that (A)∗ and A
+ � ∅. For any h ∈ A

+ , the quadratic form
(h,(h)) is a regular symmetric Dirichlet form on L2(E; h2m).

Proof. It is enough to show the regularity of (h,(h)). We see by [15, Lemma 2.1]
that there exists C > 0 such that

C−1
1( f , f ) ≤ α( f , f ) ≤ C1( f , f ), f ∈ ()

for some large α > 0 and the generalized Feynman-Kac semigroup {PA
t }t≥0 forms a strongly

continuous semigroup on L2(E;m). From this fact and (3.1), the required regularity can be
easily derived under A

+ � ∅. �

Let Xh be the Hunt process generated by (h,(h)). Clearly, Xh is h2m-symmetric and
its semigroup {PA,h

t }t≥0 and resolvent {RA,h
α }α>0 are given by

PA,h
t f (x) := Ex

[
LA,h

t f (Xt)
]
, RA,h

α f (x) =
∫ ∞

0
PA,h

t f (x) dt,

where

LA,h
t :=

h(Xt)
h(X0)

eA(t)(3.2)

and eA(t) is the generalized Feynman-Kac functional given by (1.1). Note that Xh also
satisfies (I) because of the positivity of LA,h

t and (I) of X.
Let e(h) be the extended Dirichlet space of the regular Dirichlet form (h,(h)).

Using e(h), we define the extended Schrödinger space e() by
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e() :=
{

f
∣∣∣∣ f /h ∈ e(h)

}
.

We also give another definition of the extended Schrödinger space ̃e(), the family of
m-measurable functions f on E such that | f | < ∞ m-a.e. and there exists a -Cauchy
sequence { fn}∞n=1 of functions in () such that limn→∞ fn = f m-a.e.. Note that  is a
non-negative definite quadratic form on L2(E;m) under the (sub)criticality. For f ∈ ̃e()
and the sequence { fn}∞n=1, define ̃( f , f ) = limn→∞( fn, fn). Then we see that (̃, ̃e()) is
well-defined. Moreover, by the same way as in the proof of [26, Lemma 2.8], we can show
that (̃, ̃e()) = (,e()).

Now, the following proposition guarantees that Definition 1.1 is well-defined.

Proposition 3.1. Assume (A)∗ and A
+ � ∅. If (h,(h)) is transient (resp. recurrent)

for some h ∈ A
+ , then (h,(h)) is transient (resp. recurrent) for any h ∈ A

+ .

Proof. The proof can be similarly deduced by [26, Lemmas 4.1 and 4.2]. We address
here the proof for reader’s convenience. Note that since (h,(h)) satisfies (I), it is either
to be transient or recurrent. For h1 and h2 in A

+ , let us suppose that (h1 ,(h1 )) and
(h2 ,(h2 )) are transient and recurrent, respectively. Then, it follows from the transience
of (h1 ,(h1 )) and [11, Proposition 2.2] that there exists a bounded measurable function
g > 0 m-a.e. such that ‖RA,h1g‖∞ ≤ 1 and∫

E
f 2g h1

2dm ≤ ‖RA,h1g‖∞h1 ( f , f ) ≤ 
h1 ( f , f ), for any f ∈ e(h1 ).

By the definition (3.1), this is equivalent to∫
E

f 2g dm ≤ ( f , f ), for any f ∈ e().(3.3)

On the other hand, the recurrence of (h2 ,(h2 )) implies that 1 ∈ e(h2 ) and h2 (1, 1) =
0, equivalently, h2 ∈ e() and (h2, h2) = 0. Applying this fact to (3.3), we can conclude
that h2 = 0 m-a.e., which is contradictory. �

We say that an m-symmetric Hunt process X = (Xt,Px) is Harris recurrent if m(B) > 0,
then Px(

∫ ∞
0 1B(Xt) dt = ∞) = 1 for any x ∈ E and B ∈ B(E). Denote by Bb,0(E) (resp.

B+b,0(E)) the set of bounded (resp. positive bounded) Borel functions on E with compact
support.

Proposition 3.2. If (,()) is critical, equivalently, (h,(h)) is recurrent for some
h ∈ A

+ , then there exist a strictly positive function g ∈ L1(E;m) and a constant C > 0 such
that

1
C

∫
E

f 2g dm ≤ ( f , f ) +C
(∫

E
fϕ dm

)2

, f ∈ e()(3.4)

for any ϕ ∈ B+b,0(E) satisfying
∫

E ϕh dm � 0.

To prove Proposition 3.2, we need several lemmas:

Lemma 3.2. For any compact set K ⊂ E and β > 0, we have
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inf
x,y∈K Rβ(x, y) > 0.

Proof. First we note that for any β > 0 and x, y ∈ E, Rβ(x, y) > 0 by [13, Lemma 6.1].
For each fixed y ∈ E, x �→ Rβ(x, y) is β-excessive, hence it is lower semi continuous. Thus
for any y ∈ E,

fK(y) := inf
x∈K Rβ(x, y) = min

x∈K Rβ(x, y) > 0

holds. It is easy to see that for each z ∈ E, αRα+β fK(z) ≤ fK(z) so that

f K(z) := lim
α→∞αRα+β fK(z) ≤ fK(z).

Then we have f K(z) = limα→∞ αRα+β f K(z), that is, f K is β-excessive, hence it is lower semi
continuous under (RSF) of X. From this, we obtain the conclusion

inf
z∈K fK(z) = inf

x,z∈K Rβ(x, z) > 0.

Indeed, since f K ≤ fK on E, fK(z) = 0 for z ∈ K implies f K(z) = 0 so that Rα+β fK(z) = 0 for
any α > 0. Thus we get

∫
E fK(y)Rα+β(z, y)m(dy) = 0 and hence fK(y) = 0 m-a.e. y ∈ E. This

contradicts to fK(y) > 0 for all y ∈ E. �

Lemma 3.3. Let Ř1(x, y) be the 1-resolvent density of the time changed process of X by
the PCAF

∫ t
0 ϕ(Xs)ds, ϕ ∈ B+b,0(E). Then

inf
x,y∈F Ř1(x, y) > 0,

where F is the fine support of ϕ ·m.

