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Abstract
In this paper, we prove that the Bergman projection extends continuously to a projection from

harmonic L1-functions onto holomorphic L1-functions and maps continuously L∞-functions
onto the space of Bloch holomorphic functions in a certain class of infinite type, convex do-
mains in C2.

1. Introduction

1. Introduction
Let Ω be a bounded domain in C2 with smooth boundary bΩ. Let ρ be a defining function

for Ω so that Ω = {z ∈ C2 : ρ(z) < 0} and bΩ = {z ∈ C2 : ρ(z) = 0}, ∇ρ � 0 on bΩ.
Let (Ω) be the space of functions that are holomorphic in Ω, with the topology of uniform
convergence on compact subsets of Ω. For 1 ≤ p ≤ ∞, the Bergman space Ap(Ω) is the
class of all holomorphic Lp(Ω)-functions in Ω with the R4-Lebesgue measure dV for C2.
The Bergman projection  is the orthogonal projection of L2(Ω) onto the Bergman space
A2(Ω). One of most important properties of the Bergman projection is that there exists a
function P : Ω ×Ω→ C such that

(1.1) [u](z) =
∫
Ω

u(ζ)P(ζ, z) dV(ζ),

for all u ∈ L2(Ω), z ∈ Ω. Here, P(ζ, z) is the Bergman kernel on Ω, which is holomorphic
with respect to z ∈ Ω, and anti-holomorphic in ζ, and only depending on Ω. In this paper,
we are interested in Lp-boundedness for  on a class of certain convex domains in several
complex variables.

(1) In [25], it is proved that if Ω is a strongly pseudoconvex domain, then  extends
continuously to a bounded operator from Lp(Ω) to Ap(Ω), for all 1 < p < ∞.

(2) LetΩ = {(z1, z2) ∈ C2 : |z1|2+|z2|2/α < 1} for α > 1. In this case,Ω is weakly convex,
not strongly pseudoconvex. In [2], the author showed that the Bergman projection
on Ω extends to a continuous operator from Lp(Ω) to Ap(Ω) for all p ∈ (1,∞).

(3) More generally, letΩ ⊂ Cn be a smoothly bounded convex domain of finite line type
(see [22] for the definition of this type). McNeal and Stein (in [23]) proved that the
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Bergman projection maps Lp(Ω)→ Ap(Ω) boundedly for all 1 < p < ∞.
(4) In [3] Charpentier and Dupain had showed that the Bergman projection of smoothly

bounded pseudoconvex domains whose boundary points are all of finite commutator
type (see [24] the definition of this type) in Cn and with locally diagonalizable Levi
form maps Lp(Ω) continuously into itself, for all 1 < p < ∞.

(5) Recently, on certain convex domains of infinite type in C2, for example,

Ω∞ =
{

(z1, z2) ∈ C2 : ρ(z) = exp
(
1 +

2
s

)
· exp

( −1
|z1|s

)
+ |z2|2 − 1 < 0

}
,

the Lp-boundedness of the Bergman projection is also investigated by Ha and Khoi
(see in [13]), for all p ∈ (1,∞).

Although there are also many results related to Lp-boundedness for the Bergman projection
on various domains, the power p can not be equal to 1 or∞. Even when Ω is the unit ball in
C

n, for n ≥ 2, the Bergman projection  can not be extended continuously from Lp(Ω) onto
Ap(Ω) when p = 1 or p = ∞ (for example, see [30, Section 7.1]). This leads us to explore
other spaces that are smaller than Lp(Ω) and the Bergman projection behaves better on these
spaces. In particular, for 1 ≤ p < ∞, the harmonic Bergman space Lp

Har(Ω) is the class of all
harmonic functions on Ω which belong to Lp(Ω). It is clear that Ap(Ω) ⊂ Lp

Har(Ω) ⊂ Lp(Ω).
Moreover, we also have the following density property which is proved in [21, page 236].

Lemma 1.1. If Ω ⊂ RN is a bounded domain with boundary of class C4 then L2
Har(Ω) is

dense in L1
Har(Ω).

For p = ∞, we need the following space which is called the Bloch space.

Definition 1.2. A differentiable function u on Ω is said to be a Bloch function if and only
if

‖u‖Bl(Ω) = sup
z∈Ω

(|ρ(z)| · |u(z)| + |ρ(z)| · |∇u(z)|) < ∞.

The space of all Bloch functions defined on Ω is denoted by Bl(Ω) and by BlHol(Ω) =
Bl(Ω) ∩ (Ω) the space of Bloch holomorphic functions on Ω. We also define ‖u‖BlHol(Ω) =

‖u‖Bl(Ω) for all u ∈ BlHol(Ω).

The main result in this paper is following.

Main Theorem. Let Ω be a smoothly bounded convex domain in C2 admitting an F-type
at all boundary points (see Definition 2.3). Then the Bergman projection maps continuously

(1) L1
Har(Ω) onto A1(Ω).

(2) L∞(Ω) onto BlHol(Ω).

This result was proved by Ligocka in [21] when Ω is a smoothly bounded, strongly pseu-
doconvex domain in Cn. In this case, although Ligocka also cannot admit the boundedness
from L∞Har(Ω) onto L∞(Ω) ∩ (Ω), she showed that  maps continuously L∞Har(Ω) onto the
dual to the Hardy space H1(bΩ).

