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Abstract
The neighborhood complex N(G) is a simplicial complex assigned to a graph G whose con-

nectivity gives a lower bound for the chromatic number of G. We show that if the Kronecker
double coverings of graphs are isomorphic, then their neighborhood complexes are isomorphic.
As an application, for integers m and n greater than 2, we construct connected graphs G and H
such that N(G) � N(H) but χ(G) = m and χ(H) = n. We also construct a graph KG′n,k such that
KG′n,k and the Kneser graph KGn,k are not isomorphic but their Kronecker double coverings are
isomorphic.

1. Introduction

1. Introduction
The neighborhood complex was introduced by Lovász in his proof of Kneser’s conjec-

ture [7]. He assigned a simplicial complex N(G) to a graph G, and showed that a certain
homotopy invariant conn(N(G)), called the connectivity, gives a lower bound for the chro-
matic number. He used this method to compute the chromatic number of the Kneser graphs
KGn,k. After that, topological methods in graph coloring problems have been studied by
many authors. We refer to [5] for the background of this subject.

In the study of neighborhood complexes, the following question is quite fundamental:
Does the isomorphism type (homeomorphism type, or homotopy type) of N(G) determine
the chromatic number χ(G)? Actually, this problem was negatively solved. Walker [10]
and Matsushita [9] deal with many examples of graphs whose neighborhood complexes are
homotopy equivalent but whose chromatic numbers are different. Moreover, Walker [10]
gave examples that for every n ≥ 2, there are graphs G and H such that χ(G) = n and
χ(H) = n + 1, but their neighborhood complexes are isomorphic.

The purpose of this paper is to improve Walker’s result:

Theorem 1.1. Let m and n be integers greater than 2. Then there are connected graphs
G and H such that χ(G) = m, χ(H) = n, but their neighborhood complexes are isomorphic.

The method employed here is different from Walker’s. In this paper, we observe that
the following close relation between neighborhood complexes N(G) and Kronecker double
coverings K2 ×G (The precise definitions will be found in Section 2).

Theorem 1.2. Let G and H be graphs. If K2 ×G � K2 × H, then N(G) � N(H). On the
other hand, if G and H are stiff and N(G) � N(H), then K2 ×G � K2 × H.
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This theorem will be proved in Section 2. Thus to prove Theorem 1.1, it suffices to
construct graphs X(m, n) and Y(m, n) such that χ(X(m, n)) = m and χ(Y(m, n)) = n, but
K2 × X(m, n) � K2 × Y(m, n), and this will be done in Example 3.3.

Theorem 1.2 asserts that the neighborhood complex is determined by its Kronecker dou-
ble covering. Thus the Kronecker double covering gives a restriction on the chromatic
number. In Section 3, we construct a simple graph KG′n,k for n > 2k ≥ 4 such that
K2 × KG′n,k � K2 × KGn,k but KG′n,k � KGn,k (Theorem 3.5). By the connectivity of
N(KG′n,k) = N(KGn,k), we prove χ(KG′n,k) = n − 2k + 2 (Theorem 3.6).

Finally, we make a remark on the box complex [2, 8]. The box complex B(G) is a Z/2-
space assigned to a graph, whose underlying space is homotopy equivalent to N(G). More-
over, a certain Z/2-homotopy invariant of B(G), called Z/2-index, is a lower bound for χ(G)
sharper than conn(N(G)) (see [8]).

One can ask if a similar assertion to Theorem 1.1 holds for box complexes. Since
N(G) � B(G), it is clear that K2 × G � K2 × H implies B(G) � B(H). However, there
are many definitions of box complexes, and these definitions are not isomorphic but only
Z/2-homotopy equivalent. Hence the isomorphism problem concerning box complexes is
not so reasonable although K2 × G � K2 × H implies B(G) � B(H) for every definition of
box complexes as far as the author knows.

On the other hand, it is meaningful to ask if K2 ×G � K2 ×H implies that B(G) and B(H)
are Z/2-homotopy equivalent. However, the graphs constructed in Example 3.3 are counter
examples to this question (see Remark 3.4).