Proof. Let K be the compact support of ϕ ·m. Then F ⊂ K and the proof is quite similar
as in the proof of [26, Lemma 3.3] with Lemma 3.2. �

Lemma 3.4. Assume (A)∗ and A
+ � ∅. For any h ∈ A

+ , the process Xh satisfies (RSF).
In particular, if Xh (or (h,(h)) is recurrent, then it is Harris recurrent.

Proof. By a similar way as in the proof of [5, Lemma 3.2], one can show that

lim
t→0

sup
x∈E

Ex

[∣∣∣LA,h
t − 1

∣∣∣] = 0.(3.5)

Then for any f ∈ Bb(E) and α, β > 0,∥∥∥RA,h
α f − βRβRA,h

α f
∥∥∥∞(3.6)

≤
∥∥∥∥RA,h
α f − βRA,h

β RA,h
α f

∥∥∥∥∞ + β
∥∥∥∥RA,h
β RA,h

α f − RβRA,h
α f

∥∥∥∥∞
≤

∥∥∥∥RA,h
β f − αRA,h

β RA,h
α f

∥∥∥∥∞ + β ∥∥∥RA,h
α f

∥∥∥∞
∫ ∞

0
e−βt sup

x∈E
Ex

[∣∣∣LA,h
t − 1

∣∣∣] dt

≤ β−1‖ f ‖∞ +
∥∥∥RA,h
α f

∥∥∥∞
∫ ∞

0
e−t sup

x∈E
Ex

[∣∣∣∣LA,h
t/β − 1

∣∣∣∣] dt.

The last term in the right hand side above goes to 0 as β → ∞ in view of (3.5) and the
dominated convergence theorem. Hence we have RA,h

α f ∈ Cb(E) because so is βRβRA,h
α f ,
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which tells us (RSF) of Xh. The last assertion follows from the fact that any recurrent
symmetric Markov process satisfying (I) and (RSF) is Harris recurrent ([10, Lemma 4.8.1]).

�

Proof of Proposition 3.2. The proof is similar to that of [26, Corollary 3.5] under
Lemma 3.3 and Lemma 3.4. Indeed, following to the arguments for proving [10, Theorem
4.8.2(ii)] (or [17, Theorem 2.1])), we can establish the following Poincaré type inequality
for the Harris recurrent Dirichlet form (h,(h)) for some h ∈ A

+ : for any φ ∈ Bb,0(E)
satisfying

∫
E φ dmh � 0 (mh := h2m), there exists a strictly positive function g ∈ L1(E;mh)

such that ∫
E

⎛⎜⎜⎜⎜⎜⎝ f − 1∫
E φ dmh

∫
E

fφ dmh

⎞⎟⎟⎟⎟⎟⎠
2

g dmh ≤ 
h( f , f ), f ∈ e(h),

equivalently, ∫
E

⎛⎜⎜⎜⎜⎜⎝v − h∫
E ϕh dm

∫
E
vϕ dm

⎞⎟⎟⎟⎟⎟⎠
2

g dm ≤ (v, v), v ∈ e()

for v = f h and ϕ = φh ∈ Bb,0(E). Then the inequality (3.4) can be induced by the same way
as in the proof of [26, Lemma 3.3 and Corollary 3.5]. �

Proof of Theorem 1.1. By Lemma 3.4, the process Xh satisfies (I) and (RSF) for any
h ∈ A

+ . So the Dirichlet form (h,(h)) of Xh is either transient or Harris recurrent.
Hence, the former and the latter imply (1) and (2) of the present theorem in view of (3.3)
and Proposition 3.2, respectively. �

4. Analytic characterizations of criticality and subcriticality for Schrödinger forms

4. Analytic characterizations of criticality and subcriticality for Schrödinger forms4.1. Girsanov and Feynman-Kac transforms.
4.1. Girsanov and Feynman-Kac transforms. Fix a function u ∈ loc() ∩Cb(E) with

μ〈u〉 ∈ S1
K(X). In [16, Theorem 6.2(2)], we proved that the additive functional u(Xt) − u(X0)

admits the following decomposition in the strict sense:

u(Xt) − u(X0) = Mu,c
t + Mu, j

t + Mu,κ
t + Nu

t , t ∈ [0, ζ[

Px-a.s. for all x ∈ E. Then, there exists a purely discontinuous locally square integrable local
martingale additive functional MU

t on [[0, ζ[[ such that ΔMU
t = U(Xt−, Xt) = u(Xt−) − u(Xt),

t ∈ [0, ζ[ Px-a.s. for all x ∈ E (see [5, Lemma 3.1]). Moreover, MU
t is given by

MU
t = M−u, j

t + M−u,κ
t .

Therefore, there also exists a purely discontinuous locally square integrable local martingale
additive functional MeU−1

t on [[0, ζ[[ such that ΔMeU−1
t = eU(Xt−,Xt) − 1, t ∈ [0, ζ[ Px-a.s. for

all x ∈ E. MeU−1
t is given by

MeU−1
t = MU

t +
∑

0<s≤t

(eU − U − 1)(Xs−, Xs) −
∫ t

0
N(eU − U − 1)(Xs)dHs, t < ζ.

Put Mt := MeU−1
t + M−u,c

t and let Ut := Exp(M)t be the Doléans-Dade exponential of Mt,
that is, Ut is the unique solution of
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Ut = 1 +
∫ t

0
Us−dMs, t < ζ, Px-a.s.

Note that Ut is positive and a local martingale on [[0, ζ[[. Therefore it is a supermartingale
on [[0, ζ[[. In particular, Ut1{t<ζ} is a supermartingale with Ex[Ut1{t<ζ}] ≤ 1 for all x ∈ E.
Moreover, Ut can be represented as

(4.1) Ut = exp
(
MU

t + M−u,c
t −

∫ t

0
N(eU − U − 1)(Xs)dHs − 1

2
〈Mu,c〉t

)
, t < ζ.

by a similar way as in the proof of [14, Theorem 3.1]. In addition, we also note that Ut can
be defined for t ∈ [0,∞[ Px-a.s. for all x ∈ E provided μ〈u〉 ∈ S1

D(X) ([14, Proposition 3.1]).
Let U = (Xt,PU

x ) be the transformed process of X by Ut. Then U is an e−2um-symmetric
Hunt process on E (cf. [14, Theorem 3.1] or [6, Lemma 3.2]).