The structure of the paper is as follows. Section 2 deals with preliminaries for Cauchy-
Fantappiè forms on convex domains admitting the F-type condition. Necessary Lp-estimates
for the Cauchy-Riemann equation is provided in Section 3. Section 4 deals with the proof
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of the Main Theorem.

2. Preliminaries

2. Preliminaries2.1. The construction of the Cauchy-Fanttapiè form.
2.1. The construction of the Cauchy-Fanttapiè form. In this subsection, we recall the

construction of Cauchy-Fanttapiè form, which plays an essential role in our representation
for the Bergman projection (see [29] for more details).

Let Ω ⊂ C2 be a bounded convex domain with smooth boundary bΩ and a defining
function ρ. By the hypothesis that Ω is convex,

4∑
i, j=1

∂2ρ

∂xi∂x j
(x)aia j ≥ 0,

in which x ∈ bΩ, z j = x2 j−1+
√−1x2 j and a ∈ R4 be a non-zero vector such that

∑4
j=1 a j

∂ρ
∂x j

(x)
= 0 on bΩ. Let us define, for (ζ, z) ∈ bΩ ×Ω:

(2.1) Φ(ζ, z) =
2∑

j=1

∂ρ

∂ζ j
(ζ)(ζ j − z j).

The convexity of Ω gives

Re

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

j=1

∂ρ

∂ζ j
(ζ)(ζ j − z j)

⎞⎟⎟⎟⎟⎟⎟⎠ � 0,

so that Φ(ζ, z) � 0 for all ζ ∈ bΩ, z ∈ Ω. Moreover, the following lemma is a consequence
of the definition of Φ(ζ, z).

Lemma 2.1. For any P ∈ bΩ, there are positive constants δ, c such that for all boundary
points ζ ∈ bΩ ∩ B(P, δ), we have

(1) Φ(ζ, z) is holomorphic in z ∈ B(ζ, δ);
(2) Φ(ζ, ζ) = 0, and dzΦ|z=ζ � 0;
(3) There exists a constant A > 0 such that |Φ(ζ, z)| ≥ A for all z ∈ Ω and |z − ζ | ≥ c;
(4) ρ(z) > 0 for all z with Φ(ζ, z) = 0 and 0 < |z − ζ | < c.

Here the notation B(ζ, r) means the Euclidean ball centered at ζ of radius r > 0.

Now we set

C(ζ, z) =
1

2πi

⎡⎢⎢⎢⎢⎢⎢⎣
2∑

j=1

∂ρ

∂ζ j
(ζ)dζ j

⎤⎥⎥⎥⎥⎥⎥⎦ 1
Φ(ζ, z)

for (ζ, z) ∈ bΩ ×Ω,

which is a (1, 0)-form of ζ-variables. The Cauchy-Leray kernel for the convex domain Ω is

Ω0 (C(ζ, z)) = C(ζ, z) ∧ (∂̄ζC(ζ, z))(2.2)

=
∑

j0∈{1,2}

Aj0 (ζ)
Φ2(ζ, z)

dζ1 ∧ dζ2 ∧ dζ̄ j0 + non-singular terms,(2.3)

which is a Cauchy-Fantappiè (2, 1)-form on bΩ×Ω, where Aj0 (ζ) is a polynomial involving
first and second derivatives in ζ of ρ.

For each z ∈ Ω we may (C1-function) smoothly extend the (1, 0)-form C(., z) to the inte-
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rior of Ω as follows

C̃(ζ, z) =
1

2πi

⎡⎢⎢⎢⎢⎢⎢⎣
2∑

j=1

∂ρ

∂ζ j
(ζ)dζ j

⎤⎥⎥⎥⎥⎥⎥⎦ 1
Φ(ζ, z) − ρ(ζ)

.

The following Cauchy-Leray Integral Formulas for convex domains are crucial in the
Cauchy-Fantappiè theory.

Proposition 2.2. Suppose thatΩ is a bounded, convex domain of class C∞. The following
are true.

(1) [29, Theorem 3.4] for any u ∈ (Ω) ∩C(bΩ),

u(z) =
∫

bΩ
u(ζ)Ω0(C(ζ, z)), z ∈ Ω.

(2) [18, Proposition 9] for any u ∈ (Ω),

u(z) =
∫
Ω

u(ζ)∂̄ζΩ0(C̃(ζ, z)), z ∈ Ω.

2.2. A domain admitting an F-type.
2.2. A domain admitting an F-type. In this paper, we focus on studying the class of

convex domains admitting the so-called geometric F-type. This type condition were first
introduced in [7] to generalize all domains of finite type and many cases of infinite type in
the sense of Range in [27, 28].

Definition 2.3. Let F : [0,∞) → [0,∞) be a smooth, strictly increasing function such
that

(1) F(0) = 0,

(2)
∫ σ

0

∣∣∣ln F(r2)
∣∣∣ dr < ∞ for some σ > 0 which is small enough,

(3)
F(t)

t
is non-decreasing function.

