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Abstract
We prove that for genus g = 3, 4, the extended mapping class group Mod±(Sg) can be gen-

erated by two elements of finite orders. But for g = 1, Mod±(S1) cannot be generated by two
elements of finite orders.

1. Introduction

1. Introduction
Let Sg be a connected oriented closed surface of genus g. We denote by Mod(Sg) the

mapping class group of Sg, the group of isotopy classes of orientation-preserving diffeomor-
phisms on Sg. We also denote by Mod±(Sg) the extended mapping class group of Sg, the
group of isotopy classes of all orientation-preserving and orientation-reversing diffeomor-
phisms on Sg.

Korkmaz has proved that the mapping class group Mod(Sg) can be generated by two
elements of finite orders in [4]. Using the notation that 〈m, n〉 (m, n are integers) to mean a
group can be generated by two elements whose orders are m and n respectively, Korkmaz’s
result shows the orders of the generators are as in Table 1.

Table 1.

Mod(Sg)
torsion generating set

consisting of two elements
g = 1 〈4, 6〉
g = 2 〈6, 10〉
g ≥ 3 〈4g + 2, 4g + 2〉

It is an open problem listed in [5] that whether the extended mapping class group
Mod±(Sg) can be generated by two torsion elements. In [1], the author partially solved
such a problem when the genus g ≥ 5. In this paper, we deal with g = 1, 3, 4.

When g = 3, 4, the method and idea in the process of calculation in this paper are mostly
the same as those in [1] and [4]. The reason for g = 3 and g = 4 should be treated separately
is as the follow. When the genus is high, there will be plenty of space to find a simple closed
curve satisfying two conditions: (1) it lies in the periodic orbit; (2) it does not intersect with
some given curves. When the genus is less than 5, we cannot do this. So we use other
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treatment carefully. When g = 1, we use the presentation of GL(2,Z) to prove it cannot be
generated by two elements of finite orders. So we can summarize the result as in Table 2.

Table 2.

Mod±(Sg)
torsion generating set

consisting of two elements
g = 1 impossible
g = 2 still unknown
g ≥ 3 〈2, 4g + 2〉

2. Preliminary

2. Preliminary2.1. Notations.
2.1. Notations. (a) We use the convention of functional notation, namely, elements of

the mapping class group are applied right to left, i.e. the composition FG means that G is
applied first.

(b) On an oriented surface, for each explicit two-sided simple closed curve, a Dehn twist
means a right-handed Dehn twist along such a curve according to the orientation of the
surface, and a left-handed Dehn twist is the inverse of a right-handed Dehn twist.

(c) We denote the curves by lower case letters a, b, c, d (possibly with subscripts) and the
Dehn twists about them by the corresponding capital letters A, B, C, D. Notationally we do
not distinguish a diffeomorphism/curve and its isotopy class.

2.2. Basic relations between Dehn twists.
2.2. Basic relations between Dehn twists. We recall the following results (see, for in-

stance, section 3.3, 5.1, 7.5 of [2]):

Lemma 2.1. For any ϕ ∈ Mod(Sg) and any isotopy classes a, b of simple closed curves
in Sg satisfying ϕ(a) = b, we have:

B = ϕ Aϕ−1.

Lemma 2.2. For any ϕ ∈ Mod±(Sg) \ Mod(Sg) and any isotopy classes a, b of simple
closed curves in Sg satisfying ϕ(a) = b, we have:

B−1 = ϕ Aϕ−1.

Lemma 2.3. Let a, b be two simple closed curves on Sg. If a is disjoint from b, then

AB = BA.

Lemma 2.4 (Lantern relation). Let a, b, c, d, x, y, z be the curves showed in Figure 1 on a
genus zero surface with four boundaries. Then

ABCD = XYZ.

In other words, since a, b, c are disjoint from x, y, z, we have

D = (XA−1)(YB−1)(ZC−1).

2.3. Humphries generators and the (4g + 2)-gon.
2.3. Humphries generators and the (4g+2)-gon. Humphries have proved the following

theorem ([3]).
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Fig.1

Theorem 2.5. Let a1, a2, . . . , a2g, b0 be the curves as on the left-hand side of Figure 2.
Then the mapping class group Mod(Sg) is generated by Ai’s and B0.