Let X∗ = (Xt,P∗x) be the subprocess of X killed by e−Aμ2t −AF2
t . Note that X∗ is a transient

and irreducible Markov process and its Lévy system is given by (e−F2(x,y)N(x, dy),Ht). We
denote by (∗,(∗)) the associated Dirichlet form of X∗ on L2(E;m).

Let U∗ = (Xt,PU∗
x ) be the transformed process of X∗ by the supermartingale multiplicative

functional U∗t defined by

U∗t = exp
(
MU

t + M−u,c
t −

∫ t

0
N(e−F2 (eU − U − 1))(Xs)dHs − 1

2
〈Mu,c〉t

)
, t < ζ.(4.2)

The functional U∗t plays the same role for getting U∗ from X∗ as Ut does for getting U
from X. Let (U∗ ,(U∗)) be the Dirichlet form on L2(E; e−2um) generated by U∗. Then, it
follows from [14, Theorem 3.2] that (U∗) = (∗) = () and for f ∈ (U∗)


U∗( f , f ) =

1
2

∫
E

e−2u(x)μc
〈 f 〉(dx)

+

∫
E×E

( f (x) − f (y))2e−u(x)−u(y)−F2(x,y)N(x, dy)μH(dx) +
∫

E
f (x)2e−u(x)κ(dx).

From this expression and the boundedness of u and F, we see that U∗ � ∗, that is, there
exists a constant C > 0 such that for f ∈ ()

C−1

∗( f , f ) ≤ 

U∗( f , f ) ≤ C
∗( f , f ).(4.3)

By [13, Lemma 4.1 and Corollary 5.1(3)], we have the following:

Lemma 4.1. Assume that μ〈u〉 ∈ S1
K(X∗). Then the following hold.

(1) For ν ∈ S1
D(X∗), e−2uν ∈ S1

D(U∗).
(2) For ν ∈ S1

K(X∗), e−2uν ∈ S1
K(U∗).

(3) For ν ∈ S1
EK(X∗), e−2uν ∈ S1

EK(U∗).
(4) For ν ∈ S1

CK∞(X∗), e−2uν ∈ S1
CK∞(U∗) provided μ〈u〉 ∈ S1

CK∞(X∗).

Let Y∗ = (Xt,PY∗
x ) be the transformed process of U∗ by the supermartingale multiplicative

functional Y∗t defined by

Y∗t := exp
(
−

∫ t

0
N

(
eU−F2

(
eF1 − 1

))
(Xs)dHs + AF1

t

)
, t < ζ.(4.4)

Note that Y∗ is also an e−2um-symmetric Hunt process on E, because it is the transformed
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process induced by a pure jump Girsanov-type transform. Let (Y∗ ,(Y∗)) be the Dirichlet
form on L2(E; e−2um) generated by Y∗. Then (Y∗) = (U∗) and Y∗ can be expressed as


Y∗( f , f ) = 

U∗( f , f ) +
∫

E
f 2e−2ud

(
N

(
eU−F2

(
eF1 − 1

))
μH

)
(4.5)

−
∫

E×E
f (x) f (y)e−u(x)−u(y)−F2(x,y)

(
eF1(x,y) − 1

)
N(x, dy)μH(dx)

(cf. [3]). In the sequel, we denote the semigroup and the resolvent of the process X∗ (resp.
U∗, Y∗) by {P∗t }t≥0 (resp. {PU∗

t }t≥0, {PY∗
t }t≥0) and {R∗α}α>0 (resp. {RU∗

α }α>0, {RY∗
α }α>0), respec-

tively.
Consider the generalized non-local Feynman-Kac transforms by the additive functionals

A1
t := Aμ1

t + AF1
t + Nu

t of the form

eA1 (t) := exp(A1
t ), t ≥ 0.

Then we see that for μ〈u〉 + N(F1)μH ∈ S1
D(X∗)

eA1 (t) = eu(Xt)−u(x)U∗t exp
(
Aν
∗
1

t + AF1
t

)
= eu(Xt)−u(x)Y∗t exp

(
Aηt

)
,(4.6)

where

ν∗1 := μ1 + N
(
e−F2

(
eU − U − 1

))
μH +

1
2
μc
〈u〉 and η = ν∗1 + N

(
eU−F2

(
eF1 − 1

))
μH .

Lemma 4.2. Assume that μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

D(X).
Then e−2uη ∈ S1

CK∞(Y∗).

Proof. First, we note under the assumptions that ν∗1 ∈ S1
CK∞(X∗) and N(eU−F2 (eF1−1))μH ∈

S1
CK∞(X∗) by the boundedness of u and F. Then we see η ∈ S1

CK∞(X∗), and hence e−2uη ∈
S1

CK∞(U∗) by virtue of Lemma 4.1(4). We prove S1
CK∞(U∗) ⊂ S1

CK∞(Y∗). Recall that U∗ is
obtained from X∗ by the supermartingale multiplicative functional U∗t under X∗. Applying
[13, Corollary 5.1(3)] to the transient process X∗ with μ〈u〉 ∈ S1

CK∞(X∗), one can get

e−2u(μ〈u〉 + N(F1)μH) ∈ S1
CK∞(U∗).(4.7)

Now, let us consider the supermartingale mulitiplicative functional Y1
t of X defined by

Y1
t = Exp

⎛⎜⎜⎜⎜⎜⎝∑
s≤t

(eF1 − 1)(Xs−, Xs) −
∫ t

0
N(eF1 − 1)(Xs)dHs

⎞⎟⎟⎟⎟⎟⎠
= exp

(
AF1

t −
∫ t

0
N(eF1 − 1)(Xs)dHs

)
.

