NEIGHBORHOOD COMPLEXES AND KRONECKER DOUBLE COVERINGS

Takahiro MATSUSHITA

(Received January 14, 2020, revised April 10, 2020)

Abstract

The neighborhood complex $N(G)$ is a simplicial complex assigned to a graph G whose connectivity gives a lower bound for the chromatic number of G. We show that if the Kronecker double coverings of graphs are isomorphic, then their neighborhood complexes are isomorphic. As an application, for integers m and n greater than 2, we construct connected graphs G and H such that $N(G) \cong N(H)$ but $\chi(G)=m$ and $\chi(H)=n$. We also construct a graph $K G_{n, k}^{\prime}$ such that $K G_{n, k}^{\prime}$ and the Kneser graph $K G_{n, k}$ are not isomorphic but their Kronecker double coverings are isomorphic.

1. Introduction

The neighborhood complex was introduced by Lovász in his proof of Kneser's conjecture [7]. He assigned a simplicial complex $N(G)$ to a graph G, and showed that a certain homotopy invariant conn $(N(G))$, called the connectivity, gives a lower bound for the chromatic number. He used this method to compute the chromatic number of the Kneser graphs $K G_{n, k}$. After that, topological methods in graph coloring problems have been studied by many authors. We refer to [5] for the background of this subject.

In the study of neighborhood complexes, the following question is quite fundamental: Does the isomorphism type (homeomorphism type, or homotopy type) of $N(G)$ determine the chromatic number $\chi(G)$? Actually, this problem was negatively solved. Walker [10] and Matsushita [9] deal with many examples of graphs whose neighborhood complexes are homotopy equivalent but whose chromatic numbers are different. Moreover, Walker [10] gave examples that for every $n \geq 2$, there are graphs G and H such that $\chi(G)=n$ and $\chi(H)=n+1$, but their neighborhood complexes are isomorphic.

The purpose of this paper is to improve Walker's result:
Theorem 1.1. Let m and n be integers greater than 2. Then there are connected graphs G and H such that $\chi(G)=m, \chi(H)=n$, but their neighborhood complexes are isomorphic.

The method employed here is different from Walker's. In this paper, we observe that the following close relation between neighborhood complexes $N(G)$ and Kronecker double coverings $K_{2} \times G$ (The precise definitions will be found in Section 2).

Theorem 1.2. Let G and H be graphs. If $K_{2} \times G \cong K_{2} \times H$, then $N(G) \cong N(H)$. On the other hand, if G and H are stiff and $N(G) \cong N(H)$, then $K_{2} \times G \cong K_{2} \times H$.

This theorem will be proved in Section 2. Thus to prove Theorem 1.1, it suffices to construct graphs $X(m, n)$ and $Y(m, n)$ such that $\chi(X(m, n))=m$ and $\chi(Y(m, n))=n$, but $K_{2} \times X(m, n) \cong K_{2} \times Y(m, n)$, and this will be done in Example 3.3.

Theorem 1.2 asserts that the neighborhood complex is determined by its Kronecker double covering. Thus the Kronecker double covering gives a restriction on the chromatic number. In Section 3, we construct a simple graph $K G_{n, k}^{\prime}$ for $n>2 k \geq 4$ such that $K_{2} \times K G_{n, k}^{\prime} \cong K_{2} \times K G_{n, k}$ but $K G_{n, k}^{\prime} \nsubseteq K G_{n, k}$ (Theorem 3.5). By the connectivity of $N\left(K G_{n, k}^{\prime}\right)=N\left(K G_{n, k}\right)$, we prove $\chi\left(K G_{n, k}^{\prime}\right)=n-2 k+2$ (Theorem 3.6).

Finally, we make a remark on the box complex [2, 8]. The box complex $B(G)$ is a $\mathbb{Z} / 2$ space assigned to a graph, whose underlying space is homotopy equivalent to $N(G)$. Moreover, a certain $\mathbb{Z} / 2$-homotopy invariant of $B(G)$, called $\mathbb{Z} / 2$-index, is a lower bound for $\chi(G)$ sharper than conn $(N(G))$ (see [8]).

One can ask if a similar assertion to Theorem 1.1 holds for box complexes. Since $N(G) \simeq B(G)$, it is clear that $K_{2} \times G \cong K_{2} \times H$ implies $B(G) \simeq B(H)$. However, there are many definitions of box complexes, and these definitions are not isomorphic but only $\mathbb{Z} / 2$-homotopy equivalent. Hence the isomorphism problem concerning box complexes is not so reasonable although $K_{2} \times G \cong K_{2} \times H$ implies $B(G) \cong B(H)$ for every definition of box complexes as far as the author knows.

On the other hand, it is meaningful to ask if $K_{2} \times G \cong K_{2} \times H$ implies that $B(G)$ and $B(H)$ are $\mathbb{Z} / 2$-homotopy equivalent. However, the graphs constructed in Example 3.3 are counter examples to this question (see Remark 3.4).

2. Neighborhood complexes

Here we review definitions and facts concerning neighborhood complexes, and show Theorem 1.2. For a comprehensive introduction to this subject, we refer to [5].