2. Neighborhood complexes

2. Neighborhood complexes
Here we review definitions and facts concerning neighborhood complexes, and show The-

orem 1.2. For a comprehensive introduction to this subject, we refer to [5].
A graph is a pair G = (V(G), E(G)) consisting of a finite set V(G) together with a sym-

metric binary relation E(G) of V(G). For a pair v and w of vertices of G, we write v ∼ w
to mean (v, w) ∈ E(G). A graph homomorphism from a graph G to a graph H is a map
f : V(G) → V(H) such that ( f × f )(E(G)) ⊂ E(H). Let Kn be the graph defined by
V(Kn) = {1, · · · , n} and E(Kn) = {(i, j) | i � j}. The chromatic number χ(G) of G is the
number

min{n ≥ 0 | There is a graph homomorphism G → Kn}.
Let G be a graph and v a vertex of G. Let N(v) be the set of vertices adjacent to v. The

neighborhood complex N(G) is the simplicial complex

N(G) = {σ ⊂ V(G) | σ is finite and σ ⊂ N(v) for some v}
whose underlying set is V(G). Lovász [7] showed that if N(G) is n-connected, then χ(G) >
n + 2. He used this method to determine the chromatic numbers of Kneser graphs KGn,k

defined as follows: Let n and k be positive integers satisfying n ≥ 2k. Then the Kneser
graph KGn,k is the graph defined by

V(KGn,k) = {σ ⊂ {1, · · · , n} | |σ| = k}, E(KGn,k) = {(σ, τ) | σ, τ ∈ V(KGn,k), σ ∩ τ = ∅}.
It is easy to see χ(KGn,k) ≤ n−2k+2. Lovász showed that N(KGn,k) is (n−2k−1)-connected,
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and hence χ(KGn,k) = n − 2k + 2.
Next we recall the definition of Kronecker double coverings. The categorical product

of G and H is the graph G × H defined by V(G × H) = V(G) × V(H) and E(G × H) =
{((v, w), (v′, w′)) | (v, v′) ∈ E(G), (w, w′) ∈ E(H)}. The Kronecker double covering of G is
the product K2 × G. For a more detailed discussion on the Kronecker double covering, see
Section 3 or [4]. The projection K2 × G → G, (i, v) �→ v is a covering. Here a covering
means a graph homomorphism f : G → H such that f |N(v) N(v) → N( f (v)) is bijective for
every v ∈ V(G). It is easy to see that for a connected graph G, K2 × G is connected if and
only if χ(G) > 2.

Now we start the proof of Theorem 1.2. In fact, this theorem is deduced from an obser-
vation of [1] concerning neighborhood hypergraphs. However, we first give a direct short
proof for reader’s convenience. We start with the following easy observation:

Lemma 2.1. N(K2 ×G) � N(G)  N(G)

Proof. For i = 1, 2, define fi : V(G) → V(K2 × G) by fi(v) = (i, v). Then the sum
f1 + f2 : V(G)V(G)→ V(K2 ×G) gives an isomorphism N(G)N(G)→ N(K2 ×G). �

A graph G is stiff if for every pair of vertices v and w, N(v) ⊂ N(w) implies v = w.
Let F(N(G)) denote the set of facets of N(G). Then the stiffness of graphs means the map
V(G)→ F(N(G)), v �→ N(v) is well-defined and bijective.

Before giving the proof of Theorem 1.2, we prove the following lemma:

Lemma 2.2. Let K and L be finite simplicial complexes. If KK and LL are isomorphic,
then K and L are isomorphic.

Proof. Let X1, · · · , Xr be the connected components of K. We prove this lemma by
induction on the number r of connected components of K. The case r = 0 is clear.