Then we have S1
CK∞(X) ⊂ S1

CK∞(Y1) under N(F1)μH ∈ S1
CK∞(X) by [14, Corollaries 5.1(3) and

5.2(2)], where Y1 is the transformed process from X by Y1
t . From this observation, we can

see the following fact that the supermartingale multiplicative functional Y∗t under U∗ plays
the same role so that S1

CK∞(U∗) ⊂ S1
CK∞(Y∗) under (4.7) by applying [14, Corollaries 5.1(3)

and 5.2(2)] from U∗ to Y∗. The proof is complete. �

For ν := ν1 − ν2 ∈ S1(X) − S1(X), define the semigroup (not necessarily Markovian)
{Pν,Ft }t≥0 and the resolvent {Rν,Fα }α>0 : for f ∈ Bb(E)
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Pν,Ft f (x) := Ex

[
eAνt +AF

t f (Xt)
]
, Rν,Fα f (x) :=

∫ ∞

0
e−αtPν,Ft f (x) dt.

Lemma 4.3. Assume that νi + N(Fi)μH ∈ S1
K(X) for i = 1, 2. Then there exists α0 > 0

such that for any α > α0 and f ∈ Bb(E), Rν,Fα f ∈ Cb(E). In particular, if ν1 = F1 = 0, then
the assertion holds for any α > 0.

Proof. By Khas’minskii’s lemma, we see that for sufficiently small t > 0,

sup
x∈E

Ex

[
Exp

(
Aνi + AGi

)
t

]
≤ 1

1 − supx∈E Ex

[
Aνit +

∫ t
0 N(Gi)(Xs) dHs

] , (i = 1, 2),(4.8)

Here Exp(A)t denotes the Stieltjes exponential of a PCAF A and Gi := eFi − 1 (i = 1, 2).
Clearly Exp

(
Aνi + AGi

)
t
= eAνit +AFi

t . Then we have

lim
t→0

sup
x∈E

Ex

[∣∣∣∣eAνt +AF
t − 1

∣∣∣∣] ≤ lim
t→0

sup
x∈E

Ex

[∣∣∣∣eAν1t +AF1
t − eAν2t +AF2

t

∣∣∣∣]
≤ lim

t→0
sup
x∈E

Ex

[∣∣∣∣Exp
(
Aν1 + AG1

)
t
− 1

∣∣∣∣] + lim
t→0

sup
x∈E

Ex

[∣∣∣∣Exp
(
Aν2 + AG2

)
t
− 1

∣∣∣∣]
= 0

by (4.8). Now the assertion follows from [18, Corollary 5.1]. �

Lemma 4.4. Assume that μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X).
Then, the processes U∗ and Y∗ satisfy (RSF).

Proof. In view of Lemma 4.3 of X, the killed process X∗ satisfies (RSF) under μ2 +

N(F2)μH ∈ S1
K(X). Moreover, by a similar way of (3.5) and the estimate (3.6), we can show

that

lim
t→0

sup
x∈E

E∗x[|U∗t − 1|] = 0

and for f ∈ Bb(E) and α, β > 0, ‖RU∗
α f − βR∗βRU∗

γ f ‖∞ → 0 as β→ ∞. From this fact, we see
that U∗ satisfies (RSF). On the other hand, both e−2uN(eU−F2 (eF1 − 1))μH and e−2uN(F1)μH

belong to S1
K(U∗) by virtue of Lemma 4.1(2) and the boundedness of u and F. Then, by

applying ν2 = N(eU−F2 (eF1 − 1))μH to Lemma 4.3 with U∗ as the underlying process, we see
that there exists α0 > 0 such that for any α > α0 and for f ∈ Bb(E), RY∗

α f ∈ Cb(E), which
implies (RSF) of Y∗. �

4.2. Analytic characterzations of criticality and subcriticality.
4.2. Analytic characterzations of criticality and subcriticality. Define the bottom of

the spectrum of the quadratic form (,()) by

λ(η) := inf
{
( f , f )

∣∣∣∣∣∣ f ∈ (),
∫

E
f 2dη = 1

}
.(4.9)

Let gA be the gauge function defined by

gA(x) := E∗x
[
eA1 (ζ)

]
.(4.10)

It is known by [15, Theorem 1.4] with Lemma 2.1 that gA is bounded if and only if λ(μ∗1) >
0, where μ∗1 := μ1 + N(eU+F1 − U − 1)μH +

1
2μ

c
〈u〉. In addition, the boundedness of gA is
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also equivalent to λ(η) > 0 because μ∗1 is absolutely continuous with respect to η (cf. [15,
Corollary 1.1]).

Proposition 4.1. Assume that μ1+N(F1)μH+μ〈u〉 ∈ S1
CK∞(X∗) and μ2+N(F2)μH ∈ S1

K(X).
If λ(η) > 0, then the Schrödinger form (,()) is subcritical.

Proof. Let gA be the gauge function defined in (4.10). First, we prove that gA ∈ A
+ . It

is easy to check by the Markov property of X∗ that the function gA is PA
t -excessive, that is,

PA
t gA(x) ↑ gA(x) as t → 0 (cf. [26, Lemma 5.2]). Put g̃A(x) := eu(x)E∗x[eA1 (ζ)e−u(Xζ−)] =

EY∗
x [eAηζ ]. Then, by a similar way as in the proof of [26, Lemma 5.3], it holds that

g̃A(x) = 1 + RY∗
(
e−2ug̃Aη

)
(x).(4.11)

Note that RY∗(e−2ug̃Aη) is bounded under λ(η) > 0, because so is g̃A by the boundedness of
gA and u. By using a similar way of (3.5) and the estimate (3.6), we see then ‖RY∗(e−2ug̃Aη)−
βRU∗
β RY∗(e−2ug̃Aη)‖∞ → 0 as β→ ∞, which implies that RY∗(e−2ug̃Aη) ∈ Cb(E) because so is

RU∗(RY∗(e−2ug̃Aη)) by (RSF) of U∗ proved in Lemma 4.4. Therefore we have gA ∈ Cb(E) in
view of (4.11) and the continuity of u. Moreover, similarly to the proof of [12, Lemma 4.2],
we can show that RY∗(e−2ug̃Aη) ∈ loc(Y∗) = loc(), As a consequence, gA ∈ loc().
Hence we can conclude that gA ∈ loc() ∩Cb(E).