A graph is a pair $G=(V(G), E(G))$ consisting of a finite set $V(G)$ together with a symmetric binary relation $E(G)$ of $V(G)$. For a pair v and w of vertices of G, we write $v \sim w$ to mean $(v, w) \in E(G)$. A graph homomorphism from a graph G to a graph H is a map $f: V(G) \rightarrow V(H)$ such that $(f \times f)(E(G)) \subset E(H)$. Let K_{n} be the graph defined by $V\left(K_{n}\right)=\{1, \cdots, n\}$ and $E\left(K_{n}\right)=\{(i, j) \mid i \neq j\}$. The chromatic number $\chi(G)$ of G is the number

$$
\min \left\{n \geq 0 \mid \text { There is a graph homomorphism } G \rightarrow K_{n}\right\} .
$$

Let G be a graph and v a vertex of G. Let $N(v)$ be the set of vertices adjacent to v. The neighborhood complex $N(G)$ is the simplicial complex

$$
N(G)=\{\sigma \subset V(G) \mid \sigma \text { is finite and } \sigma \subset N(v) \text { for some } v\}
$$

whose underlying set is $V(G)$. Lovász [7] showed that if $N(G)$ is n-connected, then $\chi(G)>$ $n+2$. He used this method to determine the chromatic numbers of Kneser graphs $K G_{n, k}$ defined as follows: Let n and k be positive integers satisfying $n \geq 2 k$. Then the Kneser graph $K G_{n, k}$ is the graph defined by

$$
V\left(K G_{n, k}\right)=\{\sigma \subset\{1, \cdots, n\}| | \sigma \mid=k\}, E\left(K G_{n, k}\right)=\left\{(\sigma, \tau) \mid \sigma, \tau \in V\left(K G_{n, k}\right), \sigma \cap \tau=\emptyset\right\} .
$$

It is easy to see $\chi\left(K G_{n, k}\right) \leq n-2 k+2$. Lovász showed that $N\left(K G_{n, k}\right)$ is $(n-2 k-1)$-connected,
and hence $\chi\left(K G_{n, k}\right)=n-2 k+2$.
Next we recall the definition of Kronecker double coverings. The categorical product of G and H is the graph $G \times H$ defined by $V(G \times H)=V(G) \times V(H)$ and $E(G \times H)=$ $\left\{\left((v, w),\left(v^{\prime}, w^{\prime}\right)\right) \mid\left(v, v^{\prime}\right) \in E(G),\left(w, w^{\prime}\right) \in E(H)\right\}$. The Kronecker double covering of G is the product $K_{2} \times G$. For a more detailed discussion on the Kronecker double covering, see Section 3 or [4]. The projection $K_{2} \times G \rightarrow G,(i, v) \mapsto v$ is a covering. Here a covering means a graph homomorphism $f: G \rightarrow H$ such that $\left.f\right|_{N(v)} N(v) \rightarrow N(f(v))$ is bijective for every $v \in V(G)$. It is easy to see that for a connected graph $G, K_{2} \times G$ is connected if and only if $\chi(G)>2$.

Now we start the proof of Theorem 1.2. In fact, this theorem is deduced from an observation of [1] concerning neighborhood hypergraphs. However, we first give a direct short proof for reader's convenience. We start with the following easy observation:

Lemma 2.1. $N\left(K_{2} \times G\right) \cong N(G) \sqcup N(G)$
Proof. For $i=1,2$, define $f_{i}: V(G) \rightarrow V\left(K_{2} \times G\right)$ by $f_{i}(v)=(i, v)$. Then the sum $f_{1}+f_{2}: V(G) \sqcup V(G) \rightarrow V\left(K_{2} \times G\right)$ gives an isomorphism $N(G) \sqcup N(G) \rightarrow N\left(K_{2} \times G\right)$.

A graph G is stiff if for every pair of vertices v and $w, N(v) \subset N(w)$ implies $v=w$. Let $F(N(G))$ denote the set of facets of $N(G)$. Then the stiffness of graphs means the map $V(G) \rightarrow F(N(G)), v \mapsto N(v)$ is well-defined and bijective.

Before giving the proof of Theorem 1.2, we prove the following lemma:
Lemma 2.2. Let K and L be finite simplicial complexes. If $K \sqcup K$ and $L \sqcup L$ are isomorphic, then K and L are isomorphic.

Proof. Let X_{1}, \cdots, X_{r} be the connected components of K. We prove this lemma by induction on the number r of connected components of K. The case $r=0$ is clear.