Let Ω ⊂ C2 be a smooth bounded, convex domain. We say that Ω admitting F-type at a
point P ∈ bΩ if there are positive constants c, c′ such that for all ζ ∈ bΩ ∩ B(P, c′):

ρ(z) � F(|z − ζ |2),

for all z ∈ B(ζ, c) with Φ(ζ, z) = 0.

IfΩ admits the same F-type at every point on bΩ, we simply call thatΩ admitting F-type.
In case F(t) = tm, for m = 1, 2, . . ., the F-type notion agrees with the finite type condition
in the sense of Range in [27, 28]. Here the notations � and � denote inequalities up to a
positive constant, and ≈ means the combination of � and �.

Example 2.4. (a) ([29, p. 195]) Let Ω ⊂ C2 be a strictly convex or strongly pseudo-
convex domain with its smooth, strictly plurisubharmonic defining function ρ. Then

ReΦ(ζ, z) ≥ ρ(ζ) − ρ(z) + λ0|ζ − z|2,
for |ζ − z| and |ρ(ζ)| small, and λ0 > 0.
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Hence, when ζ ∈ Ω ∩ {|ζ − z| < c}, and Φ(ζ, z) = 0, we have

ρ(z) − ρ(ζ) � F(|z − ζ |2),

with F(t) = t. So Ω is of F-type.
(b) ([31, Theorem 3.1]) The complex ellipsoid is

Ω = {(z1, z2) ∈ C2 : ρ(z) = |z1|2m1 + |z2|2m2 − 1 < 0} (m1,m2 ∈ N).

Then there exist constants c,C > 0 such that

ReΦ(ζ, z) ≥ −ρ(z) + ρ(ζ) +C|ζ − z|2m,

for ζ ∈ Ω, z ∈ Ω with |ζ − z| < c, and m = max{m1,m2}. Thus Ω is a convex domain
admitting an F-type, with F(t) = tm.

(c) ([26, Proposition 1]) Let Ω ⊂ C2 be a convex domain with real analytic boundary,
i.e., ρ is a real analytic function. Then, there exist constants c,C > 0 and a positive
integer m such that

ReΦ(ζ, z) ≥ −ρ(z) + ρ(ζ) +C|ζ − z|2m,

for ζ ∈ Ω, z ∈ Ω with |ζ − z| < c. That means Ω is a domain admitting an F-type,
with F(t) = tm.

(d) ([32, Lemma 3]) Let

Ω∞ =
{

(z1, z2) ∈ C2 : ρ(z) = exp
(
1 +

2
s

)
. exp

( −1
|z1|s

)
+ |z2|2 − 1 < 0

}
.

Then, there exists a constant c > 0 such that for all ζ, z ∈ Ω with |ζ − z| < c

ReΦ(ζ, z) � ρ(ζ) − ρ(z) + exp
(
1 +

2
s

)
exp

{ −1
32|ζ − z|2s

}
,

for 0 < s < 1/2. Hence Ω∞ is a convex domain admitting an F-type, with F(t) =

exp
( −1
32ts

)
.

The following lemma provides an important lower estimate for the Cauchy-Fantappiè
form. Its proof is rather similar to the proof of [7, Lemma 3.3] with a negligible modification,
so we omit it here.

Lemma 2.5. Let Ω be a smoothly bounded, convex domain in C2 admitting an F-type at
P ∈ bΩ. Then there is a positive constant c such that the support function Φ(ζ, z) satisfies
the following estimate

(2.4) |Φ(ζ, z) − ρ(ζ)| � |ρ(ζ)| + |ρ(z)| + | ImΦ(ζ, z)| + F(|z − ζ |2),

for every ζ ∈ Ω ∩ B(P, c), and z ∈ Ω, |z − ζ | < c.

3. Lp-estimates for the ∂̄-equation

3. Lp-estimates for the ∂̄-equation
This section deals with Lp-estimates for solutions of the ∂̄-equation on the convex do-

main admitting F-type. Our method is inspired by the same technique by Khanh in [16]
and Khanh et. al. in [11]. Firstly, it is necessary to recall the formula of the ∂̄-solution
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constructed by Henkin-Ramirez, see [26] or [5] for more details.

Lemma 3.1. Let Ω ∈ C2 be a smoothly bounded, convex domain. Let ϕ =
∑2

j=1 ϕ j(z)dz̄ j

be a bounded, C1, ∂̄-closed (0, 1)-form on Ω. Then

∂̄ [ϕ](z) = ϕ(z)

on Ω, where

 [ϕ](z) =
1

2π2

∫
ζ∈bΩ

∂ρ(ζ)
∂ζ1

(ζ̄2 − z̄2) − ∂ρ(ζ)
∂ζ2

(ζ̄1 − z̄1)

Φ(ζ, z)|ζ − z|2 ϕ(ζ) ∧ dζ1 ∧ dζ2(3.1)

+
1

4π2

∫
Ω

ϕ1(ζ)(ζ̄1 − z̄1) − ϕ2(ζ)(ζ̄2 − z̄2)
|ζ − z|4 dζ̄1 ∧ dζ̄2 ∧ dζ1 ∧ dζ2.

