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Abstract
We introduce the 2-colour parity. It is a theory of parity for a large class of virtual links,

defined using the interaction between orientations of the link components and a certain type of
colouring. The 2-colour parity is an extension of the Gaussian parity, to which it reduces on
virtual knots. We show that the 2-colour parity descends to a parity on free links. We compare
the 2-colour parity to other parity theories of virtual links, focusing on a theory due to Im and
Park. The 2-colour parity yields a strictly stronger invariant than the Im-Park parity.

We introduce an invariant, the 2-colour writhe, that takes the form of a string of integers. The
2-colour writhe is a concordance invariant, and so obstructs sliceness. It is also an obstruction
to (±)-amphichirality and chequerboard colourability within a concordance class.

1. Introduction

1. Introduction
In this paper we define the 2-colour parity, a theory of parity for a large class of virtual

links. A parity in the context of virtual knot theory is a designation of the classical crossings
of a virtual link diagram as either even or odd, satisfying certain axioms. The concept of
parity, due to Manturov and developed by Ilyutko, Manturov and Nikonov among others
[13, 5], is a powerful tool that has been used to obtain a number of results that are often
difficult to obtain using other methods. While parity has been fruitful in the study of virtual
knots, extensions of the concept to virtual links have been hampered by a number of defects.

Many extensions of parity to virtual links are unable to distinguish mixed crossings be-
tween the same components [7, 18]. That is, given D1 and D2 components of a virtual link
diagram, such parities declare a crossing between D1 and D2 as odd if and only if every
crossing between D1 and D2 is declared as odd. It follows that the invariants extracted from
these extensions of parity depend heavily on the pairwise linking numbers of the compo-
nents, and are often completely determined by them. The 2-colour parity does not suffer
from this, and yields invariants that are strictly stronger than the pairwise linking numbers.

Manturov produced extensions of parity to virtual links that are not subject to the defect
outlined above [14, 15]. However, these extensions are restricted to virtual links appearing
in given cobordisms between virtual knots, or to 2-component virtual links. The 2-colour
parity does not require any extra concordance information, and is defined for links of an
arbitrary number of components.

One of the most useful parities of virtual knots is the Gaussian parity, so-named as its
definition is in terms of Gauss diagrams. Although virtual links have well-defined Gauss
diagrams, the standard definition of the Gaussian parity is specific to virtual knots and does
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not readily extend to virtual links. The 2-colour parity is an extension of the Gaussian parity
to 2-colourable virtual links.

Postponing the precise definition until Section 2, a 2-colouring of a virtual link diagram is
a certain colouring of it using the colours red and green; we say that a virtual link possessing
such a colouring is 2-colourable. Kauffman introduced 2-colourings under the name proper
colourings in [9]. Up to dualizing (interchanging red and green) a virtual knot diagram has
only one 2-colouring. Similarly, a virtual knot has only one orientation up to reversal, and
one may compare the 2-colouring and the orientation at classical crossings to define a parity.
The construction of such a parity is naturally insensitive to colour dualizing and orientation
reversal, so that a unique parity is defined. In fact, this definition recovers the Gaussian
parity.

This alternate definition of the Gaussian parity has the advantage of not being specific to
virtual knots; as we demonstrate in Section 2, it can be applied to 2-colourable virtual links
in order to define a parity of such objects. An outline of the construction is as follows. For
virtual knots, any two of the Gaussian parity, the orientation, and the 2-colouring determine
the third. We express this diagrammatically as

The new observation in this paper is that this relationship extends to virtual links. A virtual
link has multiple inequivalent orientations and 2-colourings, however, and any choice of
such defines a parity. We fix the bottom-right vertex of the diagram above by working with
oriented virtual links. Fixing the bottom-left vertex by picking a 2-colouring, we obtain
a parity: the parities obtained from two distinct 2-colourings are inequivalent, in general.
We use this multiplicity to define invariants by looking at the set of all 2-colourings of an
oriented virtual link.

While our methods are combinatorial, our results may be reformulated topologically. This
and other applications of the 2-colour parity will be the subject of forthcoming work.

Statement of results. The main result of this paper is the introduction of the 2-colour
parity. It is a strong parity on the large class of 2-colourable oriented virtual links. Unlike
previous extensions of parity, its definition does not distinguish between self- and mixed
crossings, is not restricted to virtual links appearing in cobordisms, and can be computed for
virtual links of an arbitrary number of components. The 2-colour parity naturally extends
the Gaussian parity from virtual knots to virtual links, and can be used to prove a number of
topological results.

The 2-colour writhe. Let L be a 2-colourable oriented virtual link. We produce a nu-
merical invariant by looking at the set of all 2-colourings of L and their associated parities.
The result is a string of integers, considered up to permutation, denoted J2(L) and known as
the 2-colour writhe of L. We determine a number of properties of this invariant.

The 2-colour writhe reduces to the odd writhe in the case of virtual knots, so that it extends
that invariant to 2-colourable virtual links.

Proposition 3.4. Let K be a virtual knot. Then J2(K) = J(K), for J(K) the odd writhe of K.

The odd writhe of virtual knots is a concordance invariant [2, 16]. The 2-colour writhe
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properly extends this behaviour to virtual links.

Corollary 4.13. Let L and L′ be concordant 2-colourable oriented virtual links. Then J2(L)
= J2(L′).

In particular, the 2-colour writhe is an obstruction to sliceness. That is, it can obstruct the
existence of a concordance between a virtual link and the unlink (of the appropriate number
of components).

Corollary 4.15. If J2(L) has a non-zero entry then L is not slice.

The 2-colour writhe carries information regarding (±)-amphichirality and chequerboard
colourability. Combining this with its concordance invariance, we are able to obstruct (±)-
amphichirality and chequerboard colourability within a concordance class.

Corollary 4.16. Let L be a 2-colourable oriented virtual link such that J2(L) � −J2(L)
(where −J2(L) denotes the string obtained by multiplying the entries of J2(L) by −1). Then
L is not concordant to a (±)-amphichiral virtual link.

Corollary 4.17. Let L be a 2-colourable oriented virtual link such that 0 does not appear in
J2(L). Then L is not concordant to a chequerboard colourable virtual link.

As a classical link is chequerboard colourable, it follows that the 2-colour writhe provides
an obstruction to a virtual link being concordant to a classical link.

In Proposition 3.15 we show that the 2-colour writhe of a chequerboard colourable virtual
link may be determined from the pairwise linking numbers of the argument link. The 2-
colour writhe is a strictly stronger invariant than the pairwise linking numbers, however: in
Section 3 we exhibit a virtual link with vanishing linking numbers that is detected by the
2-colour writhe.

Parity projection is a powerful construction with much utility [13], but its application to
virtual links has been restricted. The 2-colour parity allows parity projection to be applied to
large classes of virtual links. We demonstrate the usefulness of parity projection with respect
to the 2-colour parity by proving that minimal classical crossing diagram of a chequerboard
colourable virtual link is itself chequerboard colourable.

Proposition 3.16. Let L be a chequerboard colourable oriented virtual link. A minimal
classical crossing diagram of L is chequerboard colourable.

Comparison with other theories. The 2-colour parity yields invariants that are strictly
stronger than those associated to other extensions of parity to virtual links.

There is a very simple extension of parity that we refer to as the naı̈ve parity. It is defined
by declaring all self-crossings of a virtual link diagram as even, and all mixed crossings
as odd. The naı̈ve parity suffers from the defect outlined above: it is unable to distinguish
mixed crossings between the same components. It follows that the writhe invariant extracted
from the naı̈ve parity, known as the naı̈ve writhe, is simply the sum of the pairwise linking
numbers, as we show in Section 5.1. In Theorem 5.3 we show that the 2-colour parity yields
a strictly stronger invariant than the naı̈ve parity (on 2-colourable oriented virtual links).

The pairwise linking numbers between the components of virtual links may be odd, in
contrast to those of classical links. Im and Park defined a theory of parity together with an
associated writhe invariant [7]. As [7, Figure 7] shows, their construction does not satisfy the
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third parity axiom (as given in Definition 2.9), so that it does not yield a parity on arbitrary
virtual links. Nevertheless, their construction does yield a parity on the restricted class of
virtual links with even pairwise linking numbers. As we show in Proposition 5.4, the set of
such virtual links is a subset of that of 2-colourable virtual links.

We refer to the resulting parity and writhe invariant of virtual links with even pairwise
linking numbers as the IP parity and the IP writhe, respectively. We say that a classical
crossing of a virtual link diagram is IP-odd (IP-even) if it is odd (even) with respect to the
IP parity.

The IP parity is also unable to distinguish two mixed crossings between the same com-
ponents. Specifically, let D1 and D2 be components of a virtual link diagram. A mixed
crossing between D1 and D2 is IP-odd if and only if every mixed crossing between D1 and
D2 is IP-odd. It follows that the contribution of mixed crossings to the IP writhe is deter-
mined by the pairwise linking numbers of its components. (In fact, there exist virtual links
that are detected by the naı̈ve writhe but not the IP writhe, as we show in Section 5.2.)

The 2-colour writhe does not possess this deficiency, and, as stated above, is strictly
stronger than the pairwise linking numbers. As a consequence we obtain Theorem 5.8,
which proves that the 2-colour parity yields a strictly stronger invariant than the IP parity.

In subsequent work Im, Lee, and Lee [12], and Im, Kim, and Park [6] use the IP parity to
construct polynomial invariants of virtual links with even pairwise linking numbers. In light
of Theorem 5.8 it is reasonable to suspect that polynomial invariants constructed using the
2-colour writhe will be stronger than these invariants.

As mentioned above, the 2-colour writhe of a chequerboard colourable virtual link may
be determined from the pairwise linking numbers. Nevertheless, it is still strictly stronger
than both the naı̈ve writhe and the IP writhe on such links: in Section 5.1 we exhibit a che-
querboard colourable virtual link that is detected by the 2-colour writhe but is not detected
by both the naı̈ve writhe and the IP writhe.