Let X_{i}^{\prime} be a copy of X_{i}, and so $K \sqcup K=\left(X_{1} \sqcup X_{1}^{\prime}\right) \sqcup \cdots \sqcup\left(X_{r} \sqcup X_{r}^{\prime}\right)$. Similarly, let Y_{1}, \cdots, Y_{s} be the connected components of L and so that $L \sqcup L=\left(Y_{1} \sqcup Y_{1}^{\prime}\right) \sqcup \cdots \sqcup\left(Y_{s} \sqcup Y_{s}^{\prime}\right)$. Let $f: K \sqcup K \rightarrow L \sqcup L$ be an isomorphism. By changing indices of Y_{i} and exchanging Y_{i} and Y_{i}^{\prime}, we can assume $f\left(X_{1}\right)=Y_{1}$. Then $f\left(X_{1}^{\prime}\right)$ is a connected component of $L \sqcup L$ other than Y_{1}. Note that $f\left(X_{1}^{\prime}\right)$ and Y_{1}^{\prime} are isomorphic since $f\left(X_{1}^{\prime}\right) \cong X_{1}^{\prime} \cong X_{1} \cong Y_{1} \cong Y_{1}^{\prime}$ Let $g: L \sqcup L \rightarrow L \sqcup L$ be an isomorphism which exchanges $f\left(X_{1}\right)$ and Y_{1}^{\prime} and fixes other components. Then we have $g f\left(X_{1}\right)=Y_{1}$ and $g f\left(X_{1}^{\prime}\right)=Y_{1}^{\prime}$.

Set $K^{\prime}=X_{2} \sqcup \cdots \sqcup X_{r}$ and $L^{\prime}=Y_{2} \sqcup \cdots \sqcup Y_{s}$. Then $g f$ induces an isomorphism between $K^{\prime} \sqcup K^{\prime}$ and $L^{\prime} \sqcup L^{\prime}$. By the inductive hypothesis, we have $K^{\prime} \cong L^{\prime}$. Since X_{1} and Y_{1} are isomorphic, we conclude $K=X_{1} \sqcup K^{\prime} \cong Y_{1} \sqcup L^{\prime}=L$.

Proof of Theorem 1.2. If $K_{2} \times G \cong K_{2} \times H$, then Lemma 2.1 implies $N(G) \sqcup N(G) \cong$ $N(H) \sqcup N(H)$, and hence Lemma 2.2 implies $N(G) \cong N(H)$.

On the other hand, suppose G and H are stiff, and let $\varphi: V(G) \rightarrow V(H)$ be an isomorphism from $N(G)$ to $N(H)$. Define the maps $f: V(G) \rightarrow V(H)$ and $g: V(H) \rightarrow V(G)$ by $N(f(v))=$ $\varphi(N(v))$ and $N(g(w))=\varphi^{-1}(N(w))$ for all $v \in V(G)$ and $w \in V(H)$. Moreover, define the maps $\tilde{f}: V\left(K_{2} \times G\right) \rightarrow V\left(K_{2} \times H\right)$ and $\tilde{g}: V\left(K_{2} \times H\right) \rightarrow V\left(K_{2} \times G\right)$ by

$$
\tilde{f}(0, v)=(0, \varphi(v)), \tilde{f}(1, v)=(1, f(v)), \tilde{g}(0, w)=\left(0, \varphi^{-1}(w)\right), \tilde{g}(1, w)=(1, g(w))
$$

for $v \in V(G)$ and $w \in V(H)$. Then \tilde{f} and \tilde{g} are graph homomorphisms, and \tilde{g} is the inverse
of \tilde{f}.
Now we explain that Theorem 1.2 is easily deduced from an observation in [1] concerning neighborhood hypergraphs. To see this, we need some terminology and notation.

Recall that a (multi-)hypergraph is a pair $\mathcal{H}=(V(\mathcal{H}), \mathcal{H})$ consisting of a set $V(\mathcal{H})$ together with a multi-set of $V(\mathcal{H})$, i.e. a function $\mathcal{H}: 2^{V(\mathcal{H})} \rightarrow \mathbb{N}$. The neighborhood hypergraph $\mathcal{N}(G)$ of a graph G is the multi-hypergraph on $V(G)$ whose multi-set of hyperedges is $\mathcal{N}(G)=\{N(v) \mid v \in V(G)\}$, in other words, $\mathcal{N}(G)(S)=\#\{S=N(v) \mid v \in V(G)\}$ for $S \in 2^{V(G)}$.

For a hypergraph \mathcal{H}, define the bigraph representation $B_{\mathcal{H}}$ (the precise definition of bigraphs will be found in the beginning of Section 3) as follows: the vertex set of $B_{\mathcal{H}}$ is $V(\mathcal{H}) \sqcup \mathcal{H}$, and $v \in V(\mathcal{H})$ and $S \in \mathcal{H}$ are adjacent if and only if $v \in S$. There is no other adjacent relation among vertices of $B_{\mathcal{H}}$. The bigraph $B_{\mathcal{H}}$ determines the original hypergraph \mathcal{H}. In fact, they used this method to show that for bipartite graphs G and $H, G \cong H$ if and only if $\mathcal{N}(G) \cong \mathcal{N}(H)$.

From the above observation of [1], one can easily show Theorem 1.2 as follows: Clearly, the bigraph representation $B_{\mathcal{N}(G)}$ of the neighborhood hypergraph $\mathcal{N}(G)$ coincides with the Kronecker double covering $K_{2} \times G$. This means that $K_{2} \times G \cong B_{\mathcal{N}(G)}$ determines $\mathcal{N}(G)$. Since the neighborhood complex $N(G)$ is determined by $\mathcal{N}(G)$, we have that $K_{2} \times G$ determines $N(G)$.