In this section, we prove that

Theorem 3.2. Let Ω be a smoothly bounded convex domain in C2 admitting a type F at
all boundary points. If ϕ ∈ Lp

(0,1)(Ω), then  [ϕ] ∈ Lp(Ω) and

‖ [ϕ]‖Lp(Ω) ≤ Cp‖ϕ‖Lp
(0,1)(Ω)

for all 1 ≤ p ≤ ∞.
Although this theorem is proved in [10] with Ω ⊂ Cn (n ≥ 2), we recall its proof for

convenience. In order to prove this theorem, we recall the following well-known result from
harmonic analysis (see Theorem B.7, Appendix B in [4] for more details).

Theorem 3.3 (Marcinkiewicz Interpolation). Let (S1, μ1)and (S2, μ2) be two measure
spaces and p0, p1, q0, q1 be numbers such that 1 ≤ p j ≤ q j ≤ ∞, for j = 0, 1 and q0 � q1.
If T : Lp j(S1, μ1) → Lq j(S2, μ2) is bounded, for j = 0, 1, then T : Lpt (S1, μ1) → Lqt (S2, μ2) is
bounded, for each (pt, qt), provided that

1
pt
=

1 − t
p0
+

1
p1

and
1
qt
=

1 − t
q0
+

t
q1

with 0 < t < 1.

Proof of Theorem 3.2. By the Marcinkiewicz Interpolation Theorem, it suffices to show
that

(3.2) ‖T [ϕ]‖L1(Ω) ≤ C1‖ϕ‖L1
(0,1)(Ω)

and

(3.3) ‖T [ϕ]‖L∞(Ω) ≤ C∞‖ϕ‖L∞(0,1)(Ω).

Since the second integral in the representation of  in (3.1) is the Bochner-Martinelli oper-
ator over Ω, it is bounded from Lp

(0,1)(Ω) → Lp(Ω) for all 1 ≤ p ≤ ∞, so it is not significant
in our analysis. The problematic subject is the boundary integral in (3.1).

Firstly, we prove the estimate (3.3) since its proof is shorter than the second estimate’s
one. Let ϕ ∈ L∞(0,1)(Ω), we have∣∣∣∣∣∣∣∣

1
2π2

∫
ζ∈bΩ

∂ρ(ζ)
∂ζ1

(ζ̄2 − z̄2) − ∂ρ(ζ)
∂ζ2

(ζ̄1 − z̄1)

Φ(ζ, z)|ζ − z|2 ϕ(ζ) ∧ dζ1 ∧ dζ2

∣∣∣∣∣∣∣∣
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� ‖ϕ‖L∞(0,1)(Ω)

∫
bΩ

dS(ζ)
|Φ(ζ, z)||ζ − z| ,

where dS is the surface element on bΩ.
By the same argument in [8], for a small 0 < σ < c/12 (c is the constant in Lemma

2.5), we choose a cutoff function ψ ∈ C∞(C2 × C2) such that ψ(ζ, z) = 1 on the set {(ζ, z) ∈
C

2×C2 : |ρ(z)|+ | Im(Φ(ζ, z))|+F(|ζ−z|2) < σ/2} and ψ(ζ, z) = 0 on the set {(ζ, z) ∈ C2×C2 :
|ρ(z)| + | Im(Φ(ζ, z))| + F(|ζ − z|2) > σ}. Hence,∫

bΩ

dS(ζ)
|Φ(ζ, z)||ζ − z| =

∫
bΩ

(1 − ψ(ζ, z))
dS(ζ)

|Φ(ζ, z)||ζ − z| +
∫

bΩ
ψ(ζ, z)

dS(ζ)
|Φ(ζ, z)||ζ − z| .

By the construction of ψ, the first component in above sum is a non-singular integral, then∫
bΩ

dS(ζ)
|Φ(ζ, z)||ζ − z| � 1 +

∫
bΩ
ψ(ζ, z)

dS(ζ)
|Φ(ζ, z)||ζ − z| .

Since bΩ is compact, there exists a finite family of points {p j} j=1,...,k such that bΩ is covered
by {B(p j, σ)} j=1,...,k. We also change the coordinate of each ball with the linear map Tp j

which makes p j to 0. So we only consider the boundary integral on each bΩ∩ B(p j, σ). For
convenience, we also still use p for p j.

Since bΩ is a 3-dimensional regularly imbedded submanifold in R4, dS can be identified
with the unique positive 3-dimensional Lebesgue measure on bΩ, see [17, Appendix II] for
more details. By applying Lemma 2.5 and changing to the new variables t1+it2 = ζ1−z1, t3 =
ImΦ(ζ, z) and , we get∫

bΩ∩B(p,σ)

dS(ζ)
|Φ(ζ, z)||ζ − z| �

∫
bΩ∩B(p,σ)

dS(ζ)(|ρ(z)| + | ImΦ(ζ, z)| + F(|ζ1 − z1|2)
) |ζ1 − z1|

�
∫
|(t1,t2,t3)|≤σ

dt1dt2dt3(
|ρ(z)| + |t3| + F(t2

1 + t2
2)
)
|(t1, t2)|

�
∫
|(r,t3)|≤σ

rdrdt3(|ρ(z)| + |t3| + F(r2)
)

r

�
∫ σ

0
| ln F(r2)|dr < ∞.