Fig.2

The genus g surface can be looked as a (4g + 2)-gon, whose opposite edges are glued
together in pairs. (4g + 2) vertices of the (4g + 2)-gon are glued to be two vertices.

We can also draw the curves a1, a2, . . . , a2g, b0 on the (4g + 2)-gon as the right-hand side
of Figure 2. There is a natural rotation σ of the (4g + 2)-gon that sends ai to ai+1. In this
paper, we will use the curve c0 as Figure 2 shows. Denote bi = σ

i(b0), ci = σ
i(c0). They are

also used in this paper.
We need the intersection numbers between the curves a j, bk, cl. Consider the indexes i, j, k

in modulo 4g + 2 classes. The intersection numbers between a j, bk, cl are listed as follow:
(1) i(a j, ak) = 0 if and only if | j − k| � 1.
(2) i(a j, ak) = 1 if and only if | j − k| = 1.
(3) i(b j, bk) = 0 if and only if | j − k| � {1, 2, 3, 2g − 2, 2g}.
(4) i(b j, bk) = 1 if and only if | j − k| ∈ {1, 3, 2g − 2, 2g}.
(5) i(b j, bk) = 2 if and only if | j − k| = 2.
(6) i(c j, ck) = 0 if and only if j = k.
(7) i(c j, ck) = 1 if and only if j � k.
(8) i(a j, bk) = 0 if and only if j − k � {0, 4}.
(9) i(a j, bk) = 1 if and only if j − k ∈ {0, 4}.

(10) i(a j, ck) = 0 if and only if k − j � {−1, 0}.
(11) i(a j, ck) = 1 if and only if k − j ∈ {−1, 0}.
(12) i(b j, ck) = 0 if and only if k − j � {0, 1, 2, 3}.
(13) i(b j, ck) = 1 if and only if k − j ∈ {0, 1, 2, 3}.
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Except (3), (4) and (5), the above intersection numbers can be verified directly on the
(4g + 2)-gon, as shown by the right picture of Figure 2. For (3), (4) and (5), we can verify
them from the Figure 3 in [1].

Remark 2.6. In the calculation of (3), (4) and (5), when viewing these curves in the
(4g + 2)-gon, we need to be careful. Sometimes though two such curves meet at the vertex
of the (4g + 2)-gon, They do not really intersect. We can perturb them a little to cancel the
intersection point.

2.4. Some torsion elements.
2.4. Some torsion elements. Obviously we have σ4g+2 = 1. Take the reflection τ of the

regular (4g + 2)-gon satisfying τ(b0) = b0. We can check (τB0)2 = 1. See Figure 3.

Fig.3

In [1] we know Mod±(Sg) = 〈σ, τB0〉 for g ≥ 5. We will see it is also true for g = 3, 4.

3. The main result and the proof

3. The main result and the proofTheorem 3.1. Let τ, σ, B0 as before. For g = 3, 4, Mod±(Sg) = 〈σ, τB0〉.
Proof. Denote the subgroup generated by τB0 and σ as G. We will prove that G includes

all the elements in Mod±(Sg). Similar to [1], The proof of the theorem has 4 steps.
Step 1. For every i, k, we prove BiB−1

k is in G.
Step 2. For every i, k, we prove BiA−1

k is in G.
Step 3. Using lantern relation, we prove that for every i, Ai is in G.
Step 4. G = Mod±(Sg).
The motivation of step 2 and step 3 is as follow. There is a lantern on the surface where

the curves in the lantern relation appear as a1, a3, a5, b0, b2, e, f showed on the upper
side of Figure 4. The lantern relation B0B2E = A1A3A5F can be also written as A1 =

(B0A−1
3 )(B2A−1

5 )(EF−1). So one Dehn twist can be decomposed into the product of pairs of
Dehn twists. Draw the lantern in the (4g + 2)-gon as on the lower side of Figure 4. We will
find some of the pairs of Dehn twists we use can be expressed as the form BkA−1

i . When the
g ≤ 2, we cannot find a lantern on the surface.