On the other hand, if a graph G is stiff, then the neighborhood complex $N(G)$ determines the neighborhood hypergraph $\mathcal{N}(G)$. In fact, the multi-set of hyperedges of $\mathcal{N}(G)$ is the set of facets of $N(G)$ in this case. Thus if G and H are stiff and $N(G) \cong N(H)$, then we have $\mathcal{N}(G) \cong \mathcal{N}(H)$ and hence $K_{2} \times G \cong K_{2} \times H$. This completes the proof of Theorem 1.2.

We close this section with a few remarks.
Remark 2.3. There are graphs whose neighborhood complexes are isomorphic but whose Kronecker double coverings are different. In fact, consider the 4 -cycle graph C_{4} and the path graph P_{4} with 4 vertices. Then the neighborhood complexes of these graphs are two 1-simplices, but $K_{2} \times C_{4}=C_{4} \sqcup C_{4}$ and $K_{2} \times P_{4}=P_{4} \sqcup P_{4}$.

Remark 2.4. Theorem 1.2 asserts that the neighborhood complex $N(G)$ is determined by the Kronecker double covering $K_{2} \times G$. Thus if $N(G)$ is n-connected and $K_{2} \times G \cong K_{2} \times H$, then $N(H)$ is also n-connected, and hence we have $\chi(H)>n+2$. This means that the Kronecker double covering restricts the chromatic number.

We construct graphs $K G_{n, k}^{\prime}$ in Section 3 such that $K_{2} \times K G_{n, k}^{\prime} \cong K_{2} \times K G_{n, k}$ but $K G_{n, k}^{\prime} \neq$ $K G_{n, k}$ for $n>2 k \geq 4$. Since $N\left(K G_{n, k}\right)$ is $(n-2 k-1)$-connected (see Section 2), this means $\chi\left(K G_{n, k}^{\prime}\right) \geq n-2 k+2$.

3. Kronecker double coverings

In this section, we review the theory of Kronecker double coverings, and construct graphs $X(m, n)$ and $Y(m, n)$ such that $\chi(X(m, n))=m$ and $\chi(Y(m, n))=n$ but $K_{2} \times X(m, n) \cong$ $K_{2} \times Y(m, n)$ in Example 3.3. This shows Theorem 1.1. Moreover, we construct a family of graphs $K G_{n, k}^{\prime}$ such that $K_{2} \times K G_{n, k} \cong K_{2} \times K G_{n, k}^{\prime}$ but $K G_{n, k} \nsubseteq K G_{n, k}^{\prime}$.

We review the Kronecker double coverings from a viewpoint of bigraphs, that is, graphs
with 2-colorings. For the sake of this treatment, one can obtain a simple description of the categorical equivalence given in Theorem 3.1.

A bigraph ${ }^{1}$ is a graph X equipped with a 2 -coloring $\varepsilon_{X}: X \rightarrow K_{2}$. A bigraph homomorphism is a graph homomorphism $f: X \rightarrow Y$ such that $\varepsilon_{Y} \circ f=\varepsilon_{X}$. Let \mathcal{G} be the category of graphs whose morphisms are graph homomorphisms, and $\mathcal{G}_{/ K_{2}}$ the category of bigraphs whose morphisms are bigraph homomorphisms. For a graph G, the Kronecker double covering $K_{2} \times G$ is a bigraph whose 2-coloring is the 1st projection $K_{2} \times G \rightarrow K_{2}$.

An odd involution of a bigraph X is a graph homomorphism (not necessarirly a bigraph homomorphism) $\tau: X \rightarrow X$ satisfying $\tau^{2}=\operatorname{id}_{X}$ and $\varepsilon_{X}(\tau(v)) \neq \varepsilon_{X}(v)$ for every $v \in V(X)$. A typical example of odd involutions is the involution $(1, v) \leftrightarrow(2, v)$ of the Kronecker double covering $K_{2} \times G$. In fact, the following theorem (Theorem 3.1) asserts that every odd involution is obtained in this way.

We consider the category $\mathcal{G}_{/ K_{2}}^{\text {odd }}$ defined as follows. An object of $\mathcal{G}_{/ K_{2}}^{\text {odd }}$ is a pair (X, τ) consisting of a bigraph X together with an odd involution τ of it. A morphism from (X, τ) to $\left(X^{\prime}, \tau^{\prime}\right)$ is a bigraph homomorphism $f: X \rightarrow X^{\prime}$ which is equivariant, i.e. $\tau^{\prime} \circ f=$ $f \circ \tau$. Clearly, the Kronecker double covering gives a functor $\mathcal{K}: \mathcal{G} \rightarrow \mathcal{C}_{/ K_{2}}^{\text {odd }}, G \mapsto K_{2} \times G$. Moreover, we have the following theorem (see [6] for the terminology of category theory):

Theorem 3.1. The functor $\mathcal{K}: K_{2} \times(-): \mathcal{G} \rightarrow \mathcal{G}_{\mid K_{2}}^{\text {odd }}$ is categorical equivalence.
Proof. We construct a quasi-inverse $\mathcal{Q}: \mathcal{G}_{/ K_{2}}^{o d d} \rightarrow \mathcal{G}$ of \mathcal{K} as follows. For an object (X, τ) of $\mathcal{G}_{\mid K_{2}}^{\text {odd }}$, define the graph X / τ by $V(X / \tau)=\{\{x, \tau(x)\} \mid x \in V(X)\}$ and

$$
E(X / \tau)=\{(\alpha, \beta) \mid \alpha, \beta \in V(X / \alpha),(\alpha \times \beta) \cap E(X) \neq \emptyset\} .
$$