Notice that, in the above second estimate, introduction of (t1, t2, t3)-coordinates in the inte-
gral involves a bounded Jacobian factor. Then we obtain the desired L∞(Ω)-boundedness.

For the L1(Ω)-boundedness, we must convert the integral from the boundary bΩ to the
interior Ω. By the Stoke’s Theorem and the assumption that ∂̄ϕ = 0 (in the distribution
sense), the boundary integral in (3.1) equals

[ϕ](z) =
∫
Ω

H(ζ, z)ϕ(ζ) ∧ dζ1 ∧ dζ2,

where

H(ζ, z) =
1

2π2 ∂̄ζ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∂ρ(ζ)
∂ζ1

(
ζ̄2 − z̄2

)
− ∂ρ(ζ)

∂ζ2

(
ζ̄1 − z̄1

)
(Φ(ζ, z) − ρ(ζ))|ζ − z|2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Recalling the covering {B(p j, σ)} j=1,...,k of bΩ, we need to show that
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Ω∩B(p,σ)

|ϕ(z)|dV(z) � ‖ϕ‖L1
(0,1)(Ω).

Let ϕ ∈ L1
(0,1)(Ω), we have∫

Ω∩B(p,σ)
|ϕ(z)|dV(z) =

�
(ζ,z)∈Ω×(Ω∩B(p,σ))

|H(ζ, z)ϕ(ζ)| dV(ζ, z)

�
�

(ζ,z)∈Ω×(Ω∩B(p,σ))

O(|ζ − z|)
|Φ(ζ, z) − ρ(ζ)|2|ζ − z|2 · |ϕ(ζ)|dV(ζ, z)

�
�

(ζ,z)∈Ω×(Ω∩B(p,σ)),|ζ−z|<c

|ϕ(ζ)|
|Φ(ζ, z) − ρ(ζ)|2|ζ − z|dV(ζ, z)

+

�
(ζ,z)∈Ω×(Ω∩B(p,σ)),|ζ−z|≥c

|ϕ(ζ)|
|Φ(ζ, z) − ρ(ζ)|2|ζ − z|dV(ζ, z)

= (I) + (II),

where 0 < σ < c is small enough. Since (II) is a non-singular integral, we only need to
estimate the term (I). Let us consider the changing of variables (α,ω) = (α1, α2, ω1, ω2) =
(ζ1, ζ2, z1 − ζ1, ρ(z) + i Im(Φ(ζ, z))) and let J be its Jacobian, then

det(J) =
∂ Im(Φ(ζ, z))
∂ Im z2

∂ρ(z)
∂Re z2

− ∂ Im(Φ(ζ, z))
∂Re z2

∂ρ(z)
∂ Im z2

.

By a possible rotation and dilation of Ω, we can assume that ∇ρ(0) = (0, 0, 0,−1). A direct
calculation then establishes that if σ is chosen sufficiently small so that det(J) � 0. Applying
the estimate in Lemma 2.5, we get

(I) �
∫

(ω,α)∈(Ω∩B(0,σ))×B(0,σ)

|ϕ(α)|(
|ω2| + F(|ω2

1|)
)2 |ω1|

dV(α, ω)

� ‖ϕ‖L1(Ω)

∫
B(0,σ)

dV(ω)(|ω2| + F(|ω1|2)
)2 |ω1|

� ‖ϕ‖L1(Ω)

∫
|(t1,t2,t3,t4)|<σ

dt1dt2dt3dt4

(|t3| + |t4| + F(t2
1 + t2

2))2
√

t2
1 + t2

2

(where ω1 = t1 + it2, ω2 = t3 + it4)

� ‖ϕ‖L1(Ω)

∫
|(t1,t2)|<σ

| ln(F(t2
1 + t2

2))|dt1dt2√
t2
1 + t2

2

� ‖ϕ‖L1(Ω)

∫ σ

0
| ln(F(r2))|dr (using the polar coordinates r = |(t1, t2)|)

� ‖ϕ‖L1(Ω) (by the second condition on F).

Hence the proof of Theorem 3.2 is complete due to the Fubini - Tonelli Theorem from the
measure theory. �
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4. Proof of the main result

4. Proof of the main result
The main idea to prove Main Theorem is based on techniques of Ligocka in [21] on

strongly pseudoconvex domains. In our proof, we extend her setup on convex domains
admitting F-type.

For u ∈ C1(Ω) ∩ (Ω) and u is holomorphic on Ω, by the Stoke Theorem, we get

u(z) =
∫
Ω

u(ζ)∂̄ζΩ0(C̃(ζ, z)), z ∈ Ω.

By the smoothness of each component in Ω0((C̃(ζ, z)) then the form ∂̄ζΩ0((C̃(ζ, z)) also is a
smooth form on Ω ×Ω.

For 0 < c < δ (c is the constant in Lemma 2.5), let us define Ωδ = {z ∈ C2 : ρ(z) < δ}
and let Pz be the Hörmander solution operator to the ∂̄-equation in the variables z ∈ Ωδ (the
existence of Pz can be found in [12]).

