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Abstract
In this paper we study the behavior of the total energy and the L2-norm of solutions of two

coupled hyperbolic equations by velocities in exterior domains. Only one of the two equations
is directly damped by a localized damping term. We show that, when the damping set contains
the coupling one and the coupling term is effective at infinity and on captive region, then the
total energy decays uniformly and the L2-norm of smooth solutions is bounded. In the case of
two Klein-Gordon equations with equal speeds we deduce an exponential decay of the energy.

1. Introduction and statement of the results

1. Introduction and statement of the results
Let Ω be a domain of Rd, d � 2. We denote by Δ the Laplace operator on Ω with

Dirichlet boundary condition. We consider the following hyperbolic equation with localized
linear damping

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂2

t u − Δu + mu + a(x)∂tu = 0 in R+ ×Ω,
u = 0 on R+ × Γ,
(u(0, .), ∂tu(0, .)) = (u0, u1) in Ω,

where a ∈ L∞(Ω) is a nonnegative smooth function and m ∈ R+. It is easy to verify that the
energy given by

Eu(t) =
1
2

∫
Ω

|∂tu(t, x)|2 + |∇u(t, x)|2 + m|u(t, x)|2 dx,(1.2)

is non-increasing and

Eu(0) =
∫ t

0

∫
Ω

a(x)|∂tu(t, x)|2 dxdt + Eu(t), t > 0.

When m = 0, the stabilization problem for the linear damped wave equation has been
studied by several authors. More precisely, when Ω is bounded, the uniform decay of the
total energy is equivalent to the geometric control condition of Bardos et al. [7]. On the
other hand, if Ω is not bounded then, in general, the decay rate of the total energy cannot be
uniform. Indeed, in the whole space,i.e. Ω = Rd, Matsumura [19] obtained a precise Lp−Lq

type decay estimate for solutions of (1.1), when a(x) = 1,

(1.3) Eu(t) � C(1 + t)−1−d( 1
i − 1

2 )I2
i ,
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(1.4) ‖u(t, .)‖2L2 � C(1 + t)−d( 1
i − 1

2 )I2
i ,

where C is a positive constant, i ∈ [1, 2] and I2
i = ‖u0‖2H1 + ‖u1‖2L2 + ‖u0‖2Li + ‖u1‖2Li . The proof

in [19] is based on a Fourier transform method. In the case of exterior domains and when
a(x) � a− > 0 on Ω, it is easy to show that the weak solution u of the system (1.1) satisfies

(1.5) Eu(t) � C(1 + t)−1I2
2 and ‖u(t)‖2L2 � CI2

2 , for all t � 0.

In [20], Nakao obtained the estimate (1.5) for a damper which is positive near infinity and
near a part of the boundary (Lions’s condition). Daoulatli in [11] generalized this result by
assuming that each trapped ray meets the damping region which is also effective at infinity.
Recently, Aloui et al. [6] established the uniform stabilization of the total energy for the
system (1.1) when the initial data are compactly supported. They proved that the rate of
decay turns out to be the same as those of the heat equation, which shows that the effective
damper at space infinity strengthens the parabolic structure in the equation.

In the case m > 0, the energy (1.2) contains the L2 norm. Then, using the semi-group
property, the type of decay (1.5) implies the exponential one

Eu(t) � Ce−δtEu(0), for all t � 0,(1.6)

where C, δ are positive constants. In [23] Zuazua considered the nonlinear Klein-Gordon
equations with dissipative term and he proved the exponential decay of energy through the
weighted energy method. This result has been generalized by Aloui et al. [5] for more
general nonlinearities. We refer the reader to the works of Dehman et al. [9] and Laurent et
al. [14] for related results.

In this paper we will study the stabilization problem for a system of two coupled hyper-
bolic equations in exterior domains. More precisely, let O be a compact domain of Rd with

∞ boundary Γ = ∂O and Ω = Rd\O

(1.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t u − Δu + m1u + b(x)∂tv + a(x)∂tu = 0 in R+ ×Ω,
∂2

t v − γ2Δv + m2v − b(x)∂tu = 0 in R+ ×Ω,
u = v = 0 on R+ × Γ,
(u(0, .), ∂tu(0, .)) = (u0, u1) in Ω,

(v(0, .), ∂tv(0, .)) = (v0, v1) in Ω,

where b ∈ L∞(Ω) is a smooth function, m1,m2 ∈ R+ and γ is a positive constant.
Indirect damping of reversible systems occurs in several applications in engineering and
mechanics. In general it is impossible or too expansive to damp all the components of the
state, so it is important to study stabilization properties of coupled systems with a reduced
number of feedbacks.