Let X′i be a copy of Xi, and so K  K = (X1  X′1)  · · ·  (Xr  X′r). Similarly, let
Y1, · · · , Ys be the connected components of L and so that L L = (Y1  Y ′1) · · ·  (Ys  Y ′s).
Let f : K  K → L  L be an isomorphism. By changing indices of Yi and exchanging
Yi and Y ′i , we can assume f (X1) = Y1. Then f (X′1) is a connected component of L  L
other than Y1. Note that f (X′1) and Y ′1 are isomorphic since f (X′1) � X′1 � X1 � Y1 � Y ′1
Let g : L  L → L  L be an isomorphism which exchanges f (X1) and Y ′1 and fixes other
components. Then we have g f (X1) = Y1 and g f (X′1) = Y ′1.

Set K′ = X2  · · ·  Xr and L′ = Y2  · · ·  Ys. Then g f induces an isomorphism between
K′  K′ and L′  L′. By the inductive hypothesis, we have K′ � L′. Since X1 and Y1 are
isomorphic, we conclude K = X1  K′ � Y1  L′ = L. �

Proof of Theorem 1.2. If K2 × G � K2 × H, then Lemma 2.1 implies N(G)  N(G) �
N(H)  N(H), and hence Lemma 2.2 implies N(G) � N(H).

On the other hand, suppose G and H are stiff, and let ϕ : V(G)→ V(H) be an isomorphism
from N(G) to N(H). Define the maps f : V(G)→ V(H) and g : V(H)→ V(G) by N( f (v)) =
ϕ(N(v)) and N(g(w)) = ϕ−1(N(w)) for all v ∈ V(G) and w ∈ V(H). Moreover, define the
maps f̃ : V(K2 ×G)→ V(K2 × H) and g̃ : V(K2 × H)→ V(K2 ×G) by

f̃ (0, v) = (0, ϕ(v)), f̃ (1, v) = (1, f (v)), g̃(0, w) = (0, ϕ−1(w)), g̃(1, w) = (1, g(w))

for v ∈ V(G) and w ∈ V(H). Then f̃ and g̃ are graph homomorphisms, and g̃ is the inverse
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of f̃ . �

Now we explain that Theorem 1.2 is easily deduced from an observation in [1] concerning
neighborhood hypergraphs. To see this, we need some terminology and notation.

Recall that a (multi-)hypergraph is a pair  = (V(),) consisting of a set V() to-
gether with a multi-set of V(), i.e. a function  : 2V() → N. The neighborhood hyper-
graph  (G) of a graph G is the multi-hypergraph on V(G) whose multi-set of hyperedges is
 (G) = {N(v) | v ∈ V(G)}, in other words,  (G)(S) = #{S = N(v) | v ∈ V(G)} for S ∈ 2V(G).

For a hypergraph , define the bigraph representation B (the precise definition of bi-
graphs will be found in the beginning of Section 3) as follows: the vertex set of B is
V()  , and v ∈ V() and S ∈  are adjacent if and only if v ∈ S. There is no other
adjacent relation among vertices of B . The bigraph B determines the original hypergraph
. In fact, they used this method to show that for bipartite graphs G and H, G � H if and
only if  (G) � (H).

From the above observation of [1], one can easily show Theorem 1.2 as follows: Clearly,
the bigraph representation B (G) of the neighborhood hypergraph  (G) coincides with the
Kronecker double covering K2×G. This means that K2×G � B (G) determines  (G). Since
the neighborhood complex N(G) is determined by  (G), we have that K2 × G determines
N(G).

On the other hand, if a graph G is stiff, then the neighborhood complex N(G) determines
the neighborhood hypergraph  (G). In fact, the multi-set of hyperedges of  (G) is the set
of facets of N(G) in this case. Thus if G and H are stiff and N(G) � N(H), then we have
 (G) � (H) and hence K2 ×G � K2 × H. This completes the proof of Theorem 1.2.

We close this section with a few remarks.

Remark 2.3. There are graphs whose neighborhood complexes are isomorphic but whose
Kronecker double coverings are different. In fact, consider the 4-cycle graph C4 and the
path graph P4 with 4 vertices. Then the neighborhood complexes of these graphs are two
1-simplices, but K2 ×C4 = C4 C4 and K2 × P4 = P4  P4.