Free links. Free links are virtual links modulo classical crossing changes and a move
known as flanking [13]. Manturov defined a parity theory of free knots (one-component free
links), and extended it to free links appearing in a given concordance between free knots,
and to 2-component virtual links [14, 15]. The definition of the 2-colour parity may be
applied directly to free links.

Proposition 5.10 of Section 5. The 2-colour parity descends to a parity on 2-colourable ori-
ented free links.

The 2-colour parity has the advantage that it does not require any extra concordance
information, and can be determined directly from a representative of a free link. It is also
defined for free links of an arbitrary number of components.

Plan of the paper. Section 2 contains the definition of the 2-colour parity. It also con-
tains a complete characterisation of 2-colourable virtual links, and the verification that the
2-colour parity reduces to the Gaussian parity on virtual knots.

In Section 3 we define and investigate the properties of the 2-colour writhe. We also
observe that the computational complexity of the 2-colour writhe is quadratic in the number
of link components, despite initial appearances. In the case of chequerboard colourable
virtual links, we further reduce the complexity by demonstrating that the 2-colour writhe of
such links may be determined from the pairwise linking numbers, having first guaranteed
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that chequerboard links are 2-colourable. (However, the 2-colour writhe is stronger than the
pairwise linking numbers, in general.)

The pairwise linking numbers are elementary concordance invariants of virtual links.
Thus it is natural to ask if the 2-colour writhe is a concordance invariant, in general. We
provide an affirmative answer to this question in Section 4. We utilise a homology theory
of virtual links, known as doubled Lee homology, to do so. Combining this with results of
the previous sections, we illustrate that the 2-colour writhe carries interesting concordance
information.

In Section 5 we compare the 2-colour parity to other parity theories of virtual links. In
Sections 5.1 and 5.2, we demonstrate that the 2-colour writhe yields a strictly stronger in-
variant than both the naı̈ve parity and the IP parity. In Section 5.3 we briefly look at the
2-colour writhe in other related contexts. Section 5.3.1 contains the proof that the 2-colour
parity descends to free links. Section 5.3.2 compares 2-colourable virtual links to those
links for which the affine index polynomial may be defined. Finally, Section 5.3.3 identi-
fies a large class of virtual links on which an index polynomial due to Xu vanishes, but the
2-colour writhe does not.

2. Definition of the 2-colour parity

2. Definition of the 2-colour parity
In this section we define the 2-colour parity. In Section 2.1 we define the eponymous 2-

colourings of virtual link diagrams, and characterise the virtual links possessing such colour-
ings. In Section 2.2 we use these colourings to define the advertised parities of links, before
demonstrating in Section 2.3 that the construction reduces to the Gaussian parity on virtual
knots.

2.1. 2-colourings.
2.1. 2-colourings. A 2-colouring of a virtual link diagram is a certain colouring of its

shadow (the underlying flat diagram).

Definition 2.1 (Shadow of a diagram). Let D be a virtual link diagram. Denote by S(D)
the diagram obtained from D by removing the decoration at classical crossings; we refer to
the resulting double points as flat crossings. The diagram S(D) is the shadow of D.

Let a component of S(D) be an S1 immersed in such a way that at a flat or virtual crossing
we have exactly one of the following:

• All the incident arcs are contained in the component.
• The arcs contained in the component are not adjacent.
• None of the arcs are contained in the component.

Thus the components of S(D) are in bijection with those of D and we shall not distinguish
between the two. ♦

Definition 2.2 (2-colouring). Let D be a virtual link diagram. A 2-colouring of S(D) is
a colouring of its arcs exactly one of two colours (we use red and green) such that at every
flat crossing we have the following, up to rotation
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A 2-colouring of D is a 2-colouring of S(D). ♦

The dark line indicates red, the light line green (this applies to all figures).
Kauffman refers to such colourings as proper colourings [9].
Given a 2-colouring of a virtual link diagram, we may produce another by flipping the

colour configuration on one, or all, of the components.

Definition 2.3. Let D be a virtual link diagram and C a 2-colouring of it. Denote by
C be the 2-colouring obtained from C by global dualizing: interchanging red and green
throughout the diagram. We say that C is the global dual of C .

Given an arbitrary ordering of the components of D, let C
i

denote the 2-colouring ob-
tained by dualizing the colouring on the i-th component (that this yields a 2-colouring is
clear from the figure in Definition 2.2). ♦

A virtual link diagram which possesses a 2-colouring is known as 2-colourable. Ex-
amples of 2-colourable and non-2-colourable virtual links are given in Figures 1 and 2,
respectively.

Not all virtual links are 2-colourable. We conclude this section by completely character-
ising 2-colourability. First, we define a simplified version of the Gauss diagram of a virtual
link, and the complementary notion of 2-colourability for such diagrams.

Definition 2.4 (Simple Gauss diagram). Let D be an n-component virtual link diagram
and S(D) its shadow. Denote by G(D) the simple Gauss diagram of D, formed as follows:

(1) Place n copies of S1 disjoint in the plane. A copy of S1 is known as a core circle of
G(D).

(2) Fix a bijection between the components of S(D) and the core circles of G(D).
(3) Arbitrarily pick a basepoint on each component of S(D) and on the corresponding

core circle of G(D).
(4) Pick a component of S(D) and progress from the basepoint around that component

(in either direction). When meeting a classical crossing label it and mark that label
on the corresponding core circle of G(D) (virtual crossings are ignored). Continue
until the basepoint is returned to.

(5) Repeat for all components of S(D); if a crossing is met that already has a label, use
it.

(6) Add a chord linking the two incidences of each label. These chords may intersect
and have their endpoints on different core circles of G(D). ♦

Definition 2.5. Let D be a virtual link and G(D) its simple Gauss diagram. The comple-
ment of the chord endpoints in the core circles is a disjoint union of intervals. A 2-colouring
of G(D) is a colouring of these intervals exactly one of two colours such that adjacent inter-
vals have opposite colours. ♦

Examples of a simple Gauss diagram and a 2-colouring of it are given in Figures 1 and 3.
The 2-colourability of a virtual link diagram is completely determined by the presence of

the following type of core circle in its simple Gauss diagram.
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Fig.1. A virtual link diagram, its shadow, and its simple Gauss diagram.

Fig. 2. A virtual link that is not 2-colourable, on the left, with its simple
Gauss diagram, on the right.

Definition 2.6. A core circle within a simple Gauss diagram is known as degenerate if it
contains an odd number of chord endpoints. ♦

Notice that both of the core circles of the simple Gauss diagram in Figure 2 are degener-
ate.

The following characterisation of 2-colourability is a quick exercise in combinatorics, the
proof of which we include to aid the reader.

Proposition 2.7. Let D be a diagram of a virtual link L. Then

(2.1)
{

2-colourings
of D

}
=

{
2-colourings

of G(D)

}
and

(2.2)

∣∣∣∣∣∣
{

2-colourings
of D

}∣∣∣∣∣∣ =
{

2|L|, if G(D) contains no degenerate circles
0, otherwise

where |L| denotes the number of components of L.

Proof. One may readily see the bijection of Equation (2.1) from Figure 3. We prove
Equation (2.2) as follows. Let G(D) contain a degenerate core circle. On this core circle the
number of connected components of the complement of the endpoints is odd, from which we
deduce that it cannot be 2-coloured (as the colour must change when passing an endpoint).

There are two possible colour configurations of each non-degenerate core circle, and
given a 2-colouring of G(D), flipping the configuration on one core circle yields a new 2-
colouring. Equation (2.2) follows from this observation. (For more details see [16, Theorem
3.12].) �

Note that Proposition 2.7 implies that the number of 2-colourings of a virtual link is
diagram-independent.

Corollary 2.8. Virtual knots are 2-colourable.
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Fig.3. The bijection between 2-colourings of a diagram and those of its flat
Gauss diagram.

Proof. The simple Gauss code of a virtual knot has exactly one core circle. Every chord
endpoint must lie on this core circle so that it cannot be degenerate, as every chord has two
endpoints. �

In Section 3.3 we demonstrate that if a virtual link is chequerboard colourable, then it is
2-colourable. The converse is not true, however. Examples of 2-colourable virtual links that
are not chequerboard colourable are given in Figures 6 and 7.

2.2. The 2-colour parity.
2.2. The 2-colour parity. We now employ the colourings described in Section 2.1 to

define a parity for 2-colourable oriented virtual links. This is done by comparing the 2-
colouring to the orientation at classical crossings. First, we state the parity axioms.

Definition 2.9 (Parity axioms [13]). Let  be the category whose objects are virtual link
diagrams, and morphisms are sequences of virtual Reidemeister moves. Consider the as-
signment of a function fD to every object D, with domain the set of classical crossings of D
and codomain Z2. We refer to the image of a crossing under fD as the parity of the crossing;
crossings that are mapped to 0 are even, and those mapped to 1 are odd. Such an assignment
of functions is a parity if it satisfies the following axioms:

(0) If diagrams D and D′ are related by a single virtual Reidemeister move, then the
parities of the crossings that are not involved in this move do not change.

(1) If D and D′ are related by a Reidemeister I move that eliminates a crossing, then the
parity of that crossing is even.

(2) If D and D′ are related by a Reidemeister II move eliminating the crossings c1 and
c2, then fD(c1) = fD(c2).

(3) If D and D′ are related by a Reidemeister III move involving the crossings c1, c2 and
c3, then exactly one of the following holds: c1, c2 and c3 are all odd, or c1, c2 and
c3 are all even, or exactly two of c1, c2 and c3 are odd. Further, the parities of c1, c2

and c3 are unchanged in D′. ♦

The above definition is of a weak parity; if there are no Reidemeister III moves in which
all of the crossings involved are odd, then the assignment is a strong parity.
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Fig.4. Verifying that the 2-colour parity satisfies Axiom (2).

Fig.5. Verifying that the 2-colour parity satisfies Axiom (3).