Roughly speaking, the graph $\mathcal{Q}(X)=X / \tau$ is the quotient of the graph X by the $\mathbb{Z} / 2$-action τ. Then a morphism $f:(X, \tau) \rightarrow\left(X^{\prime}, \tau^{\prime}\right)$ in $\mathcal{G}_{/ K_{2}}^{\text {odd }}$ induces a graph homomorphism $\mathcal{Q}(f): X / \tau \rightarrow$ $X^{\prime} / \tau^{\prime}$, and hence we have a functor $\mathcal{Q}: \mathcal{G}_{\mid K_{2}}^{o d d} \rightarrow \mathcal{G}$.

This functor \mathcal{Q} is a quasi-inverse of \mathcal{K}. In fact, it is clear that $\mathcal{Q} \circ \mathcal{K}$ and $1_{\mathcal{G}}$ are naturally isomorphic. The natural isomorphism $1_{\mathcal{C}_{\mid K_{2}}^{\text {old }}} \rightarrow \mathcal{K} \circ \mathcal{Q}$ is given by the map $f: X \rightarrow K_{2} \times(X / \tau)$ defined by $f(x)=(\varepsilon(x), q(x))$, where $q: X \rightarrow X / \tau$ is the quotient map. It is clear that f is a graph isomorphism.

Now we turn to the case of bipartite graphs. For a bipartite graph X, an involution $\tau: X \rightarrow$ X is $o d d$ if for every $x \in X$, there is no path with even length joining x to $\tau(x)$. If (X, τ) is a bigraph with an odd involution, then τ is odd in the sense of bipartite graphs.

Let X be a bipartite graph with an odd involution τ. In this case, one can construct the quotient graph X / τ in the same way as the proof of Theorem 3.1. Moreover, there is a 2-coloring $\varepsilon: X \rightarrow K_{2}$ such that $(X, \tau) \in \mathcal{C}_{/ K_{2}}^{\text {odd }}$. Therefore by Theorem 3.1, we have $K_{2} \times(X / \tau) \cong X$ as graphs.

Remark 3.2. Define the category \mathcal{G}^{\prime} as follows. An object of \mathcal{G}^{\prime} is a bipartite graph X together with its odd involution τ. A morphism from (X, τ) to $\left(X^{\prime}, \tau^{\prime}\right)$ is a graph homomorphism $f: X \rightarrow X^{\prime}$ satisfying $\tau^{\prime} \circ f=f \circ \tau$. Then the Kronecker double covering gives a functor $\mathcal{K}^{\prime}: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$. However, this functor is not a categorical equivalence. In fact, there is

[^0]no map $f: G \rightarrow G$ such that $K_{2} \times f=\tau$, where τ is the canonical odd involution of $K_{2} \times G$.
Now we are ready to prove Theorem 1.1.
Example 3.3. We construct graphs $X(m, n)$ and $Y(m, n)$ such that $K_{2} \times X(m, n) \cong K_{2} \times$ $Y(m, n)$ but $\chi(X(m, n))=m$ and $\chi(Y(m, n))=n$. By Theorem 1.2, this completes the proof of Theorem 1.1.

First, set $X_{1}=X_{2}=K_{2} \times K_{n}$ and $Y_{1}=Y_{2}=K_{2} \times K_{m}$. Define the graph $Z(m, n)$ by identifying the following vertices of $X_{1} \sqcup X_{2} \sqcup Y_{1} \sqcup Y_{2}$:

- $(1,1) \in V\left(X_{1}\right)$ and $(1,1) \in V\left(Y_{1}\right)$.
- $(2,1) \in V\left(X_{1}\right)$ and $(1,1) \in V\left(Y_{2}\right)$.
- $(1,1) \in V\left(X_{2}\right)$ and $(2,1) \in V\left(Y_{1}\right)$.
- $(2,1) \in V\left(X_{2}\right)$ and $(2,1) \in V\left(Y_{2}\right)$.

It is clear that $Z(m, n)$ is bipartite and connected. Figure 1 depicts the graph $Z(m, n)$ in the case $m=4$ and $n=3$.

Next we define the odd involutions τ_{1}, τ_{2} of $Z(m, n)$. First τ_{1} maps X_{i} to X_{i} for each i and $\left.\tau_{1}\right|_{X_{i}}$ is the natural involution of $X_{1}=X_{2}=K_{2} \times K_{n}$, flipping K_{2}. On $Y_{1} \sqcup Y_{2}$, the involution τ_{1} exchanges Y_{1} and Y_{2}, and is given by $V\left(Y_{1}\right) \ni(\varepsilon, x) \leftrightarrow(\varepsilon, x) \in V\left(Y_{2}\right)$. Similarly, τ_{2} maps Y_{i} to Y_{i} for each i and $\left.\tau_{2}\right|_{Y_{i}}$ is the natural involution of $K_{2} \times K_{m}$, flipping K_{2}. On $X_{1} \sqcup X_{2}$, the involution τ_{2} is given by $V\left(Y_{1}\right) \ni(\varepsilon, x) \leftrightarrow(\varepsilon, x) \in V\left(X_{2}\right)$.