The proof of Step 1:
We can check σ j(τB0)σ j(τB0) = B−1

j B0. Choosing j such that j is coprime to 4g + 2 and
b j do not intersect with b0, we have Bj commutes with B0, hence B0B−1

j is in G. For every i,
by conjugating B0B−1

j with σi, we have BiB−1
i+ j is in G. Since j is coprime to 4g+ 2, we have

BiB−1
k is in G for every i, k.
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Fig.4

The proof of step 2:
Suppose the genus g = 4.
We already know b11 does not intersect with b0 or b6. So B11B−1

6 maps the pair of curves
(b11, b0) to the pair of curves (b11, B−1

6 (b0)). Since B11B−1
0 is in G, B11(B−1

6 B−1
0 B6) is in G.

We also have for every k, Bk(B−1
6 B−1

0 B6) = (BkB−1
11 ) (B11(B−1

6 B−1
0 B6)) is in G. See Figure 5.

Fig.5

We know b1 does not intersect with b5. We can check B1B−1
5 B−1

6 (b0) = a5. So B−1
5 maps

the pair of curves (b5, B−1
6 (b0)) to the pair of curves (b5, B−1

5 B−1
6 (b0)), B1 maps the pair of

curves (b5, B−1
5 B−1

6 (b0)) to the pair of curves (b5, a5). This means B1B−1
5 maps the pair of

curves (b5, B−1
6 (b0)) to the pair of curves (b5, a5). See Figure 6.

Hence B5A−1
5 is in G. After conjugating some power of σ and multiplying some BiB−1

j ,
we have for every i, j, BiA−1

j is in G.

Suppose the genus g = 3.
We know that b9 does not intersect with b0 or b4. So B9B−1

4 maps the pair of curves (b9, b0)
to the pair of curves (b9, B−1

4 (b0)). We can also check when the genus is 3, c0 = B−1
4 (b0). So

B9C−1
0 is in G. See Figure 7.

After conjugating with some power of σ and multiplying some BiB−1
j , we have for every

i, j, BiC−1
j and CiB−1

j are in G. We also have for every i, j, CiC−1
j is in G.
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Fig.6

Fig.7

We know c0 does not intersect with b1 or b2. So B2C−1
0 maps the pair of curves (c0, b1)

to the pair of curves (c0, B2(b1)). Then C0(B2B−1
1 B−1

2 ) is in G. For every i, Ci(B2B−1
1 B−1

2 ) is
also in G. See Figure 8.

Fig.8

We know c4 does not intersect with b6 or B2(b1). So C4B−1
6 maps the pair of curves

(c4, B2(b1)) to the pair of curves (c4, B−1
6 B2(b1)). Then C0(B−1

6 B2B−1
1 B−1

2 B6) is in G. See
Figure 9.

We know c4 does not intersect with b5 or B−1
6 B2(b1). So C4B−1

5 maps the pair of curves
(c4, B−1

6 B2(b1)) to the pair of curves (c4, B−1
5 B−1

6 B2(b1)). Then C4 (B−1
5 B−1

6 B2B−1
1 B−1

2 B6B5) is
in G. See Figure 10.

We can check that B−1
5 B−1

6 B2(b1) = a2. So C4A−1
2 = C4 (B−1

5 B−1
6 B2B−1

1 B−1
2 B6B5) is in G.

Conjugating with some power of σ and multiplying C jC−1
k , we have for every j, k, C jA−1

k is
in G. Multiplying it by BiC−1

j , we have for every i, k, BiA−1
k is in G.
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Fig.9

Fig.10

The proof of step 3:
We want to show for every i, Ai is in G.
Recall lantern relation, we have B0B2E = A1A3A5F, or A1 = (B0A−1

3 ) (B2A−1
5 ) (EF−1),

where e and f are the curves showed in Figure 4. By the result of step 2, B0A−1
3 and B2A−1

5 are
in G. What we need is to prove EF−1 is also in G. Notice EF−1 = (EB−1

i )(BiB−1
j )(BjF−1).

We only need to show there exist some i, j such that EB−1
i and BjF−1 are in G.

Suppose g = 4.
We can check that f = B−1

3 A6A5A4(b0). We also know b7 does not intersect with a4, a5, a6,

b3. So (B7B−1
3 )(A6B−1

7 )(A5B−1
7 )(A4B−1

7 ) maps (b7, b0) to (b7, f ). Hence B7F−1 is in G. See
Figure 11.