Definition 2.10 (2-colour parity). Let D be an oriented virtual link diagram and C a
2-colouring of it. Let pC be the function from the set of classical crossings of D to Z2

defined as follows1. At each classical crossing of D one may compare the orientation to
the colouring of the associated flat crossing of S(D). The possible configurations and their
image under pC are

(2.3)

♦

Proposition 2.11. The function pC is a strong parity (on the category of 2-colourable
oriented virtual link diagrams), known as the 2-colour parity.

Proof. Axioms (0) and (1) of Definition 2.9 are easily verified. The verifications of
Axioms (2) and (3) are contained in Figures 4 and 5; all possible colour-orientation config-
urations can be obtained from those depicted by reversing the orientation or dualizing the
colouring on individual components. �

An advantage of the 2-colour parity over other extensions of parity to virtual links is
that its definition does not discriminate between and self- and mixed crossings. Despite
this, self-crossings and mixed crossings behave differently: the parity of self-crossings is
independent of the 2-colouring used to compute it, while that of mixed crossings depends
on the 2-colouring.

Proposition 2.12. Let D be a 2-colourable oriented virtual link diagram. If c is a self-
crossing of D then pC (c) = pC ′(c), for C and C ′ any 2-colourings of D.

Proof. The 2-colouring C may be transformed into C ′ by dualizing on a set of compo-
nents of D, denoted Λ. Let c be a self-crossing of the component Di. If Di ∈ Λ then the

1We have suppressed the subscript D of Definition 2.9.
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Fig.6. The virtual knot 2.1, on the left, and its simple Gauss code, on the right.

colouring is dualized on both arcs involved in c. It is clear from Equation (2.3) that dualizing
on both arcs does not change the parity of the crossing, so that pC (c) = pC ′(c).

If Di � Λ then the colouring of the arcs involved in c is unchanged, and pC (c) = pC ′(c).
�

Although the parity of a mixed crossing depends on the 2-colouring, in general, it is
readily observed from Equation (2.3) that the parities defined by a 2-colouring and its global
dual are equivalent i.e. that they take the same value on every classical crossing (both self
and mixed). Therefore a virtual link L has at most 2|L|−1 inequivalent parities. We use this
observation frequently, via the following definition.

Definition 2.13. Let D be a diagram of an oriented virtual link L. From every pair of
2-colourings of D, (C ,C ′), such that C ′ = C , pick one. Let

{C1,C2, . . . ,C2|L|−1}
be the resulting set of 2-colourings. Such a set is known as a generating set of 2-colourings
of D. ♦

2.3. Relationship to the Gaussian parity.
2.3. Relationship to the Gaussian parity. Proposition 2.7 implies that a virtual knot

has exactly two 2-colourings. These 2-colourings are global duals of one another, however,
and owing to the fact that a virtual knot has a unique orientation up to reversal, there is a
unique 2-colour parity for virtual knots. In this section we verify that this parity recovers the
Gaussian parity.

Definition 2.14 (Gaussian parity [13]). Let D be a virtual knot diagram. A classical
crossing c of D is G-even if one passes an even number of chord endpoints when travelling
between the two endpoints of the chord associated to c (in either direction). A crossing that
is not G-even is G-odd. This declaration defines a parity, known as the Gaussian parity. ♦

For example, both of the classical crossings of the virtual knot depicted in Figure 6 are
G-odd. Note that the Gaussian parity does not depend on the orientation of the virtual knot.
(The Gaussian parity can also be expressed in terms of quandles [4].)

The following is a reformulation of [16, Proposition 4.11].

Proposition 2.15. The 2-colour parity is equivalent to the Gaussian parity on virtual
knots.
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Proof. We show that a classical crossing of a virtual knot diagram D is G-odd if and only
if it is odd with respect to the 2-colour parity.
(⇒): Let c denote a G-odd classical crossing of D. Leaving the crossing from either of the
outgoing arcs we must return to a specified incoming arc. Between leaving and returning
we have passed through an odd number of classical crossings (that are not c). Thus the
incoming arc must be coloured the opposite colour to the outgoing, and c must be as follows
(up to dualizing)

(⇐): Let c denote a classical crossing of D that is odd with respect to the 2-colour parity.
Then the colouring at c must be as depicted above (up to dualizing). Again, leaving c from
either outgoing arc and returning at the specified incoming arc, we see that, as the colours
of the arcs are opposite, an odd number of classical crossings must have been passed, and c
is G-odd. �

In light of this relationship one may interpret the 2-colour parity as an extension of the
Gaussian parity to 2-colourable virtual links. In Section 4 we further justify this, by showing
that the 2-colour parity yields a concordance invariant, replicating the concordance invari-
ance of the odd writhe of virtual knots.

3. The 2-colour writhe

3. The 2-colour writhe
Any parity naturally defines an integer-valued invariant of virtual knots, via a signed count

of the odd crossings. In this section we use the 2-colour parity to define a similar invariant
of 2-colourable virtual links. Rather than a single integer, however, we use a generating set
of 2-colourings to obtain a string of integers (the length of which depends on the number of
components of the link), known as the 2-colour writhe.

Section 3.1 contains the definition of the invariant. Initially, the computational complexity
of the 2-colour writhe appears to be exponential in the number of components of the virtual
link; in Section 3.2 we reduce this to quadratic dependence.

In Section 3.3 we demonstrate that the 2-colour writhe of a chequerboard colourable
virtual link may be determined from the pairwise linking numbers of its components. (Nev-
ertheless, it remains strictly stronger than the writhe invariants associated to the naı̈ve parity
and the IP parity on such links.)

3.1. Definition.
3.1. Definition. The definition of the 2-colour writhe follows that of the odd writhe, given

in [9] (we demonstrate in Proposition 3.4 that it reduces to the odd writhe on virtual knots, in
fact). Each 2-colouring of a virtual link diagram defines a writhe, and we declare the string
of all such writhes to be the 2-colour writhe of the virtual link represented.

Definition 3.1 (2-colour writhe). Let D be a diagram of an oriented virtual link L, and

{C1,C2, . . . ,C2|L|−1}
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Fig.7. A two-component oriented virtual link diagram and a generating set
of 2-colourings.

a generating set of 2-colourings. Given a 2-colouring Ci define the quantity JCi(D) as

(3.1) JCi(D) �
∑
pCi (c)=1

sign(c).

That is, it is the sum of the signs of the odd crossings (with respect to the parity pCi).
Define the 2-colour writhe of D to be

J2(D) �
(
JC1 (D), . . . , JC2|L|−1 (D)

)
∈ Z2|L|−1

considered up to permutation of the entries. That J2(D) is independent of the choice of gen-
erating set is clear from the observation, made earlier, that the parities associated to globally
dual 2-colourings are equivalent. It follows from the parity axioms that the quantities JCi(D)
are invariant under the virtual Reidemeister moves, and we may define 2-colour writhe of L
as J2(L) � J2(D). ♦

Example 3.2. Let L be the two-component oriented virtual link whose diagram D appears
in Figure 7: {C ,C ′} is a generating set of 2-colourings, and JC (D) = 2, JC ′(D) = −2, so
that J2(L) = (2,−2).

Notice that Proposition 2.12 allows us to define the following restricted invariant.

Definition 3.3. Let D be a diagram of a 2-colourable oriented virtual link L, and C a
2-colouring of D. Define the quantity

J2
S(D) �

∑
c self-crossing
pC (c)=1

sign(c)

That is, J2
S(D) is the sum of the self-crossings of D that are odd with respect to pC . It

follows from Proposition 2.12 that J2
S(D) is well-defined. Its invariance under the virtual

Reidemeister moves follows from the fact that the 2-colour parity satisfies the parity axioms,
and we may define J2

S(L) � J2
S(D). ♦

Note that J2
S(L) is a single integer, while J2(L) is a string of integers.
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The remainder of this work is concerned with determining a number of properties of
the 2-colour writhe and putting them to use: we show that it is an obstruction to (±)-
amphichirality, chequerboard colourability (and hence classicality), and that is a concor-
dance invariant (so that it obstructs sliceness, for example).

First, we verify that the 2-colour writhe reduces to the odd writhe on virtual knots.

Proposition 3.4. Let K be a virtual knot. Then J2(K) = J(K) (for J(K) the odd writhe of
K).

Proof. By Proposition 2.7 a virtual knot has two 2-colourings, and picking either one of
them yields a generating set. As demonstrated in Proposition 2.15, the 2-colour parity asso-
ciated to either 2-colouring is equivalent to the Gaussian parity, from which the proposition
follows. �

Next, we demonstrate that the 2-colour writhe is an obstruction to (±)-amphichirality.
There are two distinct types of mirror image in virtual knot theory. For the purposes of this
work we shall not distinguish between them, regarding a virtual link as amphichiral if either
mirror image preserves the link type, as in the following definition. The prefix (±) denotes
if the mirror image preserves or reverses orientation.

Definition 3.5 (Mirror image, amphichirality). Let D be an unoriented virtual link dia-
gram. The vertical mirror image of D is obtained by performing a crossing change at every
classical crossing of D. The horizontal mirror image of D is obtained by considering D as
lying to one side of the x = 0 axis in the plane, and reflecting about this axis. By a mirror
image of D we mean either the vertical or horizontal mirror image.

Given an orientation of D, a positive mirror image of D is obtained by constructing a
mirror image of D and preserving the orientation on the components of D. A negative mirror
image of D is obtained by constructing a mirror image of D and reversing the orientation on
the components of D.

Let D represent the virtual link L. We say that L is (+)-amphichiral if a positive mirror
image of D also represents L. We say that L is (−)-amphichiral if a negative mirror image
of D also represents L. Finally, we say that L is (±)-amphichiral if it is (+)-amphichiral or
(−)-amphichiral. ♦

Given a 2-colourable oriented virtual link L, denote by −J2(L) the string obtained by
multiplying the entries of J2(L) by −1.