Remark 2.4. Theorem 1.2 asserts that the neighborhood complex N(G) is determined by
the Kronecker double covering K2 ×G. Thus if N(G) is n-connected and K2 ×G � K2 × H,
then N(H) is also n-connected, and hence we have χ(H) > n + 2. This means that the
Kronecker double covering restricts the chromatic number.

We construct graphs KG′n,k in Section 3 such that K2 × KG′n,k � K2 × KGn,k but KG′n,k �
KGn,k for n > 2k ≥ 4. Since N(KGn,k) is (n − 2k − 1)-connected (see Section 2), this means
χ(KG′n,k) ≥ n − 2k + 2.

3. Kronecker double coverings

3. Kronecker double coverings
In this section, we review the theory of Kronecker double coverings, and construct graphs

X(m, n) and Y(m, n) such that χ(X(m, n)) = m and χ(Y(m, n)) = n but K2 × X(m, n) �
K2 × Y(m, n) in Example 3.3. This shows Theorem 1.1. Moreover, we construct a family of
graphs KG′n,k such that K2 × KGn,k � K2 × KG′n,k but KGn,k � KG′n,k.

We review the Kronecker double coverings from a viewpoint of bigraphs, that is, graphs
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with 2-colorings. For the sake of this treatment, one can obtain a simple description of the
categorical equivalence given in Theorem 3.1.

A bigraph1 is a graph X equipped with a 2-coloring εX : X → K2. A bigraph homomor-
phism is a graph homomorphism f : X → Y such that εY ◦ f = εX . Let  be the category
of graphs whose morphisms are graph homomorphisms, and /K2 the category of bigraphs
whose morphisms are bigraph homomorphisms. For a graph G, the Kronecker double cov-
ering K2 ×G is a bigraph whose 2-coloring is the 1st projection K2 ×G → K2.

An odd involution of a bigraph X is a graph homomorphism (not necessarirly a bigraph
homomorphism) τ : X → X satisfying τ2 = idX and εX(τ(v)) � εX(v) for every v ∈ V(X).
A typical example of odd involutions is the involution (1, v) ↔ (2, v) of the Kronecker
double covering K2 ×G. In fact, the following theorem (Theorem 3.1) asserts that every odd
involution is obtained in this way.

We consider the category odd
/K2

defined as follows. An object of odd
/K2

is a pair (X, τ)
consisting of a bigraph X together with an odd involution τ of it. A morphism from (X, τ)
to (X′, τ′) is a bigraph homomorphism f : X → X′ which is equivariant, i.e. τ′ ◦ f =
f ◦ τ. Clearly, the Kronecker double covering gives a functor  :  → odd

/K2
, G �→ K2 ×G.

Moreover, we have the following theorem (see [6] for the terminology of category theory):

Theorem 3.1. The functor  : K2 × (−) : → odd
/K2

is a categorical equivalence.

Proof. We construct a quasi-inverse  : odd
/K2
→  of  as follows. For an object (X, τ) of

odd
/K2

, define the graph X/τ by V(X/τ) = {{x, τ(x)} | x ∈ V(X)} and

E(X/τ) = {(α, β) | α, β ∈ V(X/α), (α × β) ∩ E(X) � ∅}.
Roughly speaking, the graph (X) = X/τ is the quotient of the graph X by the Z/2-action τ.
Then a morphism f : (X, τ)→ (X′, τ′) in odd

/K2
induces a graph homomorphism ( f ) : X/τ→

X′/τ′, and hence we have a functor  : odd
/K2
→ .

This functor  is a quasi-inverse of . In fact, it is clear that  ◦ and 1 are naturally
isomorphic. The natural isomorphism 1odd

/K2
→ ◦ is given by the map f : X → K2×(X/τ)

defined by f (x) = (ε(x), q(x)), where q : X → X/τ is the quotient map. It is clear that f is a
graph isomorphism. �

Now we turn to the case of bipartite graphs. For a bipartite graph X, an involution τ : X →
X is odd if for every x ∈ X, there is no path with even length joining x to τ(x). If (X, τ) is a
bigraph with an odd involution, then τ is odd in the sense of bipartite graphs.