We associate to the system (1.7) the energy functional given by

Eu,v(t) =
1
2

∫
Ω

|∇u(t, x)|2 + |∂tu(t, x)|2 + m1|u(t, x)|2 dx
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+
1
2

∫
Ω

γ2|∇v(t, x)|2 + |∂tv(t, x)|2 + m2|v(t, x)|2 dx.

Let  =
(
H1

D(Ω) × L2(Ω)
)2

be the completion of (C∞0 (Ω))4 with respect to the norm

‖(w0, w1, w2, w3)‖ =
( ∫
Ω

|∇w0|2 + γ2|∇w2|2 + m1|w0|2 + m2|w2|2 + |w1|2 + |w3|2 dx
) 1

2
.

The linear evolution equation (1.7) can be rewritten under the form

(1.8)

⎧⎪⎪⎨⎪⎪⎩
t + = 0,

 (0) = 0 ∈ ,
where

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
∂tu
v

∂tv

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0

u1

v0

v1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the unbounded operator  on  with domain

D() = { ∈ , ∈ }
is defined by

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −Id 0 0
−Δ + m1Id a 0 b

0 0 0 −Id
0 −b −γ2Δ + m2Id 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From the linear semi-group theory, we can infer that for 0 ∈  the problem (1.8) admits a
unique solution  ∈ C0([0,+∞[,).

In addition, if 0 ∈ D(n), for n ∈ N, then the solution  ∈
n⋂

i=0

Cn−i(R+,D(i)).

It is easy to verify that

(1.9)
d
dt

Eu,v(t) = −
∫
Ω

a(x)|∂tu(t, x)|2 dx.

Thus Eu,v(t) is decreasing with respect to time.
For bounded domain, Kapitonov [13] considered the case of equal speeds (γ = 1) and
proved, under some geometric conditions, the uniform decay

(1.10) Eu,v(t) � Me−βtEu,v(0), for all t � 0,

where M, β > 0. In [3], Ammar et al studied the indirect stability of system (1.7) in the case
of one-dimensional space and when a and b have disjoint supports. More precisely, they
established that the “classical” internal damping applied to only one of the equations never
gives exponential stability if γ � 1 and for the case γ = 1 they gave an explicit necessary and
sufficient conditions for the stability to occur. In [22], Toufayli generalized this result for
different speeds and established, under some geometric conditions, a polynomial stability.
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The problem of the indirect stabilization has been also studied for coupled wave equations
by displacements (weakly coupled). Indeed Alabau et al [1] considered the following system

(1.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t u(t, x) − Δu(t, x) + b(x)v(t, x) + a(x)∂tu(t, x) = 0 in R+ ×Ω,
∂2

t v(t, x) − Δv(t, x) + b(x)u(t, x) = 0 in R+ ×Ω,
u = v = 0 on R+ × Γ,
(u(0, .), ∂tu(0, .)) = (u0, u1) in Ω,

(v(0, .), ∂tv(0, .)) = (v0, v1) in Ω,

where Ω is a bounded domain. They proved that the system (1.11) can not be exponentially
stable and when the coupling term is constant they established a polynomial decay. In [2]
Alabau et al improved this result by assuming that the regions {a > 0} and {b > 0} both
verify GCC and the coupling term satisfies a smallness assumption. This result has been
generalized by Aloui et al [4], for more natural smallness condition on the infinity norm
of the coupling term. Recently, Daoulatli [10] showed that the rate of energy decay for
solutions to the system on a compact manifold with a boundary is determined from a first
order differential equation when the coupling zone and the damping zone verify the GCC.

In the sequel, we fix a constant R0 > 0 such that

O ⊂ BR0 = {x ∈ Rd, |x| < R0}.
Suppose that there exist two positive constants a− and b− such that the damping set ωa :=
{a(x) > a− > 0} and the coupling set ωb := {b(x) > b− > 0} are non-empty open subsets
of Ω. As usual for damped wave (resp. Klein-Gordon) equations, we have to make some
geometric assumptions on the sets ωa and ωb so that the energy of a single wave decays
sufficiently rapidly at infinity. Here, we shall use the Geometric control condition.

Definition 1.1. (see [7, 15]) We say that a set ω of Ω satisfies the geometric control
condition GCC if there exists T > 0 such that from every point inΩ the generalized geodesic
meets the set ω in a time t < T .

If ω satisfies GCC, we set

Tω = inf{T > 0, (ω, T ) satisfies GCC}.
We need also the following assumptions

(1) There exists C > 0 such that 0 � b(x) � Ca(x), ∀x ∈ Ω.
(2) There exists R1 > R0 such that

• Bc
R1
⊂ ωa ∩ ωb, if (m1,m2) ∈ R+ × R∗+,

• Bc
R1
⊂ ωb and a(x) = βb(x), |x| � R1, for some β > 0, if m1 = m2 = 0.