Proposition 3.6. Let L be a 2-colourable oriented virtual link. If L is (±)-amphichiral
then J2(L) = −J2(L).

Proof. Let D be a diagram of L. Denote by m+(D) a positive mirror image of D. There
is a bijection between the 2-colourings of D and m+(D): this bijection is the identity in the
case of the vertical mirror image, and is induced by reflection in the case of the horizontal
mirror image. In either case, given C a 2-colouring of D denote by m+(C ) the associated
2-colouring of m+(D). There is also a bijection between the classical crossings of D and
those of m+(D). As a positive mirror image preserves the orientation of the components of
D, it follows that a crossing of D is odd with respect to pC if and only if the associated
crossing of m+(D) is odd with respect to pm+(C ).
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Combining the above observation with the fact that taking the vertical or the horizontal
mirror image changes the sign of all classical crossings, it is clear from Equation (3.1) that

(3.2) JC (D) = −Jm+(C )(m+(D)).

If L is (+)-amphichiral then D and m+(D) both represent L and

J2(D) = J2(m+(D)) = J2(L)

which, combined with Equation (3.2), completes the proof in the (+)-amphichiral case. The
(−)-amphichiral case follows from the observation that global orientation reversal has no
affect on the 2-colour writhe. �

Notice that, unlike the odd writhe of virtual knots, the 2-colour writhe of (±)-amphichiral
virtual links is not forced to be zero, so that it can detect (±)-amphichiral virtual links that
are not slice.

3.2. Reduction of computational complexity.
3.2. Reduction of computational complexity. Recall from Proposition 2.7 that the num-

ber of 2-colourings of a link grows exponentially with the number of components. This
appears to make computation of the 2-colour writhe intensive for links of a large number
of components. However, owing to the fact that a classical mixed crossing involves exactly
two components, we deduce that the complexity is in fact quadratic.

First we set up a bijection between the set of 2-colourings of an n-component link and the
set {0, 1}×n.

Definition 3.7. Let D be a diagram of a 2-colourable oriented virtual link with |D| = n,
together with an arbitrary ordering of its components. Pick a 2-colouring of D, B, and
declare it as the base 2-colouring. There is a bijection between {0, 1}×n and the set of 2-
colourings of D defined as follows.

Let B be identified with (0, . . . , 0) ∈ {0, 1}×n. Denote by vi ∈ {0, 1}×n the string with a 1 in
the i-th position and 0 elsewhere, vi, j ∈ {0, 1}×n the string a with 1 in the i-th and j-th position

and 0 elsewhere, and so forth. Identify vi ∈ {0, 1}×n with B
i

(the 2-colouring obtained by
dualizing B on the i-th component), vi, j ∈ {0, 1}×n with B

i, j
, and so forth.

That every 2-colouring of D is represented by an element of {0, 1}×n is clear from the
cardinality of the sets (recall from Proposition 2.7 that D has 2n 2-colourings). ♦

Note that this bijection depends on the choice of base 2-colouring. In what follows we
shall freely interchange between elements of {0, 1}×n and 2-colourings, taking the bijection
as understood.

Definition 3.8. Let D be a diagram of a 2-colourable oriented virtual link with |D| = n,
together with an arbitrary ordering of its components and a base 2-colouring B. Given a
2-colouring v = (e1, e2, . . . , en) ∈ {0, 1}×n, let |v| = ∑ ei. Define the subset

Wn
i = {v ∈ {0, 1}×n | |v| = i}.

Denote by  the set of 2-colourings of D defined as follows. If n is odd, then
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 �
� n

2 �⋃
i=1

Wn
i .

If n is even and v ∈ Wn
n
2
, denote by v ∈ Wn

n
2

the string obtained by sending 0 to 1 and vice
versa. Then

 �

⎛⎜⎜⎜⎜⎜⎜⎜⎝
� n

2 �⋃
i=1

Wn
i

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∪ W̃n
n
2

where W̃n
n
2

is defined

W̃n
n
2
� {v ∈ Wn

n
2
| v preceeds v in the dictionary order}. ♦

An example of this set in the case n = 4 is given in Figure 8.

Fig.8. The set {0, 1}×4 written as the union of W4
0 to W4

4 . The generating set
 is represented by the boxed elements. The affect of global dualization is
to send  to {0, 1}×4 \ .

Proposition 3.9. Let D be a diagram of a 2-colourable oriented virtual link with |D| = n,
taken with an arbitrary ordering of its components and a base colouring B. The set  is a
generating set of 2-colourings.

Proof. It is clear that {0, 1}×n =
⋃n

i=1 Wn
i , so that we are required to show every Wn

i is a
subset of , or can be obtained by dualizing elements of . The affect of global dualization
on a 2-colouring identified with the string (e1, e2, . . . , en) is to send 0’s to 1’s and 1’s to 0’s.
From this observation it is clear that Wn

i is sent to Wn
n−i under dualization so that  is sent to

{0, 1}×n \ , and that the proposition holds for n odd.
For n even, it remains to show that Wn

n
2

is the union of W̃n
n
2

and the set obtained by dualizing

all of the elements of W̃n
n
2
. This last statement follows from the fact that there are no elements

v ∈ Wn
n
2

with v = v, and that
∣∣∣∣W̃n

n
2

∣∣∣∣ = 1
2

∣∣∣∣Wn
n
2

∣∣∣∣. Therefore  is sent to {0, 1}×n \ , as required.
�

With this generating set in place we are able to significantly reduce the number of indi-
vidual computations required to determine the 2-colour writhe.

Let D be a diagram of a 2-colourable oriented virtual link with |D| = n, taken with an
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arbitrary ordering of its components, and a base colouring B. We shall use this diagram for
the remainder of the section. Define the sets

Ci � {classical crossings of D between the i-th component and another component}
Be � {classical crossings of D that are even with respect to pB}
Bo � {classical crossings of D that are odd with respect to pB}.

Recall from Definition 3.7 that vi denotes the 2-colouring obtained from B by dualizing the
colouring on the i-th component; we use the shorthand Ji(D) = Jvi(D), Ji, j(D) = Jvi, j(D), and
so on. It follows from Definition 3.1 that

(3.3) Ji(D) =
∑

c∈Ci∩Be

sign(c) −
∑

c∈Ci∩Bo

sign(c) + JB.

That is, to JB we the add the signs of the mixed crossings lying on the i-th component that
are even with respect to pB, and minus the signs of those crossings that are odd (as they are
exactly the crossings that change parity when B is dualized on the i-th component). By a
very similar argument we observe that

(3.4)

Ji, j(D) = Σ
(
Ci ∩Be

)
− Σ
(
Ci ∩Bo

)
+ Σ
(
C j ∩Be

)
− Σ
(
C j ∩Bo

)
+ 2
(
Σ
(
Ci ∩C j ∩Bo

))
− 2
(
Σ
(
Ci ∩C j ∩Be

))
+ JB(D)

= Ji(D) + J j(D) + 2
(
Σ
(
Ci ∩C j ∩Bo

))
− 2
(
Σ
(
Ci ∩C j ∩Be

))
− JB(D)

where we have used the shorthand

Σ
(
Ci ∩Be

)
=
∑

c∈Ci∩Be

sign(c)

and so forth.
In general, the contributions to the 2-colour writhe are given by the following formula.

Theorem 3.10. Let v = (e1, e2, . . . , en) ∈  be a 2-colouring with 2 < |v| = m. Let
{p1, p2, . . . , pm} be the set of indices such that epk = 1 in v. Then

(3.5) Jv(D) =
m∑

k=1

⎛⎜⎜⎜⎜⎜⎝ m∑
l>k

Jpk ,pl

⎞⎟⎟⎟⎟⎟⎠ − (m − 2)
m∑

s=1

Jps +
1
2

(m − 1)(m − 2)JB

Proof. We proceed by induction. The base case, |v| = 3, may be checked by hand. We
obtain

Ji, j,k(D) = Σ
(
Ci ∩Be

)
− Σ
(
Ci ∩Bo

)
+ Σ
(
C j ∩Be

)
− Σ
(
C j ∩Bo

)
+ Σ
(
Ck ∩Be

)
− Σ
(
Ck ∩Bo

)
+ 2Σ

(
Ci ∩C j ∩Bo

)
− 2Σ

(
Ci ∩C j ∩Be

)
+ 2Σ

(
Ci ∩Ck ∩Bo

)
− 2Σ

(
Ci ∩Ck ∩Be

)
+ 2Σ

(
C j ∩Ck ∩Bo

)
− 2Σ

(
C j ∩Ck ∩Be

)
+ JB(D)

= Ji, j(D) + Ji,k(D) + J j,k(D) − Ji(D) − J j(D) − Jk(D) + JB(D)

as required.
Assume that the proposition holds for |v| = i. Let v′ be obtained from v by dualizing on

the r-th component, so that |v′| = i + 1. It follows from Definition 3.1 that
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Jv′(D) =
i+1∑
t=1

(
Σ
(
Ct ∩Be

)
− Σ
(
Ct ∩Bo

))

+ 2

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∑
s=1

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∑
l>s

(
Σ
(
Cl ∩Cs ∩Bo

)
− Σ
(
Cl ∩Cs ∩Be

))⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ + JB(D)

and

Jv(D) =
i∑

t=1

(
Σ
(
Ct ∩Be

)
− Σ
(
Ct ∩Bo

))

+ 2

⎛⎜⎜⎜⎜⎜⎝ i∑
s=1

⎛⎜⎜⎜⎜⎜⎝ i∑
l>s

(
Σ
(
Cl ∩Cs ∩Bo

)
− Σ
(
Cl ∩Cs ∩Be

))⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ + JB(D)

where we have fixed i + 1 = r in the ordering of the components of D. Then

Jv′(D) − Jv(D) = Σ (Cr ∩Be) − Σ (Cr ∩Bo)(3.6)

+ 2

⎛⎜⎜⎜⎜⎜⎝ i∑
s=1

(Σ (Cr ∩Cs ∩Bo) − Σ (Cr ∩Cs ∩Be))