Let X be a bipartite graph with an odd involution τ. In this case, one can construct
the quotient graph X/τ in the same way as the proof of Theorem 3.1. Moreover, there
is a 2-coloring ε : X → K2 such that (X, τ) ∈ odd

/K2
. Therefore by Theorem 3.1, we have

K2 × (X/τ) � X as graphs.

Remark 3.2. Define the category ′ as follows. An object of ′ is a bipartite graph X
together with its odd involution τ. A morphism from (X, τ) to (X′, τ′) is a graph homomor-
phism f : X → X′ satisfying τ′ ◦ f = f ◦ τ. Then the Kronecker double covering gives a
functor ′ :  → ′. However, this functor is not a categorical equivalence. In fact, there is

1This terminology is due to [1].
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no map f : G → G such that K2 × f = τ, where τ is the canonical odd involution of K2 ×G.

Now we are ready to prove Theorem 1.1.

Example 3.3. We construct graphs X(m, n) and Y(m, n) such that K2 × X(m, n) � K2 ×
Y(m, n) but χ(X(m, n)) = m and χ(Y(m, n)) = n. By Theorem 1.2, this completes the proof
of Theorem 1.1.

First, set X1 = X2 = K2 × Kn and Y1 = Y2 = K2 × Km. Define the graph Z(m, n) by
identifying the following vertices of X1  X2  Y1  Y2:

• (1, 1) ∈ V(X1) and (1, 1) ∈ V(Y1).
• (2, 1) ∈ V(X1) and (1, 1) ∈ V(Y2).
• (1, 1) ∈ V(X2) and (2, 1) ∈ V(Y1).
• (2, 1) ∈ V(X2) and (2, 1) ∈ V(Y2).

It is clear that Z(m, n) is bipartite and connected. Figure 1 depicts the graph Z(m, n) in the
case m = 4 and n = 3.

Next we define the odd involutions τ1, τ2 of Z(m, n). First τ1 maps Xi to Xi for each i and
τ1|Xi is the natural involution of X1 = X2 = K2 × Kn, flipping K2. On Y1  Y2, the involution
τ1 exchanges Y1 and Y2, and is given by V(Y1) � (ε, x)↔ (ε, x) ∈ V(Y2). Similarly, τ2 maps
Yi to Yi for each i and τ2|Yi is the natural involution of K2 × Km, flipping K2. On X1  X2, the
involution τ2 is given by V(Y1) � (ε, x)↔ (ε, x) ∈ V(X2).

Set X(m, n) = Z(m, n)/τ1 and Y(m, n) = Z(m, n)/τ2. To complete the proof, we need to
check χ(X(m, n)) = m and χ(Y(m, n)) = n. We only prove χ(X(m, n)) = n since the other is
similarly shown. However, this clearly follows from the following description of X(m, n):
X(m, n) is obtained by identifying the following vertices of X′1  X′2  (K2 × Km), where
X′1 = X′2 = Km:

• 1 ∈ V(X′1) = V(Km) and (1, 1) ∈ V(K2 × Kn).
• 1 ∈ V(X′2) = V(Km) and (2, 1) ∈ V(K2 × Kn).

Figure 1 depicts the graphs X(m, n) and Y(m, n) in the case m = 4 and n = 3. In this

Fig.1
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figure, the involution τ1 is the reflection in the horizontal line, and the involution τ2 is the
reflection in the vertical line.

Remark 3.4. The box complexes of X(m, n) and Y(m, n) are not Z/2-homotopy equivalent
if m � n. To see this, we need the following fact: The box complex is a functor from the
category of graphs to the category of Z/2-spaces, and B(Kn) and Sn−2 are Z/2-homotopy
equivalent (Proposition 5 of [8]).