Set $X(m, n)=Z(m, n) / \tau_{1}$ and $Y(m, n)=Z(m, n) / \tau_{2}$. To complete the proof, we need to check $\chi(X(m, n))=m$ and $\chi(Y(m, n))=n$. We only prove $\chi(X(m, n))=n$ since the other is similarly shown. However, this clearly follows from the following description of $X(m, n)$: $X(m, n)$ is obtained by identifying the following vertices of $X_{1}^{\prime} \sqcup X_{2}^{\prime} \sqcup\left(K_{2} \times K_{m}\right)$, where $X_{1}^{\prime}=X_{2}^{\prime}=K_{m}$:

- $1 \in V\left(X_{1}^{\prime}\right)=V\left(K_{m}\right)$ and $(1,1) \in V\left(K_{2} \times K_{n}\right)$.
- $1 \in V\left(X_{2}^{\prime}\right)=V\left(K_{m}\right)$ and $(2,1) \in V\left(K_{2} \times K_{n}\right)$.

Figure 1 depicts the graphs $X(m, n)$ and $Y(m, n)$ in the case $m=4$ and $n=3$. In this

Fig. 1
figure, the involution τ_{1} is the reflection in the horizontal line, and the involution τ_{2} is the reflection in the vertical line.

Remark 3.4. The box complexes of $X(m, n)$ and $Y(m, n)$ are not $\mathbb{Z} / 2$-homotopy equivalent if $m \neq n$. To see this, we need the following fact: The box complex is a functor from the category of graphs to the category of $\mathbb{Z} / 2$-spaces, and $B\left(K_{n}\right)$ and S^{n-2} are $\mathbb{Z} / 2$-homotopy equivalent (Proposition 5 of [8]).

One can suppose $m<n$. Then K_{n} is a subgraph of $Y(m, n)$ and hence there is a $\mathbb{Z} / 2$-map from $B\left(K_{n}\right) \simeq_{\mathbb{Z} / 2} S^{n-2}$ to $B(Y(m, n))$. If $B(X(m, n)) \simeq_{\mathbb{Z} / 2} B(Y(m, n))$, then there is a $\mathbb{Z} / 2$-map from S^{n-2} to $B(X(m, n))$. However, since $\chi(X(m, n))=m$, there is a $\mathbb{Z} / 2$-map from $B(X(m, n))$ to $B\left(K_{m}\right) \simeq_{\mathbb{Z} / 2} S^{m-2}$. Thus we have a $\mathbb{Z} / 2$-map from S^{n-2} to S^{m-2}, but this contradicts the Borsuk-Ulam theorem.

In the rest of this paper, we discuss a family of simple graphs $K G_{n, k}^{\prime}$ which satisfies the following interesting property: The Kronecker double covering of $K G_{n, k}^{\prime}$ is isomorphic to the Kronecker double covering of $K G_{n, k}$, but $K G_{n, k}^{\prime} \not \equiv K G_{n, k}$ for $n>2 k \geq 4$. In the case of $n=5$ and $k=2$, Imrich and Pisanski [4] shows that there is a graph G such that $K_{2} \times G \cong K_{2} \times K G_{5,2}$ but $G \not \equiv K G_{5,2}$.

Let n and k be integers satisfying $n>2 k \geq 4$. First, let α be the automorphism of the n-point set $\{1, \cdots, n\}$ which exchanges n and $n-1$ and fixes the remaining points. Define the odd involution τ of $K_{2} \times K G_{n, k}$ by

$$
(1, \sigma) \leftrightarrow(2, \alpha(\sigma))
$$

for $\sigma \in V\left(K G_{n, k}\right)$. Then we set $K G_{n, k}^{\prime}=\left(K_{2} \times K G_{n, k}\right) / \tau$.
Theorem 3.5. $K G_{n, k}^{\prime}$ is simple and $K_{2} \times K G_{n, k}^{\prime} \cong K_{2} \times K G_{n, k}$ but $K G_{n, k}^{\prime} \nsubseteq K G_{n, k}$.
Proof. It clearly follows from Theorem 3.1 that $K_{2} \times K G_{n, k}^{\prime} \cong K_{2} \times K G_{n, k}$. We show that $K G_{n, k} \not \equiv K G_{n, k}^{\prime}$. Since there is no vertex x of $K_{2} \times K G_{n, k}$ such that $x \sim \tau(x), K G_{n, k}^{\prime}$ is a simple graph.