Definition 4.1. For (ζ, z) ∈ Ω ×Ωδ, let us define

Q(ζ, z) = −Pz

(
∂̄z∂̄ζΩ0((C̃(ζ, z))

)
,

G(ζ, z) = Q(ζ, z) + ∂̄ζΩ0((C̃(ζ, z)),

where G(ζ, z) is holomorphic in z.

The fact Q(ζ, z) ∈ C∞(Ω) ×C1(Ω) implies that

G(ζ, z) =
1
π2

1
(Φ(ζ, z) − ρ(ζ)3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ(ζ)
∂ρ

∂ζ1
(ζ)

∂ρ

∂ζ2
(ζ)

∂ρ

∂ζ̄1
(ζ)

∂2ρ

∂ζ1∂ζ̄1
(ζ)

∂2ρ

∂ζ2∂ζ̄1
(ζ)

∂ρ

∂ζ̄2
(ζ)

∂2ρ

∂ζ1∂ζ̄2
(ζ)

∂2ρ

∂ζ2∂ζ̄2
(ζ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dζ1 ∧ dζ̄1 ∧ dζ2 ∧ dζ̄2 + non-singular terms.

Let u be a holomorphic function defined on Ωδ, since∫
Ω

u(ζ)Pz(∂̄z∂̄ζΩ0((C̃(ζ, z))) =
∫
Ω

Pz(u(ζ)∂̄z∂̄ζΩ0((C̃(ζ, z)))

= Pz(
∫
Ω

u(ζ)∂̄z∂̄ζΩ0((C̃(ζ, z)))

= Pz(
∫
Ω

u(ζ)∂̄ζ ∂̄zΩ0((C̃(ζ, z)))

= Pz(
∫

bΩ
u(ζ)∂̄zΩ0((C̃(ζ, z)))

= 0 (see [15, 1.4.2]),

we have the reproductive property of G(ζ, z) that u(z) =
∫
Ω

u(ζ)G(ζ, z) for all z ∈ Ω. More

generally, let u ∈ L2(Ω), we define

[u](z) =
∫
Ω

u(ζ)G(ζ, z)
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and its dual

∗[u](z) =
∫
Ω

u(ζ)G(ζ, z).

Then  : L2(Ω)→ A2(Ω) is a well-defined, continuous operator. Moreover, we also have:

Theorem 4.2. [8, Theorem 3.4][Ligocka’s decomposition]. Let Ω ⊂ C2 be a smoothly
bounded, convex domain. Assume that Ω admits a F-type at all boundary points for some
function F. Then [u](z) = (I − )−1[u](z) = (I + )−1∗[u](z), where

[u](z) = ∗[u](z) − [u](z).

Moreover,  maps continuously L∞(Ω) into Λ f (Ω), where

f (d−1) =
(∫ d

0

√
F∗(t)
t

dt
)−1

and F∗ is the inversion function of F.

The proof of Main Theorem is based on the following two propositions:

Proposition 4.3. LetΩ be a smoothly bounded, convex domain in C2 admitting an F-type
at all boundary points. Then  maps continuously L∞(Ω) onto BlHol(Ω).

This proposition is exactly the second statement of the Main Theorem.

Proposition 4.4. LetΩ be a smoothly bounded, convex domain in C2 admitting an F-type
at all boundary points. Then BlHol(Ω) represents the dual space

(
A1(Ω)

)∗
via the following

scalar product:

〈u, v〉1 = 〈u,1v〉0 =
∫
Ω

u(z)1v(z)dV(z), u ∈ A1(Ω), v ∈ BlHol(Ω),

where 1 : C∞(Ω)→ C∞(Ω) is the Bell’s extension operator of first order (see [1]) which is
defined by

1u = u − Δ
(

uφρ2

2|∇ρ|2
)
,

where φ is an arbitrarily smooth function equal to 1 in a neighborhood of bΩ and equal to
0 in a neighborhood of the set {z ∈ C2 : ∇ρ(z) = 0}.

The operator 1 plays an important role in studying various duality relations between
spaces of holomorphic and harmonic functions (see References in [1]). Some fundamental
properties of 1 which can be also found in [1] are:

(1) 1u vanishes on bΩ.
(2) (u − 1u) is orthogonal to L2

Har(Ω).
(3) if u ∈ BlHol(Ω) then 1u ∈ L∞(Ω).

In all proofs below we need the following inequality of the Bell’s operator which is contained
in [21, p. 231].

Lemma 4.5. If u ∈ BlHol(Ω) then 1u ∈ L∞(Ω) and

‖1u‖ � ‖u‖BlHol(Ω).
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Proof of Proposition 4.3. Since the continuity of  in Theorem 4.2 and the fact that
Ker[I − ] = {0}, I −  is a Fredholm isomorphism of L∞(Ω). Thus, it is sufficient to prove
that  maps continuously L∞(Ω) into BlHol(Ω).