Next, we prove the transience of (gA ,(gA)). We note that the transformed processes
U∗ and Y∗ satisfy (I) by the positivities of (4.2) and (4.4), and (I) of X∗, respectively. It
follows from (4.3) that (U∗) = (∗) and U∗ � ∗. Then we see that (U∗ ,(U∗) is a
transient Dirichlet form on L2(E; e−um). Moreover, since the Dirichlet form Y∗ in (4.5) can
be expressed as


Y∗( f , f ) = 

U∗( f , f ) +
1
2

∫
E×E

( f (x) − f (y))2 e−u(x)−u(y)−F2(x,y)
(
eF1(x,y) − 1

)
N(x, dy)μH(dx)

for f ∈ (Y∗)(= (∗)), one can also get Y∗ � ∗ by the boundedness of u and F again.
Therefore we see that (Y∗,(Y∗)) is also a transient Dirichlet form on L2(E; e−2um). Under
this transience, we can take a positive bounded e−2um-integrable function g such that∫

E
f 2g dm ≤ 

Y∗( f eu, f eu), f ∈ (Y∗).(4.12)

On the other hand, since

( f , f ) = 
U∗( f eu, f eu) −

∫
E

f 2dν∗1 −
∫

E×E
f (x) f (y)e−F2(x,y)

(
eF1(x,y) − 1

)
N(x, dy)μH(dx)

= 
U∗( f eu, f eu) −

∫
E

f 2d
(
ν∗1 + N

(
eU−F2

(
eF1 − 1

))
μH

)
+

1
2

∫
E×E

(( f eu)(x) − ( f eu)(y))2 e−u(x)−u(y)−F2(x,y)
(
eF1(x,y) − 1

)
N(x, dy)μH(dx)

by virtue of (4.6), we have

( f , f ) = 
Y∗( f eu, f eu) −

∫
E

f 2dη.(4.13)

Then the bottom of the spectrum λ(η) can be written as
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λ(η) = inf
{


Y∗( f eu, f eu) −
∫

E
f 2dη

∣∣∣∣∣∣ f ∈ (Y∗),
∫

E
f 2dη = 1

}

by applying (4.13) to (4.9), which implies that Y∗( f eu, f eu) ≥ (λ(η) + 1)
∫

E f 2dη. From
this with (4.12), we have

( f , f ) = 
Y∗( f eu, f eu) −

∫
E

f 2dη ≥ λ(η)
λ(η) + 1

∫
E

f 2g dm.

Let

g̃ :=

√
λ(η) · g√

(λ(η) + 1)
∫

E gg
2
Adm
.

Then, we see that for f ∈ (gA), equivalently, for gA f ∈ ()


gA( f , f ) = (gA f , gA f ) ≥ λ(η)

λ(η) + 1

∫
E

f 2g g2
Adm ≥

(∫
E
| f |̃g g2

Adm
)2

,

which implies the transience of (gA ,(gA)). �

Proposition 4.2. Assume μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X). If
λ(η) = 0, then the Schrödinger form (,()) is critical.

Proof. As we have already seen in the proof of Proposition 4.1, the process Y∗ (or Y∗)
is transient and satisfies (I). Moreover, Y∗ also satisfies (RSF) by Lemma 4.4. In addition,
e−2uη ∈ S1

CK∞(Y∗) by Lemma 4.2. Note that λ(η) can be written as

λ(η) + 1 = inf
{


Y∗( f eu, f eu)

∣∣∣∣∣∣ f ∈ e(Y∗),
∫

E
f 2dη = 1

}
.(4.14)

Then, it follows from [25, Theorem 2.1] that there exists a minimizer h0 ∈ e(Y∗) of (4.14)
(equivalently, of (4.9)), namely a ground state of (Y∗ ,(Y∗)), that is,

λ(η) + 1 = 
Y∗(h0eu, h0eu), and

∫
E

h2
0 dη = 1.(4.15)

Now, define h(x) := RY∗(e−2uh0η)(x), a version of the minimizer h0. Then, by a similar way
of Section 5.2 in [26], we can see that h ∈ A

+ . The function h belongs to e()(= e(Y∗))
and (h, h) = Y∗(heu, heu)− ∫

E h2 dη = 0, equivalently, 1 ∈ e(h) and h(1, 1) = 0 which
implies that (h,(h)) is recurrent. �

Remark 4.1. The conditions on measures imposed in Proposition 4.2 is milder than the
previous one due to Li [20] even if we restrict ourselves to dealing with only non-local
perturbations.

Proof of Theorem 1.2. Note that if λ(η) < 0, then A
+ = ∅. Indeed, if A

+ � ∅, then
we can take a function h ∈ A

+ such that ( f , f ) = h( f /h, f /h) ≥ 0 for any f ∈ (), and
thus λ(η) ≥ 0. From this fact with Propositions 4.1 and 4.2, we can finish the proof of the
theorem. �
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5. Maximum principles related to genenalized Schrödinger forms

5. Maximum principles related to genenalized Schrödinger forms
In this section, we study some maximum principles related to the generalized Feynman-

Kac semigroup by using the criticalities of generalized Schrödinger forms obtained in the
previous section. In a series of papers [28], [29], [30], Takeda investigated an analytic con-
dition for several maximum principles for Schrödinger operators with local perturbations.
We partially extend his results to the case of generalized Feynman-Kac perturbations.

First, let us consider a condition for the Green kernel to satisfy generalized Ugaheri’s
maximum principle in terms of the spectral function λ(η).

Theorem 5.1. Assume that μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X).
Let ν be a positive Radon measure with compact topological support Sν. Then the following
hold:

(1) If λ(η) > 0, then there exists a constant C > 0 such that

sup
x∈E

RAν(x) ≤ C sup
x∈Sν

RAν(x).