⎞⎟⎟⎟⎟⎟⎠
= Jr(D) − JB(D) + 2

⎛⎜⎜⎜⎜⎜⎝ i∑
s=1

(Σ (Cr ∩Cs ∩Bo) − Σ (Cr ∩Cs ∩Be))

⎞⎟⎟⎟⎟⎟⎠ .
Denote by P(i) the right hand side of Equation (3.5) for m = i. Then

P(i + 1) − P(i) =

⎛⎜⎜⎜⎜⎜⎝ i∑
k=1

Jr,k(D)

⎞⎟⎟⎟⎟⎟⎠ − (i − 1)Jr(D) −
⎛⎜⎜⎜⎜⎜⎝ i∑

l=1

Jl(D)

⎞⎟⎟⎟⎟⎟⎠ + (i − 1)JB(D)

=

⎛⎜⎜⎜⎜⎜⎝ i∑
k=1

Jr,k(D) − Jk(D)

⎞⎟⎟⎟⎟⎟⎠ − (i − 1)Jr(D) + (i − 1)JB(D)

=

⎛⎜⎜⎜⎜⎜⎝ i∑
k=1

Jr(D) + Jk(D) + 2
(
Σ
(
Cr ∩Ck ∩Bo

))
− 2
(
Σ
(
Cr ∩Ck ∩Be

))

+ JB(D) − Jk(D)
)
− (i − 1)Jr(D) + (i − 1)JB(D)

= iJr(D) − iJB(D) + 2

⎛⎜⎜⎜⎜⎜⎝ i∑
k=1

(
Σ
(
Cr ∩Ck ∩Bo

))
−
(
Σ
(
Cr ∩Ck ∩Be

))⎞⎟⎟⎟⎟⎟⎠
− (i − 1)Jr(D) + (i − 1)JB(D)

= Jr(D) − JB(D) + 2

⎛⎜⎜⎜⎜⎜⎝ i∑
k=1

(
Σ
(
Cr ∩Ck ∩Bo

))
−
(
Σ
(
Cr ∩Ck ∩Be

))⎞⎟⎟⎟⎟⎟⎠ .
Comparing the final line above to that of Equation (3.6) completes the proof. �

3.3. Chequerboard colourable links.
3.3. Chequerboard colourable links. In the case of chequerboard colourable virtual

links the 2-colour parity, and hence the 2-colour writhe, become easier to determine. To
see this we require the notion of an abstract link diagram [3, 8].
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Fig.9. Component of the surface of an abstract link diagram about a classi-
cal crossing.

Fig.10. Component of the surface of an abstract link diagram about a vir-
tual crossing.

Fig.11. A virtual knot diagram and its associated abstract link diagram.

Let D be a diagram of a virtual link, as in Figure 11, then
(1) about the classical crossings place a disc as shown in Figure 9
(2) about the virtual crossings place two discs as shown in Figure 10
(3) join up these discs with collars about the arcs of the diagram.

The result is a link diagram on a surface (which deformation retracts onto the underlying
curve of the diagram). We denote this diagram and surface pair by FD, and refer to it as the
abstract link diagram associated to D. An example of an abstract link diagram is given in
Figure 11.

Definition 3.11. Let D be a diagram of a virtual link L. Form the associated abstract link
diagram FD as described above. We say that FD is chequerboard colourable if a shading
can be placed on the components of the complement of the underlying curves of the link
diagram in FD such that at each classical crossing we have the following (up to rotation)
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A virtual link is chequerboard colourable if it possesses a diagram whose associated abstract
link diagram is chequerboard colourable. ♦

A chequerboard colourable virtual link is 2-colourable (the converse is not true, however;
counterexamples are given in Figures 6 and 7).

Theorem 3.12. Let L be an oriented virtual link. The following are equivalent

(i) L is chequerboard colourable.
(ii) L is 2-colourable, and there exists a 2-colouring of a diagram of it such that every

classical crossing is even with respect to the parity associated to this 2-colouring.

Proof. (i)⇒(ii): Let D be a diagram of L. We show that picking a chequerboard colouring
of FD distinguishes a 2-colouring of D, and that every classical crossing is even with respect
to the parity associated to this 2-colouring.

First, we take an argument given by Bar-Natan and Morrison in the plane [1], and re-
produce it on a surface. Form the associated abstract link diagram FD as described above.
Place a chequerboard colouring on FD, and a clockwise orientation on the shaded regions.
To produce a 2-colouring, compare the orientation of the arcs of S(D) (as inherited from
D) to that induced by the orientation of the shaded region. If the orientations agree, colour
the arc red, otherwise colour it green. That this yields a 2-colouring is made clear in the
following figures:

It is also clear from these figures that pC (c) = 0 for all classical crossings c of D, so that
JC (D) = 0 and 0 appears in J2(L).

(ii)⇒(i): Let D be a diagram of L, and C be a 2-colouring of D such that every classical
crossing is even with respect to pC . Form FD; it is clear from the diagrams above that
shading on the right of red arcs, and on the left or green arcs of D yields a chequerboard
colouring of FD. �

It follows that if L is a chequerboard colourable oriented virtual link then 0 appears in
J2(L).

Corollary 3.13. Let L be an oriented classical link. Then L is 2-colourable, and there
exists a 2-colouring of a diagram D (of L) such that every classical crossing is even with
respect to the parity associated to this 2-colouring.

Proof. Every classical link is chequerboard colourable: any chequerboard colouring of
the plane will do. �
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Using the distinguished 2-colouring described in the proof of Theorem 3.12, we observe
that the 2-colour writhe of a chequerboard colourable link may be determined from the
pairwise linking numbers of its components.

Definition 3.14. Let D = D1∪D2∪· · ·∪Dn be a virtual link diagram with components Di,
for i ∈ {1, . . . , n}. Denote by lk(Di,Dj) the sum of the signs of the mixed crossings between
Di and Dj. Quantities such as lk(Di ∪ Dj,Dk) and lk(Di,D) are defined similarly. ♦

Note that this definition of lk(Di,Dj) does not contain the factor of 1
2 present in the clas-

sical definition.

Proposition 3.15. Let D be a diagram of a chequerboard colourable oriented virtual link
L, taken with a chequerboard colouring of FD. Let C be the 2-colouring of D distinguished
by this chequerboard colouring (as constructed in the proof of Theorem 3.12). Let  be the
generating set with base colouring C (described in Definition 3.8). Then

Ji(D) = lk(Di,D)

Ji, j(D) = lk(Di ∪ Dj,D)

where Di is the i-th component of D.

Proof. As observed in the proof of Theorem 3.12, every classical crossing of D is even
with respect to the parity pC , so that C o = ∅ and Ci ∩C e = Ci (for Ci, C e and C o as defined
on page 782) and JC (D) = 0. Equations (3.3) and (3.4) become

Ji(D) =
∑
c∈Ci

sign(c) = lk(Di,D)

Ji, j(D) = Ji + J j − 2

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
c∈Ci∩C j

sign(c)

⎞⎟⎟⎟⎟⎟⎟⎠
= lk(Di,D) + lk(Dj,D) − 2lk(Di,Dj)

= lk(Di ∪ Dj,D)

as required. �

Combining this with Theorem 3.10, we see that the 2-colour writhe of a chequerboard
colourable virtual link may be determined from the pairwise linking numbers of its com-
ponents. For non-chequerboard colourable virtual links, however, the 2-colour writhe is a
stronger invariant. An example of this is given in Figure 7: the virtual link depicted is of
linking number 0, but has non-trivial 2-colour writhe.

We conclude this section by demonstrating that the techniques of parity projection may
be applied to links via the 2-colour parity. Parity projection is a powerful construction that
has been used to prove a number of results concerning virtual knots [13], but its application
to virtual links has been limited. This is due to the technical restrictions of parity theories
for virtual links. In contrast, the 2-colour parity lends itself naturally to parity projection.

Let D be an oriented virtual link diagram and C be a 2-colouring of it. Denote by D
C

the diagram obtained from D by replacing all classical crossings of D which are odd with
respect to pC with virtual crossings. The diagram D

C
is known as the projection of D with
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respect to pC .
Parity projection interacts well with the virtual Reidemeister moves; we outline necessary

results here, and refer the interested reader to [13, Section 3]. If D′ is related to D via a
sequence of virtual Reidemeister moves then the 2-colouring C induces a 2-colouring of D′,
denoted C ′. Then the projection D′

C ′
is related to D

C
via a sequence of virtual Reidemeister

moves.
In what follows a minimal crossing diagram of a virtual link L is a diagram with the

minimum number of classical crossings, with the minimum taken across all diagrams of L.
We demonstrate the utility of parity projection for links by using it to demonstrate that a
minimal crossing diagram of a chequerboard colourable virtual link is itself chequerboard
colourable. The corresponding result for virtual knots may be proved using the Gaussian
parity, but the extension to links requires the 2-colour parity. The author thanks Hans Boden
and Homayun Karimi for sharing the following argument with him.

Proposition 3.16. Let L be a chequerboard colourable oriented virtual link. A minimal
crossing diagram of L is chequerboard colourable.

Proof. Let D be a minimal crossing diagram of L, and D′ a chequerboard colourable
diagram of L. As D′ is chequerboard colourable, Theorem 3.12 guarantees that there exists
a 2-colouring of it, C ′, such that every classical crossing of D′ is even with respect to pC ′ .
It follows that D′

C ′
= D′.