Let u ∈ L∞(Ω), we must show that

(4.1) (|ρ(z)| · |u(z)| + |ρ(z)| · |∇u(z)|) � ‖u‖∞
for all z ∈ Ω. We consider the first term in (4.1)

|ρ(z)| · |u(z)| = |ρ(z)| ·
∣∣∣∣∣
∫
Ω

u(ζ)G(ζ, z)dV(ζ)
∣∣∣∣∣

≤ |ρ(z)| · ‖u‖∞
∫
Ω

|G(ζ, z)| dV(ζ)

≤ ‖u‖∞
(
|ρ(z)|

∫
Ω

|Q(ζ, z)| dV(ζ) + |ρ(z)|
∫
Ω

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV(ζ)

)

� ‖u‖∞
(
1 + |ρ(z)|

∫
Ω

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV(ζ)

)
.

For 0 < c < σ (c is the constant in Lemma 2.5), let h ∈ C∞(C2) be a cut-off function such
that h = 1 on {ζ ∈ C2 : |ρ(ζ)| + |ρ(z)| + | Im(Φ(ζ, z))| + F(|ζ − z|2) < σ/2} and h = 0 on
{ζ ∈ C2 : |ρ(ζ)| + |ρ(z)| + | Im(Φ(ζ, z))| + F(|ζ − z|2) > σ}. Then,∫

Ω

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV(ζ) =

∫
Ω

(1 − h(ζ))
∣∣∣∂̄ζΩ0((C̃(ζ, z))

∣∣∣ dV(ζ)

+

∫
Ω

h(ζ)
∣∣∣∂̄ζΩ0((C̃(ζ, z))

∣∣∣ dV(ζ)

� 1 +
∫
Ω

h(ζ)
∣∣∣∂̄ζΩ0((C̃(ζ, z))

∣∣∣ dV(ζ)

� 1 +
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F(|ζ−z|2)<σ

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV(ζ)

�
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F(|ζ−z|2)<σ

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV(ζ).

Since |∂̄ζΩ0((C̃(ζ, z))| is dominated by
1

|Φ(ζ, z) − ρ(ζ)|3 when ζ near to z, we obtain

∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F(|ζ−z|2)<σ

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV(ζ)

�
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F(|ζ−z|2)<σ

1
|Φ(ζ, z) − ρ(ζ)|3 dV(ζ).

To estimate the last integral in the above inequality, we use the following Henkin coordinates
onΩ (see [29, Lemma V3.4]). These coordinates do exist since ∇ρ(ζ)|ζ=z and ∇ImΦ(ζ, z)|ζ=z

are nonzero and are not proportial.

Lemma 4.6 (Henkin’s coordinates). There exist positive constants M, a and η ≤ c, and,
for each z with dist(z, bΩ) ≤ a, there is a smooth local coordinate system (t1, t2, t3, t4) = t =
t(ζ, z) on the ball B(z, c) such that we have
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t(z, z) = 0,

t1(ζ) = ρ(ζ) − ρ(z),

t2(ζ) = Im(Φ(ζ, z)),

|t| < δ for ζ ∈ B(z, c),

|JR(t)| ≤ M and |detJR(t)| ≥ 1
M
,

where JR(t) is the Jacobian of the transformation t.

Therefore, for some 0 < σ′ < σ small enough,∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F(|ζ−z|2)<σ

|ρ(z)|
|Φ(ζ, z) − ρ(ζ)|3 dV(ζ)

≤
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F(|ζ−z|2)<σ

1
|Φ(ζ, z) − ρ(ζ)|2 dV(ζ)

�
∫
|(t1,...,t4)|≤σ

1
(|t1| + |t2| + F(|(t3, t4)|2))2 dt1 . . . dt4

�
�

(r1,r2)∈(0,σ′)2

r1r2

r2
1 + F2(r2

2)
dr1dr2

(using the polar coordinates r1 = |(t1, t2)| and r2 = |(t3, t4)|)

�
∫ σ′

0
| ln F(r2)|dr < ∞.

Next, for the second term in (4.1), we have the note that

∣∣∣∣∣∣ ∂∂z j
∂̄ζΩ0(C̃(ζ, z))

∣∣∣∣∣∣ is dominated by

|ζ − z|
|Φ(ζ, z) − ρ(ζ)|4 . Thus, for all z ∈ Ω, using the Henkin coordinates again, we have

|ρ(z)| · |∇u(z)| � |ρ(z)| · ‖u‖∞
∫
Ω

dV(ζ)
|Φ(ζ, z) − ρ(ζ)|4

≤ ‖u‖∞
(∫
Ω

(1 − h(ζ))
dV(ζ)

|Φ(ζ, z) − ρ(ζ)|3 +
∫
Ω

h(ζ)
dV(ζ)

|Φ(ζ, z) − ρ(ζ)|3
)

� ‖u‖∞
(
1 +

∫
Ω

h(ζ)
dV(ζ)

|Φ(ζ, z) − ρ(ζ)|3
)

� ‖u‖∞
(
1 +

∫
|(t1,...,t4)|≤σ′

1
(|t1| + |t2| + F(|(t3, t4)|2))2|(t3, t4)|dt1 . . . dt4

)

� ‖u‖∞
(
1 +
�

(t3,t4)∈(0,σ′)2

1
(|(t3, t4)| ln F(|(t3, t4)|2)dt3dt4

)

� ‖u‖∞
(
1 +

∫ σ′

0
| ln F(r2)|dr

)
< ∞.