(2) If λ(η) = 0, then for any α ≥ 0 there exists a constant C > 0 such that

sup
x∈E

RA
αν(x) ≤ C sup

x∈Sν
RA
αν(x).

Proof. (1): Let gA be the gauge function defined in (4.10). As we showed in the proof of
Proposition 4.1, gA ∈ A

+ and (gA ,(gA)) is transient. Moreover, by virtue of [14, Lemma
4.9] and (4.6)

0 < e−2‖u‖∞EY∗
x

[
eAηζ

]
≤ e−u(x)EY∗

x

[
eAηζeu(Xζ−)

]
= E∗x

[
eA1 (ζ)

]
= gA(x) ≤ sup

x∈E
gA(x) < ∞

under the assumptions. Then since RAν = gARA,gA(ν/gA), we have

sup
x∈E

RAν(x) ≤ sup
x∈E
gA(x) · sup

x∈E
RA,gA(ν/gA)(x) = sup

x∈E
gA(x) · sup

x∈Sν
RA,gA(ν/gA)(x)

= sup
x∈E
gA(x) · sup

x∈Sν

(
1
gA(x)

RAν(x)
)
≤ supx∈E gA(x)

infx∈Sν gA(x)
· sup

x∈Sν
RAν(x)

≤ C sup
x∈Sν

RAν(x).

Here we used in the first equality the Frostman’s maximum principle for the resolvent RA,gA

of XgA , that is, supx∈E RA,gAν(x) = supx∈Sν RA,gAν(x) ([19]).
(2): Let α > 0. In this case, one can express that

RA
αν(x) = E∗x

[∫ ∞

0
e−αt+A1

t dAνt

]
= EY∗

x

[∫ ∞

0
eÃt dAνt

]
,

where Ãt := Aηt −αt. Since λ(η−αm) > λ(η) = 0, the gauge function EY∗· [eÃζ ] is bounded.
Thus, so is gA−α because

gA−α(x) := E∗x
[
eA1 (ζ)e−αζ

]
= e−u(x)EY∗

x

[
eÃζeu(Xζ−)

]
≤ e2‖u‖∞EY∗

x

[
eÃζ

]
in view of [14, Lemma 4.9] and (4.6) again. Moreover, similar to the proof of Proposition
4.1 we can see that gA−α ∈ A

+ . Then, the assertion can be obtained from the proof of (1)
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with gA−α. Now, consider the case α = 0. In view of the proof of Proposition 4.2, the
assumption λ(η) = 0 implies that there exists a strictly positive function h ∈ A

+ such that
Xh (or (h,(h))) is to be recurrent. Hence Xh is to be Harris recurrent by Lemma 3.4.
Then we have

RAν(x) = Ex

[∫ ∞

0
eAt dAνt

]
= h(x)EA,h

x

[∫ ∞

0

1
h(Xt)

dAνt

]
= ∞.

for any x ∈ E. �

Next two lemmas are used to show the equivalence between several maximum principles
and the analytic condition of subcriticality for genenalized Schrödinger forms.

Lemma 5.1. Assume μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X). If
λ(η) ≥ 0, then for h ∈ e()

(h, ϕ) = lim
β→∞ β

(
h − βRA

βh, ϕ
)
m
, for any ϕ ∈ ().

Proof. We note that for any f ∈ e() and v ∈ ()

( f , v) = lim
β→∞ β

(
f − βRβ f , v

)
m

(5.1)

([29, Lemma 3.13]). By Definition 1.1 and Theorem 1.2, the condition λ(η) ≥ 0 is equiv-
alent to A

+ � ∅. Taking g ∈ A
+ and applying (5.1) to f = h/g, v = ϕ/g and  = g, we

have

(h, ϕ) = 
g(h/g, ϕ/g) = lim

β→∞ β
(
h/g − βRA,g

β (h/g), ϕ/g
)
g2m
= lim
β→∞ β

(
h − βRA

βh, ϕ
)
m

for any ϕ ∈ (). �

Lemma 5.2. Assume μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X). If
λ(η) ≤ 0, then for there exists a positive function h ∈ e() ∩Cb(E) such that

(h, ϕ) = 0, for any ϕ ∈ () ∩C+0 (E).

Proof. First, suppose λ(η) = 0. In this case, there exists a version of the minimizer
h1 ∈ e() of (4.14) (or equivalently, (4.9)) which is strictly positive bounded continuous
and satisfies PA

t h1 = h1 (hence βRA
βh1 = h1 for β > 0), in view of the proof of Proposition

4.2. Then the assertion of the present lemma follows from Lemma 5.1. Next, suppose that
λ(η) < 0. Put λ := λ(η) + 1. Then, by (4.14), one can see

inf
{


Y∗( f eu, f eu)

∣∣∣∣∣∣ f ∈ e(Y∗),
∫

E
f 2d(λη) = 1

}
= 1(5.2)

which implies that λ(λη) = 0. Thus we see from the first case above that there exists a
strictly positive bounded continuous function h2 ∈ e(), a version of the minimizer of
(5.2). Note that the relation between h1 and h2 is given by h1 =

√
λh2. Hence PA

t h2 = h2 and
the assertion holds in view of Lemma 5.1 again. �

Let us introduce three function spaces on E defined by
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A
1 =

{
h ∈ B(E) | h is bounded above, PA

t h ≥ h, ∀t ≥ 0
}
,


A
2 =

{
h ∈ e() ∩C(E) | h is bounded above, PA

t h ≥ h, ∀t ≥ 0
}
,


A
3 =

{
h ∈ e() ∩C(E) | h is bounded above, (h, ϕ) ≤ 0, ∀ϕ ∈ () ∩C+0 (E)

}
.

We define the maximum principle as follows :

(MP)i If h ∈ A
i , then h(x) ≤ 0 for all x ∈ E (i = 1, 2, 3).