The diagrams D and D′ both represent the L, so they are related via a sequence of virtual
Reidemeister moves. Then the 2-colouring C ′ of D′ induces a 2-colouring of D, denoted
C . Further, the projections D

C
and D′

C ′
are related via a sequence of virtual Reidemeister

moves. But D′
C ′
= D′, so that D

C
is also a diagram of L. If a classical crossing of D was

converted to a virtual crossing when passing to D
C

, then D
C

would be a diagram of L with
fewer classical crossings than D. But D is a minimal crossing diagram, and it follows that no
classical crossings are converted to virtual crossings. Equivalently, every classical crossing
of D is even with respect to pC , and by Theorem 3.12 we conclude that D is a chequerboard
colourable diagram. �

4. Concordance invariance

4. Concordance invariance
In this section we prove that the 2-colour writhe is invariant under virtual link concor-

dance. There are at least two reasons to suspect that this should be the case. First, as
demonstrated in Proposition 3.4, the 2-colour writhe restricts to the odd writhe on virtual
knots, which is itself invariant under virtual knot concordance [2, 16]. If the 2-colour writhe
is to be a satisfactory extension of the odd writhe to virtual links, it should replicate this
behaviour.

Second, the pairwise linking numbers of a virtual link are elementary concordance invari-
ants. In Proposition 3.15 it is shown that the 2-colour writhe of a chequerboard colourable
virtual link may be determined from its pairwise linking numbers, so that the 2-colour writhe
is a concordance invariant on such virtual links.

To prove the concordance invariance of the 2-colour writhe of an arbitrary 2-colourable
oriented virtual link we use doubled Lee homology. In Section 4.1 we show that the 2-
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colour writhe of a virtual link appears as the homological degree support of its doubled Lee
homology. The concordance invariance of the 2-colour writhe follows from this result and
the concordance invariance of doubled Lee homology itself, as we describe in Section 4.2.
In Section 4.3 we obtain applications of this concordance invariance.

4.1. The 2-colour writhe and doubled Lee homology.
4.1. The 2-colour writhe and doubled Lee homology. In this section we show that

the 2-colour writhe of a virtual link is equivalent to the homological degree support of its
doubled Lee homology. We keep our description of doubled Lee homology to a minimum,
referring the interested reader to [16] for full details.

The doubled Lee homology of an oriented virtual link L, denoted DKh′(L), is a bigraded
finitely-generated Abelian group. The two gradings are the homological grading, denoted
i, and the quantum grading, denoted j (both are Z-gradings). We focus on the homological
grading.

Definition 4.1. Let D be a virtual link diagram. A classical crossing of D may be resolved
in one of two ways:

We refer to each resolution as either the 0- or the 1-resolution, depending on the sign of
the crossing. Arbitrarily resolving every classical crossing of D (leaving virtual crossings
unchanged) yields a collection of immersed circles in the plane, known as a smoothing of
D. ♦

Definition 4.2. Let D be an oriented virtual link diagram with n− negative classical cross-
ings. Given S a smoothing of D with exactly m 1-resolutions, define the height of S as

|S | � m − n−. ♦

Definition 4.3. A smoothing of a virtual link diagram D is alternately coloured if its
cycles are coloured exactly one of two colours in such a way that in a neighbourhood of
each classical crossing the two incident arcs have different colours. A smoothing that can be
coloured in such a way is known as an alternately colourable. ♦

Examples of alternately coloured smoothings are given on the left of Figure 12.
Let D be a diagram of an oriented virtual link L. In [16, Section 3] it is shown that to

each alternately coloured smoothing of D one may associate two elements su, sl ∈ DKh′(L),
known as alternately coloured generators. This name is justified by the fact that the set of
all such objects generates DKh′(L) [16, Theorem 3.5]. Define the homological grading on
alternately coloured generators as

(4.1) i(su/l) = |S |
where su/l are associated to the alternately coloured smoothing S .

The alternately coloured smoothings of D are directly related to its 2-colourings.
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Proposition 4.4. Let D be a diagram of a 2-colourable oriented virtual link L. There is
a bijection between the set of 2-colourings of D and that of alternately coloured smoothings
of D.

Proof. Given a 2-colouring one may produce an alternately coloured smoothing, and vice
versa, using the following rule:

That this is a bijection is clear. �

Examples of this bijection are given in Figure 12.

Fig.12. The bijection between alternately coloured smoothings and 2-colourings.

The following is a generalization of [16, Proposition 4.11].

Lemma 4.5. Let D be a diagram of a 2-colourable oriented virtual link L. Let C be a
2-colouring of D and S the alternately coloured smoothing of D associated to C . If s is
either of the alternately coloured generators associated to S then

JC (D) = i(s).

Proof. Let D have ne
+ (ne−) even positive (negative) classical crossings, and no

+ (no−) odd
positive (negative) classical crossings, with respect to pC . Then n+ = ne

+ +no
+ (n− = ne− +no−)

is the total number of positive (negative) classical crossings.
Given a 2-colouring C , and its associated alternately coloured smoothing S , one of the

following configurations must occur:
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where +,− denotes the sign of the crossing and 0, 1 its resolution in S . That is, at a classical
crossing of D exactly one of the following cases holds

sign parity reso.
+ odd 1
+ even 0
− odd 0
− even 1

Using the table above, and recalling Equation (4.1), we have

JC (D) = no
+ − no

−
= no

+ − no
− + ne

− − ne
−

= no
+ + ne

− − n−
= i(s)

as required. �

We are now able to conclude this section by demonstrating that the 2-colour writhe is
equivalent to the homological support of doubled Lee homology.

Theorem 4.6. Let L be a 2-colourable oriented virtual link. Denote by {J2(L)} the set of
entries of J2(L). Then {J2(L)} is the homological degree support of DKh′(L).

Proof. Let D be a diagram of L. Pick a generating set of 2-colourings and compute J2(L).
Let k be an element of the homological degree support of DKh′(L) i.e. a homological de-

gree in which DKh′(L) is non-trivial. Then there exists an alternately coloured generator, s,
such that i(s) = k (we have suppressed the superscript u/l as i(su) = i(sl), c.f. Equation (4.1)).
Let S be the alternately coloured smoothing of D associated to s. By Proposition 4.4 there is
a 2-colouring of D associated to S , denoted C . If C is in the generating set of 2-colourings
then

k = i(s) = JC (D) ∈ {J2(L)}
by Lemma 4.5. If C is not in the generating set, then C is, and

k = i(s) = JC (D) = JC (D) ∈ {J2(L)}.
Conversely, let C be an element of the generating set. By Proposition 4.4 there is an as-

sociated alternately coloured smoothing of D, S . Let s be either of the alternately coloured
generators of DKh′(L) associated to S , then by Lemma 4.5

JC (D) = i(s)

so that JC (D) is an element of the homological degree support of DKh′(L). �

4.2. Invariance.
4.2. Invariance. In this section we use Theorem 4.6 and the concordance invariance of

doubled Lee homology to show that the 2-colour writhe is itself a concordance invariant.
First, we recall the topological interpretation of virtual links and cobordisms between them.
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Definition 4.7. A virtual link is an equivalence class of embeddings
⊔

S1 ↪→ Σg× I up to
self-diffeomorphism of Σg×I, and handle (de)stabilisations of Σg such that the product of the
attaching sphere with the I summand of Σg × I is disjoint from the image of the embedding.

A representative D of a virtual link is a particular embedding D :
⊔

S1 ↪→ Σg × I. We
abbreviate the notation to write D ↪→ Σg × I. ♦

Definition 4.8 ([17]). Let D ↪→ Σg × I and D′ ↪→ Σg′ × I be representatives of virtual
links L and L′. We say that L and L′ are cobordant if there exist a compact oriented surface
S and an oriented 3-manifold M, such that S ↪→ M × I, ∂S = D � D′, and ∂M = Σg � Σg′ .
We refer to S as a cobordism between L and L′. ♦

Definition 4.9. Let S ↪→ M × I be a cobordism between links L and L′, with |L| = |L′|2.
We say that L and L′ are concordant if there exists a cobordism S between them that is
a disjoint union of |L| annuli, such that each annulus has a boundary component in L and
another in L′. We refer to such an S as a concordance between L and L′. ♦

There exist algorithms for moving between this topological interpretation and the dia-
grammatic interpretation used in the previous sections of this paper; for example, see [2,
Section 1.1].

Importantly for our purposes, 2-colourability of virtual links is preserved throughout con-
cordances.

Proposition 4.10. Let L and L′ be concordant oriented virtual links. Then L is 2-
colourable if and only if L′ is 2-colourable.

Proposition 4.10 can be proved using the following fact.

Lemma 4.11. Let L and L′ be concordant oriented virtual links, with L = L1∪L2∪· · ·∪Ln

and L′ = L′1 ∪ L′2 ∪ · · · ∪ L′n. As L and L′ are concordant there is a bijection between the
components of L and those of L′; without loss of generality let Li be associated to L′i . Then

lk(Li, Lj) = lk(L′i , L
′
j)

for all 1 ≤ i, j ≤ n.

Proof. The proof of this fact in the case of classical links is elementary, and it may be
adapted to the virtual case as follows. By abuse of notation let D = D1∪D2∪· · ·∪Dn ↪→ Σg×I
be a representative of L. Define

Bm =
Σg × I�Σg × {m}, m ∈ {0, 1}

Consider the inclusion D ↪→ Bm; as Bm is a homology disc Alexander duality induces the
isomorphism

φm, j : H1

(
Bm \ Dj

)
→ Z

for all j ∈ {1, . . . , n}.
Next, project D to Σg. This yields a link diagram on Σg (without virtual crossings). By

abuse of notation we denote this diagram by D = D1 ∪ D2 ∪ · · · ∪ Dn also. Define the

2Recall that |L| denotes the number of components of L.
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quantities

lk0

(
Di,Dj

)
=

∑
Di under Dj at c

sign(c)

lk1

(
Di,Dj

)
=

∑
Di over Dj at c

sign(c)

It follows that

(4.2) lkm

(
Di,Dj

)
= φ1−m, j ([Di])

for m ∈ {0, 1}. Notice that lk(Di,Dj) = lk0

(
Di,Dj

)
+ lk1

(
Di,Dj

)
. Thus the linking number

of the components Di and Dj is a function of [Di] ∈ H1

(
Bm \ Dj

)
, in direct analogy to the

classical case. With this in place, we may repeat the classical proof: a concordance between
links may be used to exhibit homotopy equivalences of the complements of link components.
These homotopy equivalences preserve homology classes, so that by Equation (4.2) the
linking numbers are preserved under concordance. �

Proof of Proposition 4.10. Let D = D1 ∪ D2 ∪ · · · ∪ Dn be a diagram of L, and G(D)
its simple Gauss diagram as defined in Definition 2.4. Recall that a circle of G(D) is known
as degenerate if it contains an odd number of chord endpoints (see Definition 2.6). The
components of D are in bijection with the circles of G(D); in what follows we shall refer to
a component Di as degenerate if the associated circle of G(D) is degenerate. It then follows
from Proposition 2.7 that L is 2-colourable if and only Di is not degenerate, for all 1 ≤ i ≤ n.