One can suppose m < n. Then Kn is a subgraph of Y(m, n) and hence there is a Z/2-map
from B(Kn) �Z/2 Sn−2 to B(Y(m, n)). If B(X(m, n)) �Z/2 B(Y(m, n)), then there is a Z/2-map
from Sn−2 to B(X(m, n)). However, since χ(X(m, n)) = m, there is a Z/2-map from B(X(m, n))
to B(Km) �Z/2 Sm−2. Thus we have a Z/2-map from Sn−2 to Sm−2, but this contradicts the
Borsuk-Ulam theorem.

In the rest of this paper, we discuss a family of simple graphs KG′n,k which satisfies the
following interesting property: The Kronecker double covering of KG′n,k is isomorphic to the
Kronecker double covering of KGn,k, but KG′n,k � KGn,k for n > 2k ≥ 4. In the case of n = 5
and k = 2, Imrich and Pisanski [4] shows that there is a graph G such that K2×G � K2×KG5,2

but G � KG5,2.
Let n and k be integers satisfying n > 2k ≥ 4. First, let α be the automorphism of the

n-point set {1, · · · , n} which exchanges n and n − 1 and fixes the remaining points. Define
the odd involution τ of K2 × KGn,k by

(1, σ)↔ (2, α(σ))

for σ ∈ V(KGn,k). Then we set KG′n,k = (K2 × KGn,k)/τ.

Theorem 3.5. KG′n,k is simple and K2 × KG′n,k � K2 × KGn,k but KG′n,k � KGn,k.

Proof. It clearly follows from Theorem 3.1 that K2 × KG′n,k � K2 × KGn,k. We show that
KGn,k � KG′n,k. Since there is no vertex x of K2×KGn,k such that x ∼ τ(x), KG′n,k is a simple
graph.

First we introduce the following notation which indicates a vertex of KG′n,k. Let {i1, · · · ,
ik} be a k-subset of {1, · · · , n} with i1 < · · · < ik. If n, n − 1 � {i1, · · · , ik} or {n − 1, n} ⊂
{i1, · · · , ik}, we write (i1, · · · , ik) to indicate the vertex {(1, {i1, · · · , ik}), (2, {i1, · · · , ik})} of
KG′n,k. If ik = n − 1, then we denote by (i1, · · · , ik−1, α) the vertex {(1, {i1, · · · , ik}), (2,
α{i1, · · · , ik})} of KG′n,k, and by (i1, · · · , ik−1, β) the vertex {(1, α{i1, · · · , ik}), (2, {i1, · · · , ik})}
of KG′n,k. In this notation, we have the following adjacent relation:

• If ik, jk < n − 1, then (i1, · · · , ik) ∼ ( j1, · · · , jk) iff {i1, · · · , ik} ∩ { j1, · · · , jk} = ∅.
• (i1, · · · , ik−1, α) � ( j1, · · · , jk−1, β)
• (i1, · · · , ik−1, α) ∼ ( j1, · · · , jk−1, α) and (i1, · · · , ik−1, β) ∼ ( j1, · · · , jk−1, β) iff
{i1, · · · , ik−1} ∩ { j1, · · · , jk−1} = ∅.

Next we recall the following property of the maximum independent sets of the Kneser
graphs. For i = 1, · · · , n, let Ai be the set of vertices of KGn,k which contains i. Recall that
the Erdős-Ko-Rado theorem [3] states that A1, · · · , An are the maximum independent sets of
KGn,k. This family of maximum independent sets of KGn,k clearly satisfies the following
property: For a pair of k-subsets {i1, · · · , ik} and { j1, · · · , jk} of {1, · · · , n}, the intersection
Ai1 ∩ · · · ∩ Aik is a one point set, and if Ai1 ∩ · · · ∩ Aik = Aj1 ∩ · · · ∩ Ajk , then we have
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{i1, · · · , ik} = { j1, · · · , jk}.
Now we are ready to prove KG′n,k � KGn,k. Suppose KGn,k � KG′n,k. For i = 1, · · · , n−2,