Remark 5.1. It is easy to see that (MP)1 implies (MP)2 because A
2 ⊂ A

1 . Moreover,
if h ∈ A

2 , then h ≤ βRA
βh (β > 0), hence (h, ϕ) ≤ 0 in view of Lemma 5.1. Therefore we

see that (MP)3 implies (MP)2.

Remark 5.2. A function in A
3 is regarded as a weak subsolution to the formal

Schrödinger equation −Au := −( + u + μ + μHF)u = 0, where F is a non-local lin-
ear operator defined by

F f (x) =
∫

E
(eF(x,y) − 1) f (y)N(x, dy), x ∈ E.

In this sense, (MP)3 is more closer to the maximum principle analytically defined.

Theorem 5.2. Suppose that μ1 + N(F1)μH + μ〈u〉 ∈ S1
CK∞(X∗) and μ2 + N(F2)μH ∈ S1

K(X)
holds. Assume further that X∗ is almost surely killed, that is,

P∗x(ζ = ∞) = Ex

[
e−Aμ2ζ −AF2

ζ ; ζ = ∞
]
= 0, x ∈ E.

Then the following are equivalent:

(1) λ(η) > 0.
(2) (MP)i holds for any i = 1, 2, 3.

Proof. (1) =⇒ (2): In view of Remark 5.1, it suffices to show that λ(η) > 0 =⇒ (MP)1

and (MP)2 =⇒ (MP)3. The proof of the former assertion is already made in [13, Theorem
7.1]. To show the latter assertion, we shall prove A

3 ⊂ A
2 . For h ∈ A

3 , let hn :=
heu ∨ (−n), n ∈ N. Define the functional In by

In (ϕ) = −(hn, ϕ) = −Y∗(hneu, ϕeu) +
∫

E
hnϕ dη, ϕ ∈ () ∩C+0 (E).(5.3)

Then In is a pre-integral for any n ∈ N, that is, I(ϕ�) ↓ 0 for ϕ� ∈ () ∩ C+0 (E) such that
ϕ�(x) ↓ 0, x ∈ E, as � → ∞. Noting that the smallest σ-field generated by () ∩ C+0 (E)
is identical with the Borel σ-field by the regularity of (Y∗ ,(Y∗)), one can see that there
exists a positive Borel measure ν(n) such that

In (ϕ) =
∫

E
ϕ dν(n), n ∈ N(5.4)

([9, Theorem 4.5.2]). We prove that e−2uν(n) ∈ S1(Y∗) for n ∈ N. Let K be a compact
set of zero capacity. Then for a relatively compact open set D such that K ⊂ D, there
exists a sequence {ϕ�} ⊂ () ∩ C+0 (D) such that ϕ� ≥ 1 on K and Y∗(ϕ�eu, ϕ�eu) → 0 as
� → ∞ ([10, Lemma 2.2.7]). By Lemma 4.2, e−2uη ∈ S1

CK∞(Y∗), hence e−2uη ∈ S1
D0

(Y∗) ([2,
Proposition 2.2]). Then by (4.13) and Stollmann-Voigt’s inequality (2.2)
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(ϕ�, ϕ�) ≤
(
1 + ‖RY∗

(
e−2uη

)
‖∞

)


Y∗(ϕ�eu, ϕ�eu) −→ 0, as � → ∞
and from which with (5.3) and (5.4), we see that e−2uν(n) ∈ S(0)

0 (Y∗), n ∈ N. This implies that
we can take a 0-order potential UY∗(e−2uν(n)) ∈ e(Y∗) such that∫

E
ϕ dν(n) = 

Y∗
(
UY∗(e−2uν(n)), ϕeu

)
.(5.5)

On account of (5.3), (5.4) and (5.5), we see then


Y∗

(
UY∗(e−2uν(n)) + hneu, ϕeu

)
= 

Y∗
(
UY∗(e−2uhnη), ϕeu

)
and thus UY∗(e−2uν(n)) + hneu = UY∗(e−2uhnη), m-a.e. This relation implies ‖UY∗ν(n)‖∞ < ∞
because e−2uhnη ∈ S1

D0
(Y∗). Then for a sequence {K�} of relatively compact sets increas-

ing to E, e−2u1K�ν
(n) is a finite measure in S(0)

0 (Y∗) and ‖UY∗(e−2u1K�ν
(n))‖∞ < ∞, that is,

e−2u1K�ν
(n) ∈ S(0)

00 (Y∗). Consequently e−2uν(n) ∈ S1(Y∗) for n ∈ N by virtue of [10, Theorem
5.1.7].

Note that the equation (5.3) leads us to


Y∗(hneu, ϕeu) =

∫
E
ϕ (hndη − dν(n)), ϕ ∈ (Y∗) ∩C+0 (E).

Applying this result to [10, Theorem 5.4.2], we have

hn(Xt) − hn(X0) = Mhn
t −

∫ t

0
hn(Xs) dAηs + Aν

(n)

t , t < ζ, PY∗
x -a.s. for any x ∈ E,

where Mhn is a square integrable martingale additive functional. Then by Itô’s formula,

eAηt hn(Xt) − hn(X0) =
∫ t

0
eAηs dMhn

s +

∫ t

0
eAηs dAν

(n)

s , t < ζ, PY∗
x -a.s. for any x ∈ E.

Put τk = inf{t > 0 | Aηt > k}. Since η ∈ S1
D0

(X∗), P∗x(limk→∞ τk = ∞) = 1. Hence

E∗x
[
eA1 (τk ∧ t)hn(Xτk∧t)e−u(Xτk∧t)

]
= e−u(x)EY∗

x

[
eAητk∧t hn(Xτk∧t)

]
= e−u(x)hn(x) + e−u(x)EY∗

x

[∫ τk∧t

0
eAηs dAν

(n)

s

]
≥ e−u(x)hn(x) for any x ∈ E.