It is readily verified that Di is degenerate if and only if lk(Di,D \Di) is odd. Noticing that

lk(Di,D \ Di) =
n∑

j=1, j�i

lk(Di,Dj)

and employing Lemma 4.11, we see that if L is concordant to L′ then L has a degenerate
component if and only if L′ has. Thus L is 2-colourable if and only if L′ is. �

A powerful feature of doubled Lee homology is its functoriality: to a cobordism S be-
tween virtual links L and L′, the doubled Lee package assigns a map φS : DKh′(L) →
DKh′(L′). If S is a concordance then φS is an isomorphism.

Proposition 4.12. Let S be a concordance between virtual links L and L′. The map
φS : DKh′(L)→ DKh′(L′) is a bigraded isomorphism of homological degree 0.

Proof. The case in which one of L and L′ is a knot is given in [16, Theorem 3.21], and
the argument readily extends to the case in which both L and L′ are links. Here we outline
the proof, directing the reader to [16, Theorem 3.21] for full details.

Recall from Section 4.1 that the bigraded group DKh′(L) has generators that are in bijec-
tion with the 2-colourings of L. Further, the homological degree of each generator is equal
to the contribution to the 2-colour write of L of the associated 2-colouring. Thus, given
a concordance S from L to L′, one can study the map φS by analysing the effects of S on
the set of 2-colourings of L. In [16, Section 3.2] it is demonstrated that passing through
a concordance cannot create degenerate link components; thus every link that appears in a
concordance from L to L′ is 2-colourable. It follows that the map φS is non-zero. By consid-
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ering the reverse concordance - that is, the concordance from L′ to L obtained by traversing
S in reverse - one can prove that φS is an isomorphism. The map φS is of homological degree
0 by construction, as described in [16, Section 3.2]. �

Corollary 4.13. Let L and L′ be concordant 2-colourable oriented virtual links. Then
J2(L) = J2(L′).

Proof. This is a direct result of Theorem 4.6 and Proposition 4.12. We suffice ourselves
by observing that not only are the entries of J2(L) concordance invariants, but their multi-
plicities are also, owing to the constructive nature of the proof of Theorem 4.6. �

4.3. Applications.
4.3. Applications. The concordance invariance of the 2-colour writhe established above

yields a number of applications. First, we are able to obstruct the sliceness of a 2-colourable
oriented virtual link.

Definition 4.14. A virtual link L is slice if it is concordant to the unlink of |L| components.
♦

The following is a direct consequence of Corollary 4.13.

Corollary 4.15. Let L be a 2-colourable oriented virtual link. If J2(L) has a non-zero
entry then L is not slice.

Figure 7 provides an example of an oriented virtual link for which the linking number
does not obstruct sliceness, but the 2-colour writhe does.

Combining Corollary 4.13 with Proposition 3.6 and Theorem 3.12 we can obstruct (±)-
amphichirality and chequerboard colourability within a concordance class.

Corollary 4.16. Let L be a 2-colourable oriented virtual link such that J2(L) � −J2(L).
Then L is not concordant to a (±)-amphichiral virtual link.

Corollary 4.17. Let L be a 2-colourable oriented virtual link such that 0 does not appear
in J2(L). Then L is not concordant to a chequerboard colourable virtual link.

Figure 7 provides an example of an oriented virtual link that is obstructed from being
concordant to a chequerboard colourable link by the 2-colour writhe, and is therefore not
concordant to a classical link.

5. Comparison with other theories

5. Comparison with other theories
In this section we compare the 2-colour parity to other parity theories for virtual links. In

Sections 5.1 and 5.2 we show that 2-colour parity yields a strictly stronger invariant (on the
set of 2-colourable virtual links) than both the naı̈ve parity and the IP parity. In Section 5.3
we show that the 2-colour parity descends to a parity on free links, and compare it to other
related topics.

5.1. The naı̈ve parity.
5.1. The naı̈ve parity. One can define a parity of virtual links by simply declaring that

all self-crossings are even, and all mixed crossings odd. We refer to this parity as the naı̈ve
parity.
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Definition 5.1. Let D be a virtual link diagram. Declare every classical self-crossing as
N-even, and every classical mixed crossing as N-odd. ♦

It is easy to see that this declaration satisfies the axioms of Definition 2.9, and yields a
parity.

Definition 5.2. Let D be a diagram of an oriented virtual link L. Define the naı̈ve writhe
of D, denoted N(D), as

N(D) �
∑

c N-odd

sign(c).

That is, it is the sum of the N-odd crossings. As the naı̈ve parity satisfies the axioms of
Definition 2.9, this quantity is an invariant of L, and we define the naı̈ve writhe of L to be
N(L) � N(D). ♦

Let M(D) denote the set of mixed crossings of D. As a classical crossing of D is N-odd
if and only if it is a mixed crossing, we observe that

N(D) =
∑

c∈M(D)

sign(c).

Combining this with ∑
c∈Ci∩C j

sign(c) = lk(Di,Dj)

and

M(D) =
⋃

i

⎛⎜⎜⎜⎜⎜⎜⎝⋃
j>i

Ci ∩C j

⎞⎟⎟⎟⎟⎟⎟⎠
(where Ci is as defined on page 782), we obtain

(5.1) N(D) =
∑

c∈M(D)

sign(c) =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j>i

lk(Di,Dj)

⎞⎟⎟⎟⎟⎟⎟⎠ .
That is, the naı̈ve writhe is the sum of the pairwise linking numbers. It is demonstrated in
Section 3.3 that the 2-colour writhe is strictly stronger than the pairwise linking numbers,
motivating the following theorem.

Theorem 5.3. The pair
(
J2(L), J2

S(L)
)

forms a strictly stronger invariant than N(L) on
the set of 2-colourable oriented virtual links (for J2

S(L) given in Definition 3.3).

Proof. We show that if L is a 2-colourable oriented virtual link such that
(
J2(L), J2

S(L)
)

is

trivial, then N(L) is trivial also, and that there exist virtual links detected by
(
J2(L), J2

S(L)
)

but not N(L).
First, let L be a virtual link such that

(
J2(L), J2

S(L)
)

is trivial. That is, given a diagram
D = D1 ∪ D2 ∪ · · · ∪ Dn, then J2

S(D) = 0 and JC (D) = 0 for all 2-colourings C of D. Fixing
an arbitrary base colouring C , and using the notation of Section 3.2, we obtain
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Fig.13. A virtual link detected by the 2-colour writhe, but not detected by
the naı̈ve writhe or the IP writhe.

Ji, j(D) = Ji(D) + J j(D) + 2
(
Σ
(
Ci ∩C j ∩ C o

))
− 2
(
Σ
(
Ci ∩C j ∩ C e

))
− JC (D)

= 2
(
Σ
(
Ci ∩C j ∩ C o

))
− 2
(
Σ
(
Ci ∩C j ∩ C e

))
= 0

as J2(L) is trivial. Therefore

Σ
(
Ci ∩C j ∩ C o

)
= Σ
(
Ci ∩C j ∩ C e

)
and

(5.2) lk(Di,Dj) = Σ
(
Ci ∩C j ∩ C o

)
+ Σ
(
Ci ∩C j ∩ C e

)
= 2
(
Σ
(
Ci ∩C j ∩ C o

))
.

Next, consider the following expression for JC

JC =
∑

c mixed crossing
pC (c)=1

sign(c) + J2
S(D) = 0

from which we observe ∑
c mixed crossing
pC (c)=1

sign(c) = −J2
S(D) = 0.

By definition

∑
c mixed crossing
pC (c)=1

sign(c) =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j>i

(
Σ
(
Ci ∩C j ∩ C o

))⎞⎟⎟⎟⎟⎟⎟⎠
so that

0 =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j>i

(
Σ
(
Ci ∩C j ∩ C o

))⎞⎟⎟⎟⎟⎟⎟⎠ = 1
2

∑
i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j>i

lk(Di,Dj)

⎞⎟⎟⎟⎟⎟⎟⎠ = 1
2

N(L)

by Equations (5.1) and (5.2), and we may conclude that N(L) = 0.
A virtual link that is detected by the 2-colour writhe but not by the naı̈ve writhe is given

in Figure 13. �

5.2. The Im-Park parity.
5.2. The Im-Park parity. It is possible for the pairwise linking numbers of a virtual link

to be odd, unlike those of a classical link. In this section we shall consider the class of virtual
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links with even pairwise linking numbers. The set of such links is a subset of 2-colourable
links.

Proposition 5.4. Let L be an oriented virtual link with even pairwise linking numbers.
Then L is 2-colourable.

Proof. Let D be a diagram of L. Recall that L is 2-colourable if and only if G(D) has no
degenerate circles (see Proposition 2.7). As L has even pairwise linking numbers, a circle
of G(D) must have an even number of chord endpoints. It follows that G(D) possesses no
degenerate circles and L is 2-colourable. �

However, there exist 2-colourable virtual links which do not have even pairwise linking
numbers; an example is given in Figure 1.

Im and Park defined a parity on the restricted class of virtual links with even pairwise
linking numbers [7]. We refer to this parity as the Im-Park parity (IP parity). We begin by
summarising its definition and that of the associated writhe invariant.