Fig.11

We can check e = A2A1A−1
4 B1(a5). Since b12 does not intersect with a1, a2, a4, a5, b1,

(A2B−1
12 ) (A1B−1

12 ) (B12A−1
4 ) (B1B−1

12 ) maps (a5, b12) to (e, b12). Hence EB−1
12 is in G. See

Figure 12.
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Fig.12

Suppose g = 3.
The fact f = B−1

3 A6A5A4(b0) still holds. When g = 3 we cannot find some bi that does
not intersect with a4, a5, a6, b3 simultaneously. We use some curves ci instead.

At first we find c6 does not intersect with a4, a5, b0. So (A5C−1
6 ) (A4C−1

6 ) maps (c6, b0) to
(c6, A5A4(b0)), C6(A5A4B0A−1

4 A−1
5 )−1 is in G. See Figure 13.

Fig.13

B8(A5A4B0A−1
4 A−1

5 )−1 = (B8C−1
6 )(C6(A5A4B0A−1

4 A−1
5 )−1) is also in G. Then we find b8

does not intersect with a6, b3 or A5A4(b0). So (B8B−1
3 )(B−1

8 A6) maps (b8, A5A4(b0)) to
(b8, B−1

3 A6A5A4(b0)) = (b8, f ). Hence B8F−1 is in G. See Figure 14.

Fig.14

Similarly, The fact e = A2A1A−1
4 B1(a5) still holds. When g = 3, we can find ci does not

intersect with a1, a2, a4, a5, b1. So (A2C−1
6 ) (A1C−1

6 ) (C6A−1
4 ) (B1C−1

6 ) maps (a5, c6) to (e, c6).
Hence EC−1

6 is in G. And then multiply C6B−1
i , we have EB−1

i in G. See Figure 15.
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Fig.15

The proof of step 4:
Since both BiA−1

j and Aj are in G, by Humphries’s result, G contains the mapping class
group Mod(Sg). Now τB0 ∈ G is an orientation reversing element. Mod(Sg) is an index 2
subgroup of Mod±(Sg). So G = Mod±(Sg) for g = 3, 4. �

Theorem 3.2. For g = 1, Mod±(S1) is GL(2,Z). It cannot be generated by two elements
of finite orders.

Proof. We only need to prove that PGL(2,Z) cannot be generated by two elements of
finite orders. The idea of the proof is:

(1) use a presentation of PGL(2,Z) whose generators are elements of finite orders;
(2) list the possible conjugacy classes of all finite order elements in PGL(2,Z);
(3) give a homomorphism from PGL(2,Z) to a finite group D6 × Z2;
(4) check all the possible generating set of D6 × Z2 consisting of two generators;
(5) find the conjugacy classes of the pre-image of the generators of PGL(2,Z) in (4),

prove either they cannot be the conjugacy classes of finite orders elements or they
cannot generate PGL(2,Z).

It is well known that PGL(2,Z) � D6 ∗Z2 D4, where D6 and D4 are the dihedral group of
order 6 and order 4 respectively (see, for example, [6] or [7]). It has a presentation as

PGL(2,Z) = 〈a, b, t | a3 = t2 = b2 = 1, at = ta2, bt = tb〉.
Every element α in PGL(2,Z) can be written as a reduced form in one of the following 8

types:
(1) ai1b j1 . . . aik b jk , (2) b j1ai1 . . . b jk aik ,
(3) ai0b j1ai1 . . . b jk aik , (4) b j0ai1b j1 . . . aik b jk ,
(5) ai1b j1 . . . aik b jk t, (6) b j1ai1 . . . b jk aik t,
(7) ai0b j1ai1 . . . b jk aik t, (8) b j0ai1b j1 . . . aik b jk t.

Here each in ∈ {1, 2} and each jn = 1.
• For an element in type (1), (2), (5) or (6), since its power will have a larger word

length, it must not be of finite order.
• For an element in type (3) or (4), it can be conjugated to an element in (1) or (2), or

it can be conjugated to an element in (4) or (3) with a shorter word length.
• For type (7), ai0b j1ai1 . . . b jk aik t is conjugated to b j1ai1 . . . b jk aik+2i0 t, which is in type

(8) with a shorter word length or in type (6).
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• For type (8), b j0ai1b j1 . . . b jk−1aik b jk t is conjugated to ai1b j1 . . . b jk−1aik t, which is in
type (7) with a shorter word length.