First we introduce the following notation which indicates a vertex of $K G_{n, k}^{\prime}$. Let $\left\{i_{1}, \cdots\right.$, $\left.i_{k}\right\}$ be a k-subset of $\{1, \cdots, n\}$ with $i_{1}<\cdots<i_{k}$. If $n, n-1 \notin\left\{i_{1}, \cdots, i_{k}\right\}$ or $\{n-1, n\} \subset$ $\left\{i_{1}, \cdots, i_{k}\right\}$, we write $\left(i_{1}, \cdots, i_{k}\right)$ to indicate the vertex $\left\{\left(1,\left\{i_{1}, \cdots, i_{k}\right\}\right),\left(2,\left\{i_{1}, \cdots, i_{k}\right\}\right)\right\}$ of $K G_{n, k}^{\prime}$. If $i_{k}=n-1$, then we denote by $\left(i_{1}, \cdots, i_{k-1}, \alpha\right)$ the vertex $\left\{\left(1,\left\{i_{1}, \cdots, i_{k}\right\}\right),(2\right.$, $\left.\left.\alpha\left\{i_{1}, \cdots, i_{k}\right\}\right)\right\}$ of $K G_{n, k}^{\prime}$, and by $\left(i_{1}, \cdots, i_{k-1}, \beta\right)$ the vertex $\left\{\left(1, \alpha\left\{i_{1}, \cdots, i_{k}\right\}\right),\left(2,\left\{i_{1}, \cdots, i_{k}\right\}\right)\right\}$ of $K G_{n, k}^{\prime}$. In this notation, we have the following adjacent relation:

- If $i_{k}, j_{k}<n-1$, then $\left(i_{1}, \cdots, i_{k}\right) \sim\left(j_{1}, \cdots, j_{k}\right)$ iff $\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{j_{1}, \cdots, j_{k}\right\}=\emptyset$.
- $\left(i_{1}, \cdots, i_{k-1}, \alpha\right) \nsim\left(j_{1}, \cdots, j_{k-1}, \beta\right)$
- $\left(i_{1}, \cdots, i_{k-1}, \alpha\right) \sim\left(j_{1}, \cdots, j_{k-1}, \alpha\right)$ and $\left(i_{1}, \cdots, i_{k-1}, \beta\right) \sim\left(j_{1}, \cdots, j_{k-1}, \beta\right)$ iff $\left\{i_{1}, \cdots, i_{k-1}\right\} \cap\left\{j_{1}, \cdots, j_{k-1}\right\}=\emptyset$.
Next we recall the following property of the maximum independent sets of the Kneser graphs. For $i=1, \cdots, n$, let A_{i} be the set of vertices of $K G_{n, k}$ which contains i. Recall that the Erdős-Ko-Rado theorem [3] states that A_{1}, \cdots, A_{n} are the maximum independent sets of $K G_{n, k}$. This family of maximum independent sets of $K G_{n, k}$ clearly satisfies the following property: For a pair of k-subsets $\left\{i_{1}, \cdots, i_{k}\right\}$ and $\left\{j_{1}, \cdots, j_{k}\right\}$ of $\{1, \cdots, n\}$, the intersection $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ is a one point set, and if $A_{i_{1}} \cap \cdots \cap A_{i_{k}}=A_{j_{1}} \cap \cdots \cap A_{j_{k}}$, then we have
$\left\{i_{1}, \cdots, i_{k}\right\}=\left\{j_{1}, \cdots, j_{k}\right\}$.
Now we are ready to prove $K G_{n, k}^{\prime} \not \equiv K G_{n, k}$. Suppose $K G_{n, k} \cong K G_{n, k}^{\prime}$. For $i=1, \cdots, n-2$, let B_{i} be the set of vertices of $K G_{n, k}^{\prime}$ containing i. Then each B_{i} is a maximum independent set of $K G_{n, k}^{\prime}$ since $K G_{n, k} \cong K G_{n, k}^{\prime}$ and $\left|B_{i}\right|=\binom{n-1}{k-1}$. There are two maximum independent sets C_{1} and C_{2} of $K G_{n, k}^{\prime}$ different from B_{1}, \cdots, B_{n-2}.

Consider the intersection $B_{1} \cap \cdots \cap B_{k-1} \cap C_{1}$. By the above property of Kneser graphs, this determines a vertex. If $B_{1} \cap \cdots \cap B_{k-1} \cap C_{1}=\{(1, \cdots, k-1, m)\}$ with $m<n-1$, then we have $B_{1} \cap \cdots \cap B_{k-1} \cap B_{m}=B_{1} \cap \cdots \cap B_{k-1} \cap C_{1}$, and this contradicts the above property of Kneser graphs. Hence we have $B_{1} \cap \cdots \cap B_{k-1} \cap C_{1}=\{(1, \cdots, k-1, \alpha)\}$ or $\{(1, \cdots, k-1, \beta)\}$. We assume that $B_{1} \cap \cdots \cap B_{k-1} \cap C_{1}=\{(1, \cdots, k-1, \alpha)\}$ since the other is similarly proved. In particular, we have $(1, \cdots, k-1, \alpha) \in C_{1}$.