Definition 5.5 (IP parity [7]). Let D = D1 ∪ D2 ∪ · · · ∪ Dn be an oriented virtual link
diagram, with components D1, . . . ,Dn, such that

lk(Di,Dj) ∈ 2Z

for all i, j ∈ {1, . . . , n}.
A self-crossing of D is IP-even if the associated chord of G(D) encloses an even number

of chord endpoints (this is well-defined as D has even pairwise linking numbers). Otherwise
it is IP-odd.

The Gauss code G(D) is further investigated, to determine whether or not it satisfies a
certain condition. There are two possible outcomes:

(1) every mixed classical crossing of D is declared as IP-odd
(2) every mixed classical crossing of D is declared as IP-even

Which case holds depends on whether or not G(D) satisfies the particular condition. For full
details see [7, Definition 2.1]. ♦

Im and Park show that this definition yields a parity on the set of virtual links with even
pairwise linking numbers. To be precise, they erroneously claim that it is a parity on arbitrary
virtual links. However, they present an example, given in [7, Figure 7], demonstrating that
the construction does not satisfy the third parity axiom (as given in Definition 2.9). This
error can be sourced to the proof of Lemma 2.4 on page 4 of [7]: in it, Im and Park assume
that if D and D′ are virtual link diagrams related by a Reidemeister 3 move, then D and D′

have even pairwise linking numbers. This is false in general, as [7, Figure 7] shows. As a
consequence, Definition 5.5 yields a parity on the class of virtual links with even pairwise
linking numbers.

The associated writhe invariant is defined as follows.

Definition 5.6 (IP-writhe). Let D be a diagram of an oriented virtual link L with even
pairwise linking numbers. Define the IP-writhe as
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IP(D) �
∑

c IP-odd

sign(c).

The invariance of IP(D) under the virtual Reidemeister moves follows from the fact that the
IP parity satisfies the parity axioms on such links, and we may define the IP-writhe of L as
IP(L) � IP(D). ♦

We shall also need the following restricted invariant.

Definition 5.7. Let D be a diagram of an oriented virtual link L with even pairwise linking
numbers. Define the following quantity

IPS(D) �
∑

c IP-odd
self-crossing

sign(c).

Again, the invariance of IP(D) under the virtual Reidemeister moves follows from the fact
that the IP parity satisfies the parity axioms on such links, and we may define IPS(L) �
IPS(D). ♦

It follows from Definition 5.5 that a mixed classical crossing between the components
Di and Dj is IP-odd if and only if all such crossings are IP-odd. From this observation we
obtain

(5.3) IP(D) =

⎧⎪⎪⎨⎪⎪⎩
∑

i

(∑
j>i lk(Di,Dj)

)
+ IPS(D), or

IPS(D)

As a consequence of Equation (5.3) the contribution of the mixed crossings to the IP
writhe is determined by the pairwise linking numbers of the argument virtual link. As in the
case of the naı̈ve parity, this motivates the following theorem.

Theorem 5.8. The pair
(
J2(L), J2

S(L)
)

forms a strictly stronger invariant than the pair
(IP(L), IPS(L)) on the set of oriented virtual links with even pairwise linking numbers (for
J2

S(L) given in Definition 3.3).

Proof. We show that if L is an oriented virtual link with even pairwise linking numbers
such that

(
J2(L), J2

S(L)
)

is trivial, then (IP(L), IPS(L)) is trivial also, and that there exist

virtual links detected by
(
J2(L), J2

S(L)
)

but not (IP(L), IPS(L)).
Given a diagram D = D1 ∪D2 ∪ · · · ∪Dn, repeat the first part of the proof of Theorem 5.3

to obtain

(5.4) lk(Di,Dj) = Σ
(
Ci ∩C j ∩ C o

)
+ Σ
(
Ci ∩C j ∩ C e

)
= 2
(
Σ
(
Ci ∩C j ∩ C o

))
.

It follows that lk(Di,Dj) ∈ 2Z. As a consequence, given a 2-colouring C a self-crossing of
D is odd with respect to pC if and only if it is IP-odd (this may be seen by repeating the
argument given in the proof of Proposition 2.15). This implies that

(5.5) IPS(L) = J2
S(L) = 0

(recall that J2
S(L) is trivial by hypothesis).

Next, fix a 2-colouring C and repeat the second part of the proof of Theorem 5.3 to obtain
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Fig. 14. A classical Hopf link that is detected by the 2-colour writhe and
the naı̈ve writhe, but is not detected by the IP writhe.

∑
j>i

(
Σ
(
Ci ∩C j ∩ C o

))
= 0

from which we observe

0 =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j>i

(
Σ
(
Ci ∩C j ∩ C o

))⎞⎟⎟⎟⎟⎟⎟⎠ = 1
2

∑
i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j>i

lk(Di,Dj)

⎞⎟⎟⎟⎟⎟⎟⎠ = 1
2

IP(L)

by Equations (5.3), (5.4) and (5.5) (notice that the argument proceeds irrespective of which
case holds in Equation (5.3)), and we may conclude that IP(L) = 0.

Im and Park show that (IP(L), IPS(L)) is trivial on chequerboard colourable virtual links
[7, Proposition 2.11] (they use the term normal for such links). As all classical links are
chequerboard colourable, it follows that (IP(L), IPS(L)) is trivial on classical links also. We
conclude by observing that there are many classical links with non-trivial

(
J2(L), J2

S(L)
)
; a

simple example is given in Figure 14. The 4-component link depicted in Figure 13 is also
an example of a virtual link detected by the 2-colour writhe but not the IP writhe. �

In fact, there are virtual links that are not detected by the IP writhe, but detected by
the naı̈ve writhe: again Figure 14 provides an example. It is also important to note that
while the 2-colour writhe of a chequerboard colourable virtual link can be determined from
the pairwise linking numbers, the 2-colour writhe remains strictly stronger than both the
naı̈ve writhe and the IP writhe on this class of links. This may be seen by noticing that the
link depicted in Figure 13 is chequerboard colourable, and is detected only by the 2-colour
writhe.

The IP parity has been used to construct a number of polynomial invariants of virtual
links [12, 6]. In light of Theorem 5.8 it is reasonable to suspect that polynomial invariants
constructed using the 2-colour parity will be stronger than those constructed using the IP
parity.

5.3. Other parities.
5.3. Other parities. We conclude by comparing the 2-colour parity to other constructions

related to parity theories of virtual links.

5.3.1. Manturov’s parity of free knots.
5.3.1. Manturov’s parity of free knots. Free links are a drastic simplification of virtual

links, obtained by considering virtual link diagrams up to the virtual Reidemeister moves,
classical crossing changes, and a further move known as flanking. Alternatively, free links
may be defined in terms of the simple Gauss diagrams employed in Section 2. The reader
familiar with free links may therefore suspect that the 2-colour parity descends to a parity
of free links. Here we confirm these suspicions.
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Definition 5.9. A free link is an equivalence class of simple Gauss diagrams, up to the
following local moves:

where open line segments depict neighbourhoods of the chord endpoints in the core circles.
♦

A free link is 2-colourable if it has a representative that is 2-colourable as a simple Gauss
diagram (as in Definition 2.5).

Proposition 5.10. The 2-colour parity descends to a parity on 2-colourable oriented free
links.

Proof. First, we show that the 2-colour parity may be determined directly from a sim-
ple Gauss diagram. Let G be a 2-colourable oriented simple Gauss diagram (as in Defi-
nition 2.5). Given a C a 2-colouring of G, define a parity, pC , on the chords of G in the
following manner:

It is easy to see that this designation is equivalent to that given in Equation (2.3), and that it
satisfies the parity axioms with respect to the moves given in Definition 5.9. �

In [14] Manturov defines a parity of free knots, and extends it to free links appearing in
concordances between free knots ([14] also contains the relevant definitions regarding free
knot concordance). Further, in [15] an extension of parity to 2-component virtual links is
given. The 2-colour parity has the advantage that it may be computed directly from a simple
Gauss diagram, without requiring additional concordance information.

While the 2-colour parity descends to free links, the 2-colour writhe does not. For exam-
ple, the virtual knot given in Figure 6 has non-trivial 2-colour writhe, but represents a trivial
free knot.

5.3.2. The affine index polynomial.
5.3.2. The affine index polynomial. The affine index polynomial is an invariant of vir-

tual knots due to Kauffman [10], which is related to the Gaussian parity. In [11] Kauffman
demonstrates that the affine index polynomial is a concordance invariant, and determines the
class of virtual links to which it extends. Kauffman refers to such virtual links as compat-
ible. We demonstrate that the set of compatible virtual links is a proper subset of that of
2-colourable virtual links.
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Fig.15. A 2-colourable virtual link diagram that is not compatible.

Definition 5.11 ([11]). Let D be an oriented virtual link diagram. We say that D is com-
patible if every component of D has algebraic intersection number zero with the remainder
of D. ♦

(Here algebraic intersection should be understood as signed intersection in the plane.)

Proposition 5.12. A compatible virtual link is 2-colourable.

Proof. We prove the contrapositive. Let D have a degenerate component (as in Defini-
tion 2.6). An odd number of chord endpoints lie on this component, so that there must be
an odd number of mixed crossings between it and the remainder of the diagram. It follows
immediately that this component cannot have algebraic intersection zero with the remainder
of the diagram. �

Figure 15 depicts a 2-colourable virtual link that is not compatible, from which it follows
that the set of compatible virtual links is a proper subset of that of 2-colourable virtual links.

5.3.3. Xu’s index polynomial.
5.3.3. Xu’s index polynomial. In [18] Xu defines an index polynomial of virtual links,

using an index theory related to the IP parity. The definition of this polynomial also suffers
from the defect of handling self- and mixed crossings differently. As a consequence, it
cannot detect virtual links possessing a diagram with no self crossings, a blind-spot that the
2-colour writhe does not possess. Examples of a virtual links not detected by Xu’s index
polynomial, but detected by the 2-colour writhe are given in Figures 7, 13 and 15.
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