let Bi be the set of vertices of KG′n,k containing i. Then each Bi is a maximum independent

set of KG′n,k since KGn,k � KG′n,k and |Bi| =
(

n−1
k−1

)
. There are two maximum independent sets

C1 and C2 of KG′n,k different from B1, · · · , Bn−2.
Consider the intersection B1 ∩ · · · ∩ Bk−1 ∩ C1. By the above property of Kneser graphs,

this determines a vertex. If B1∩ · · ·∩Bk−1∩C1 = {(1, · · · , k−1,m)} with m < n−1, then we
have B1 ∩ · · · ∩ Bk−1 ∩ Bm = B1 ∩ · · · ∩ Bk−1 ∩C1, and this contradicts the above property of
Kneser graphs. Hence we have B1∩· · ·∩Bk−1∩C1 = {(1, · · · , k−1, α)} or {(1, · · · , k−1, β)}.
We assume that B1 ∩ · · · ∩ Bk−1 ∩C1 = {(1, · · · , k− 1, α)} since the other is similarly proved.
In particular, we have (1, · · · , k − 1, α) ∈ C1.

By indcution, we show (m, · · · ,m + k − 2, α) ∈ C1 for m = 1, 2, · · · , k. Suppose that
(m, · · · ,m + k − 2, α) ∈ C1. Let {i1, · · · , ik−1} be a (k − 1)-subset of {1, · · · , n − 2} such that
{m, · · · ,m + k − 1} ∩ {i1, · · · , ik−1} = ∅. Considering the intersection Bi1 ∩ · · · ∩ Bik−1 ∩ C1,
we deduce that (i1, · · · , ik, α) ∈ C1 or (i1, · · · , ik, β) ∈ C1 in a similar way. Since C1 is
independent and (m, · · · ,m + k − 2, α) ∼ (i1, · · · , ik−1, α), we have that (i1, · · · , ik−1, β) ∈ C1.
Next by considering the intersection Bm+1∩· · ·∩Bm+k−1∩C1, we have that (m+1, · · · ,m+k−
1, α) ∈ C1 or (m+1, · · · ,m+k−1, β) ∈ C1. Since C1 is independent and the (i1, · · · , ik−1, β) ∼
(m+1, · · · ,m+ k−1, β), we have (m+1, · · · ,m+ k−1, α) ∈ C1. Thus the induction follows.

Hence we have (1, · · · , k − 1, α), (k, · · · , 2k − 2, α) ∈ C1. However, C1 is independent and
(1, · · · , k − 1, α) ∼ (k, · · · , 2k − 2, α). This is a contradiction. �

We close this paper with determining the chromatic number of KG′n,k.

Theorem 3.6. χ(KG′n,k) = n − 2k + 2

Proof. Since K2 × KG′n,k � K2 × KGn,k, it follows from Theorem 1.2 that N(KG′n,k) =
N(KGn,k). Since N(KGn,k) is (n − 2k − 1)-connected, we have that χ(KG′n,k) ≥ n − 2k + 2.
So it suffices to construct an (n − 2k + 2)-coloring on KG′n,k.

This is proved by induction on n. First, note that KG2k,k is copies of K2, and hence
K2 × KG2k,k is also copies of K2. Since KG′2k,k = (K2 × KG2k,k)/τ is simple, we have that
KG′2k,k is copies of K2.

By the notation introduced in the proof of Theorem 3.5, it is clear that KG′n,k is an induced
subgraph of KG′n+1,k. The set of vertices of KG′n+1,k not contained in KG′n,k is Bn−1 in the
proof of Theorem 3.5. Since Bn−1 is an independent set, we can construct an (n − 2k + 3)-
coloring c of KG′n+1,k as follows:

c(x) =

⎧⎪⎪⎨⎪⎪⎩
c′(x) (x ∈ V(KG′n,k))

n − 2k + 3 (x ∈ Bn−1).

Here c′ is an (n − 2k + 2)-coloring of KG′n,k. �
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