For an element of finite order in PGL(2,Z), we can conjugate it to an element with shortest
word length. The only seven possible choices are as follow: a, a2, t, at, a2t, b, bt. About the
order of the elements in their conjugacy classes, the elements conjugating to a or a2 have
order 3, and the elements conjugating to t, at, a2t, b or bt have order 2.

By adding a new relation ab = ba, we get a quotient group homomorphic to the Cartesian
product D6 × Z2, which is a finite group with the presentation

〈a1, t1, b1 | a3
1 = t2

1 = b2
1 = 1, a1t1 = t1a2

1, b1t1 = t1b1, a1b1 = b1a1〉.
For the convenience of calculation, we can regard D6 × Z2 as a permutation subgroup of

the symmetric group Σ5. Table 3 lists the images in Σ5 of all elements in D6 × Z2.

Table 3.

element in D6 × Z2 permutation element in D6 × Z2 permutation
1 () b1 (45)
a1 (123) a1b1 (123)(45)
a2

1 (132) a2
1b1 (132)(45)

t1 (12) b1t1 (12)(45)
a1t1 (13) a1b1t1 (13)(45)
a2

1t1 (23) a2
1b1t1 (23)(45)

As the permutations in Σ5, both a1 and a2
1 have the same 3-cycle orbit type, they are in

the same conjugacy class in D6 × Z2. All of t1, a1t1, a2
1t1 and b1 have the same 2-cycle orbit

type. However, b1 generates the product factor Z2 of D6 × Z2. Hence we can check that
t1, a1t1, a2

1t1 belong to the same conjugacy class, and b1 belongs to another conjugacy class.
All of b1t1, a1b1t1 and a2

1b1t1 have the same orbit type as a product of two disjoint 2-cycles.
For the conjugacy classes of the possible finite order elements in PGL(2,Z), we can check
the their possible images in D6 × Z2 are as Table 4 shows.

Table 4.

Conjugacy classes in PGL(2,Z) elements in D6 × Z2

a, a2 a1, a2
1

t, at, a2t t1, a1t1, a2
1t1

b b1

bt b1t1, a1b1t, a2
1b1t

Each finite order element in PGL(2,Z) will be mapped to an element in D6 × Z2 which
conjugates with an element in {a1, a2

1, t1, a1t1, a2
1t1, b1, b1t1, a1b1t1, a2

1b1t1}.
By direct computation in the permutation subgroup of the symmetric group, we know that

if two elements x, y generate D6 × Z2, there are only two possible cases:
(1) {x, y} contain a1b1 or a2

1b1;
(2) both x and y are elements of order 2.
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Either a1b1 or a2
1b1 cannot conjugate to an element in {a1, a2

1, t1, a1t1, a2
1t1, b1, b1t1, a1b1t1,

a2
1b1t1}, hence their pre-image in PGL(2,Z) cannot be elements of finite order.

The pre-images of the order 2 elements in D6 × Z2 can be conjugated to the elements in
{t, at, a2t, b, bt} in PGL(2,Z). They are still of order 2. But two elements of order 2 can
only generate a dihedral group, not PGL(2,Z). �

Remark 3.3. Though GL(2,Z) cannot be generated by two torsion elements, it can be
generated by two elements. In fact, since(

0 1
1 0

) (
1 1
0 1

) (
0 1
1 0

)
=

(
1 0
1 1

)
,

we have

GL(2,Z) = 〈
(

1 1
0 1

)
,

(
0 1
1 0

)
〉.

So the extended mapping class group GL(2,Z) for g = 1 case: (1) can be generated by two
elements; (2) cannot be generated by two elements of finite orders. This is different from
the case g ≥ 3.
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[6] O. Koruoglu: The Images under the modular group and extended modular group, Hacet. J. Math. Stat. 40
(2011), 15–20.

[7] R. Sahin, S. Ikikardes and O. Koruoglu, On the Power Subgroups of the Extended Modular Group, Turish J.
Math. 28 (2004), 143–151.

South China University of Technology
Guangzhou 510640
P.R.China
e-mail: scxmdu@scut.edu.cn