Letting k → ∞ and then n → ∞, we see that PA
t h(x) ≥ PA1

t h(x) ≥ h(x) for any x ∈ E by the
dominated convergence theorem, which implies that h ∈ A

2 .
(2) =⇒ (1): Suppose λ(η) ≤ 0. Then by Lemma 5.2, there exists a strictly positive

bounded continuous function h ∈ e() such that (h, ϕ) = 0 for any ϕ ∈ () ∩ C+0 (E),
which means that (MP)3 does not hold. �

In the rest of this section, we assume that ( ,()) is strongly local, that is, ( f , g) = 0
for any f , g ∈ () such that f is constant on a neighborhood of the support of g. In this
case, the Feynman-Kac semigroup (1.2) is given by

PA
t f (x) = Ex[eA(t) f (Xt)] with eA(t) = exp(Nu

t + Aμt ).(5.6)

Let  be the symmetric quadratic form associated with (5.6). Then by virtue of (1.3)
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( f , g) := ( f , g) + (u, fg) −
∫

E
f (x)g(x) μ(dx).

Consider a sequence {xn}∞n=1 ⊂ E such that limn→∞ xn = ∂ and limn→∞ Pxn(ζ > ε) = 0 for
any ε > 0. We denote by  the family of such sequences. Then we see under the condition
μ〈u〉 + μ1 ∈ S1

K(X) that if h ∈ A
1 , then limn→∞ h(xn) ≤ 0 for any {xn}∞n=1 ∈  . Indeed, it

holds that there exists p > 1 such that supx∈E Ex[ep(Nu
t +Aμt )] < ∞ for a small t > 0 ([8, Lemma

3.1]). Hence, for {xn}∞n=1 ∈  ,

lim
n→∞ h(xn) ≤ lim

n→∞ PA
t h(xn) ≤ ‖h+‖∞ lim

n→∞Exn

[
eA(t)1{t<ζ}

]
(5.7)

≤ ‖h+‖∞ sup
x∈E

Ex

[
ep(Nu

t +Aμt )
]1/p

lim
n→∞Pxn(ζ > t)(p−1)/p = 0.

Let us introduce another function spaces on E:

̃
A
2 =

{
h ∈ loc() ∩C(E) | h is bounded above, PA

t h ≥ h, ∀t ≥ 0
}
,

̃
A
3 =

{
h ∈ loc() ∩C(E)

∣∣∣∣ h is bounded above, (h, ϕ) ≤ 0, ∀ϕ ∈ () ∩C+0 (E)
limn→∞ h(xn) ≤ 0 for any {xn}∞n=1 ∈ 

}
.

Now, let us define another maximum principle by

(̃MP)i If h ∈ ̃A
i , then h(x) ≤ 0 for all x ∈ E (i = 2, 3).

In particular, we call (̃MP)3 the refined maximum principle (cf. [1], [28]).

Corollary 5.1. Under the same assumptions of Theorem 5.2, the following are equiva-
lent:

(i) λ(η) > 0.
(ii) (̃MP)i holds for any i = 2, 3.

Proof. By the same argument as in the proof of (1) =⇒ (2) in Theorem 5.2, one can show
that ̃

A
3 ⊂ ̃

A
2 . Moreover, A

3 = ̃
A
3 in view of (5.7). Then we see that


A
3 = ̃

A
3 ⊂ ̃

A
2 ⊂ 

A
1 .

Now the assertion is an easy consequence of the inclusions above and Theorem 5.2. �

Remark 5.3. Let X = (Xt,Px) be a Brownian motion on Rd, a typical irreducible strong
Feller process of resolvent. The associated Dirichlet form on L2(Rd) is (H1(Rd), 1

2 D), where
H1(Rd) := { f ∈ L2(Rd) | |∇ f | ∈ L2(Rd)} and D is the classical Dirichlet integral on Rd,
D( f , g) :=

∫
Rd ∇ f (x) · ∇g(x) dx. Fix a bounded function u ∈ H1

loc(R
d) ∩C(Rd).

Let D be a regular domain of Rd with respect to X (see [7] for the defintion). The ab-
sorbing Brownian motion XD = (Xt,PD

x , τD) (or the part process of X on D) is defined as
the process killed upon leaving D. Here τD = inf{t > 0 | Xt � D}, the first exit time
of Xt from D. It is known that XD is a transient irreducible strong Feller process of re-
solvent on D ([7]). Let RD(x, y) be the Green function of XD. We say that D is Green-
bounded if supx∈D

∫
D RD(x, y)dy = supx∈D Ex[τD] < ∞, equivalently m ∈ S1

D0
(XD), where

m is the d-dimensional Lebesgue measure on D. Suppose that ν(dx) = η(dx) − μ2(dx) :=
( 1

2 |∇u|2 + μ1)(dx) − μ2(dx) satisfies the following condition:
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d = 1, D is bounded and |ν|(D) < ∞ or,
d = 2, D is Green-bounded and |ν| ∈ S1

K(X) with |ν|(D) < ∞ or,
d ≥ 3, |ν| ∈ S1

K(X) with |ν|(D) < ∞.
(5.8)

Then we can see |ν| ∈ S1
CK∞(X) (see [15, Example 4.1]). Hence, Corollary 5.1 implies the

following equivalence:

λD(η) > 0 ⇐⇒ (̃MP)3 holds,

where

λD(η) = inf
{
D( f , f )

∣∣∣∣∣∣ f ∈ C∞0 (D),
∫

D
f (x)2

(
1
2
|∇u|2 + μ1

)
(dx) = 1

}

with D( f , f ) := 1
2 DD( f , f ) + 1

2 DD( f 2, u) − ∫
D f 2dμ and DD( f , g) :=

∫
D ∇ f (x) · ∇g(x) dx.

Moreover, if D is Green-bounded, then the condition λD(η) > 0 is equivalent to

λD(m) = inf
{
D( f , f )

∣∣∣∣∣∣ f ∈ C∞0 (D),
∫

D
f (x)2m(dx) = 1

}
> 0

in view of [15, Corollary 1.2]. Hence we have

λD(m) > 0 ⇐⇒ (̃MP)3 holds.(5.9)

Note that the result (5.9) can be regarded as an extension of [1, Theorem 1.1] (or [29, Ex-
ample 4.4]) in which the authors proved (5.9) under u ≡ 0 and m(D) < ∞.
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