By indcution, we show $(m, \cdots, m+k-2, \alpha) \in C_{1}$ for $m=1,2, \cdots, k$. Suppose that ($m, \cdots, m+k-2, \alpha) \in C_{1}$. Let $\left\{i_{1}, \cdots, i_{k-1}\right\}$ be a $(k-1)$-subset of $\{1, \cdots, n-2\}$ such that $\{m, \cdots, m+k-1\} \cap\left\{i_{1}, \cdots, i_{k-1}\right\}=\emptyset$. Considering the intersection $B_{i_{1}} \cap \cdots \cap B_{i_{k-1}} \cap C_{1}$, we deduce that $\left(i_{1}, \cdots, i_{k}, \alpha\right) \in C_{1}$ or $\left(i_{1}, \cdots, i_{k}, \beta\right) \in C_{1}$ in a similar way. Since C_{1} is independent and $(m, \cdots, m+k-2, \alpha) \sim\left(i_{1}, \cdots, i_{k-1}, \alpha\right)$, we have that $\left(i_{1}, \cdots, i_{k-1}, \beta\right) \in C_{1}$. Next by considering the intersection $B_{m+1} \cap \cdots \cap B_{m+k-1} \cap C_{1}$, we have that ($m+1, \cdots, m+k-$ $1, \alpha) \in C_{1}$ or $(m+1, \cdots, m+k-1, \beta) \in C_{1}$. Since C_{1} is independent and the ($\left.i_{1}, \cdots, i_{k-1}, \beta\right) \sim$ $(m+1, \cdots, m+k-1, \beta)$, we have $(m+1, \cdots, m+k-1, \alpha) \in C_{1}$. Thus the induction follows.

Hence we have $(1, \cdots, k-1, \alpha),(k, \cdots, 2 k-2, \alpha) \in C_{1}$. However, C_{1} is independent and $(1, \cdots, k-1, \alpha) \sim(k, \cdots, 2 k-2, \alpha)$. This is a contradiction.

We close this paper with determining the chromatic number of $K G_{n, k}^{\prime}$.
Theorem 3.6. $\chi\left(K G_{n, k}^{\prime}\right)=n-2 k+2$
Proof. Since $K_{2} \times K G_{n, k}^{\prime} \cong K_{2} \times K G_{n, k}$, it follows from Theorem 1.2 that $N\left(K G_{n, k}^{\prime}\right)=$ $N\left(K G_{n, k}\right)$. Since $N\left(K G_{n, k}\right)$ is $(n-2 k-1)$-connected, we have that $\chi\left(K G_{n, k}^{\prime}\right) \geq n-2 k+2$. So it suffices to construct an ($n-2 k+2$)-coloring on $K G_{n, k}^{\prime}$.

This is proved by induction on n. First, note that $K G_{2 k, k}$ is copies of K_{2}, and hence $K_{2} \times K G_{2 k, k}$ is also copies of K_{2}. Since $K G_{2 k, k}^{\prime}=\left(K_{2} \times K G_{2 k, k}\right) / \tau$ is simple, we have that $K G_{2 k, k}^{\prime}$ is copies of K_{2}.

By the notation introduced in the proof of Theorem 3.5, it is clear that $K G_{n, k}^{\prime}$ is an induced subgraph of $K G_{n+1, k}^{\prime}$. The set of vertices of $K G_{n+1, k}^{\prime}$ not contained in $K G_{n, k}^{\prime}$ is B_{n-1} in the proof of Theorem 3.5. Since B_{n-1} is an independent set, we can construct an $(n-2 k+3)$ coloring c of $K G_{n+1, k}^{\prime}$ as follows:

$$
c(x)= \begin{cases}c^{\prime}(x) & \left(x \in V\left(K G_{n, k}^{\prime}\right)\right) \\ n-2 k+3 & \left(x \in B_{n-1}\right) .\end{cases}
$$

Here c^{\prime} is an $(n-2 k+2)$-coloring of $K G_{n, k}^{\prime}$.

References

[1] E. Boros, V. Gurvich and I. Zverovich: Neighborhood hypergraphs of bipartite graphs, J. Graph Theor. $\mathbf{5 8}$ (2008), 69-95.
[2] P. Csorba: Homotopy types of box complexes, Combinatorica 27 (2007), 669-682.
[3] P. Erdős, C. Ko and R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
[4] W. Imrich and T. Pisanski: Multiple Kronecker covering graphs, European. J. Combin. 29 (2008), 11161122.
[5] D.N. Kozlov: Combinatorial algebraic topology, Algorithms and Computation in Mathematics 21, Springer, Berlin, 2008.
[6] T. Leinster: Basic category theory, Cambridge Studies in Advanced Mathematics 143, Cambridge University Press, Cambridge 2014.
[7] O. Lovász: Kneser conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), 319-324.
[8] J. Matoušek and G.M. Ziegler: Topological lower bounds for the chromatic number: A hierarchy, Jahresber. Deutsch. Math. Verein. 106 (2004), 71-90.
[9] T. Matsushita: Homotopy types of Hom complexes of graphs, European. J. Combin. 63 (2017), 216-226.
[10] J.W. Walker: From graphs to ortholattices and equivariant maps, J. Combin. Theory Ser. B 35 (1983), 171-192.

Department of Mathematical Sciences University of the Ryukyus Nishihara-cho, Okinawa 903-0213 Japan
e-mail: mtst@sci.u-ryukyu.ac.jp

[^0]: ${ }^{1}$ This terminology is due to [1].