Therefore we conclude that for all u ∈ L∞(Ω), [u] ∈ BlHol(Ω). So  is continuous from
L∞(Ω) to BlHol(Ω).

Finally, we show that  is onto BlHol(Ω). Let any u ∈ BlHol(Ω) then v = 1u ∈ L∞(Ω).
Thus we get

[v](z) − u(z) = [v − u](z)
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=

∫
Ω

KΩ(ζ, z) · (v(ζ) − u(ζ))dV(ζ)

= 0

since (u − 1u) is orthogonal to L2
Har(Ω) and KΩ(ζ, z) is L2-(pluri)harmonic in ζ-variables.

Therefore [v] = u. �

To prove the Proposition 4.4, we shall use the following fact.

Lemma 4.7. Let Ω be a smoothly bounded, convex domain in C2 admitting an F-type at
all boundary points. Then A2(Ω) is dense in A1(Ω).

Proof. In the Theorem 3.2, we have shown that the Henkin operator  solving the ∂̄-
equation is continuous from L1

(0,1)(Ω) into L1(Ω) when Ω is any smoothly bounded, convex
domain in C2 admitting an F-type at all boundary points. Therefore, the proof now follows
from exactly the same lines in [21, page 235] (for strongly pseudoconvex domains) or in [9,
(i), Theorem 1.3] (for the convex domain of infinite type Ω∞). �

Proof of Proposition 4.4. Proposition 4.3 and Lemma 4.7 imply Proposition 4.4 by the
same argument with [21, p.236]. �

Finally the first part of Main Theorem follows from Proposition 4.4 and Lemma 4.5 by
the same argument with [21, p. 237].

To end this section, we provide a corollary of the Main Theorem. Let ∂̄∗ be the Hilbert
adjoint of ∂̄ in L2(Ω) and  be the operator solving the ∂̄-Neumann problem �α = ϕ, where
ϕ is a (0, 1)-form. If u is an arbitrary square integrable function in Ω, then we have

[u] = u − ∂̄∗ [∂̄u].

Let ϕ ∈ Lp
(0,1)(Ω) be a ∂̄-closed form (in the distribution sense) and u =  [ϕ] be the Henkin

solution solving the ∂̄-equation. Then we can rewrite

∂̄∗ [ϕ] =  [ϕ] − [ [ϕ]].

Combining the Main Theorem, Theorem 3.2 and the Lp-boundedness of  in [13], we have:

Corollary 4.8. Let Ω be a smoothly bounded convex domain in C2 admitting a type F at
all boundary points. Let ϕ be a ∂̄-closed (0, 1) form. Then

(1) If ϕ ∈ Lp
(0,1)(Ω), for 1 < p < ∞, ∂̄∗ [ϕ] ∈ Lp(Ω).

(2) If ϕ ∈ L1
(0,1)(Ω) with harmonic coefficients, ∂̄∗ [ϕ] ∈ L1(Ω).

(3) If ϕ ∈ L∞(0,1)(Ω), ∂̄∗ [ϕ] ∈ BlHol(Ω).
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[16] T.V. Khanh: Supnorm and f -Hölder estimates for ∂̄ on convex domains of general type in C2, J. Math.

Anal. Appl. 403 (2013), 522–531.
[17] S.G. Krantz: Function theory of several complex variables, AMS Chelsea publishing, Providence, RI, 2000.
[18] L. Lanzani and E.M. Stein: Cauchy-type integrals in several complex variables, Bull. Math. Sci. 3 (2013),

241–285.
[19] E. Ligocka: The Hölder continuity of the Bergman projection and proper holomorphic mappings, Studia

Math. 80 (1984), 89–107.
[20] E. Ligocka: The Sobolev spaces of harmonic functions, Studia Math. 84 (1986), 79–87.
[21] E. Ligocka: The Bergman projection on harmonic functions, Studia Math. 85 (1987), 229–246.
[22] J.D. McNeal: Convex domains of finite type, J. Funct. Anal. 108 (1992), 361–373.
[23] J.D. McNeal and E.M. Stein: Mapping properties of the Bergman projection on convex domains of finite

type, Duke Math. J. 73 (1994), 177–199.
[24] A. Nagel, E.M. Stein and S. Wainger: Balls and metrics defined by vector fields. I. Basic properties, Acta

Math. 155 (1985), 103–147.
[25] D.H. Phong and E.M. Stein: Estimates for the Bergman and Szegö projections on strongly pseudo-convex
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[27] R.M. Range: The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains,

Pacific J. Math. 78 (1978), 173–189.
[28] R.M. Range: On Hölder estimates for ∂̄bu = f on weakly pseudoconvex domains; in Several complex

variables, Proc. Inter. Conf. Cortona, Italy 1976–1977. Scoula. Norm. Sup. Pisa 1978, 247–267.
[29] R.M. Range: Holomorphic Functions and Integral Representation in Several Complex Variables, Springer-

Verlag, Berlin, 1986.
[30] W. Rudin: Function Theory in the Unit Ball of Cn, Springer-Verlag, Berlin, 1980.



Lp-Estimates for Harmonic Bergman Projection 981
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