For γ ∈ R∗+, we set

I2
γ = Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2

and
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γ =

⎧⎪⎪⎨⎪⎪⎩
 ∩ (L2(Ω))4, if γ = 1,

D() ∩ (L2(Ω))4, if γ � 1.

With this notation, we can state the stability result for the system (1.7).

Theorem 1.1. Let γ ∈ R∗+ and (m1,m2) ∈ {(0, 0)} ∪ R+ × R∗+. We assume that ωb satisfies
the GCC and that the assumptions (1) and (2) hold. Then for any solution (u, v) of the
system (1.7) with initial data (u0, u1, v0, v1) ∈ γ, we have

(1.12) Eu,v(t) � C(1 + t)−1I2
γ and ‖(u, v)(t)‖2L2∗L2 � CI2

γ, for all t � 0,

where C is positive constant. In addition for (u0, u1, v0, v1) ∈ , Eu,v(t) converges to zero as
t goes to infinity.

In the case of Klein-Gordon-type systems we obtain the following uniform decay.

Corollary 1. Let m1,m2, γ ∈ R∗+. Assume that ωb satisfies the GCC and the assumptions
(1) and (2) hold.

� If γ = 1, then there exist positive constants C and α such that

(1.13) Eu,v(t) � Ce−αtEu,v(0), for all t � 0,

for all solution (u, v) of the system (1.7) with initial data (u0, u1, v0, v1) ∈ 1.
� If γ � 1, then there exists a positive constant C such that

(1.14) Eu,v(t) �
C
tn

n∑
k=0

E∂k
t u,∂k

t v
(0), for all t � 0,

for all solution (u, v) of the system (1.7) with initial data (u0, u1, v0, v1) ∈ D(n).

Remark 1. • The typical model of damping and coupling terms that satisfy the
hypothesis of Theorem 1.1 is a = χω1∪Bc

R1
and b = χω2∪Bc

R2
, where R2 > R1, ω2 ⊂ ω1

and ω2 controls the captive rays.
• To our best knowledge, our result is new for the indirect stabilization problem in

exterior domains (even in the free case).
• Note that in the case of negative coupling term, our results remain true under the

same hypothesis with the change of b by −b.
• Remark that, when γ = 1, the energy of the system (1.7) decays as fast as that of

the corresponding scalar damped equation. So the coupling through velocities, in
this case, allows a full transmission of the damping effects, quite different from the
coupling through the displacements.
• To prove our main result we study the energy first at infinity (Section 2) and then

in bounded regions (Section 3). Keeping, only the second step, we can obtain the
exponential energy decay for the system (1.7) in bounded domains with Dirichlet
boundary condition.
• Due to technical difficulties we did not cover the Klein-Gordon-Wave case (m1 > 0,

m2 = 0); we will be interested in the forthcoming work.

We conclude this introduction with an outline of the rest of this paper. In Section 2 we
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estimate the total energy at infinity by multiplier arguments. Section 3 is devoted to the study
of the energy in bounded domain. The proof of this result is based on observability estimate
for scalar wave equation. In order to control the compact terms, we prove in section 4 a
weak observability estimate that is based on a unique continuation result. Finally, in Section
5 we combine the results of the previous sections to established our main results.

We denote by ΩR := Ω ∩ BR , CR,R′ = Ω ∩ (BR′\BR), when 0 < R < R′ ,

ER(u, v, t) =
1
2

∫
|x|>R
|∂tu(t, x)|2 + |∇u(t, x)|2 + m1|u(t, x)|2 dx

+
1
2

∫
|x|>R
|∂tv(t, x)|2 + γ2|∇v(t, x)|2 + m2|v(t, x)|2 dx,

ER(u, v, t) =
1
2

∫
ΩR

|∂tu(t, x)|2 + |∇u(t, x)|2 + m1|u(t, x)|2 dx

+
1
2

∫
ΩR

|∂tv(t, x)|2 + γ2|∇v(t, x)|2 + m2|v(t, x)|2 dx,

and A � B means A � CB for some positive constant C.

2. Estimate of energy near infinity

2. Estimate of energy near infinity
The main result of this section is as follows.

Proposition 2.1. Let γ ∈ R∗+ and (m1,m2) ∈ {(0, 0)} ∪ R+ × R∗+. Let R1 > 0 be such that
(2) is satisfied and R2 > R1. Then for every ε > 0, there exists Cε > 0 such that for all
solution (u, v) of (1.7) with initial data (u0, u1, v0, v1) ∈ γ, we have

‖(u, v)(t)‖2L2∗L2 +

∫ t

0
ER2 (u, v, s)ds � Cε(Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0))(2.1)

+ ε

∫ t

0
Eu,v(s) ds +Cε

( ∫ t

0

∫
ΩR2

|u|2 + |v|2 dxds + ‖(u, v)(0)‖2L2∗L2

)
,

for all t > 0.

Let ϕ ∈ C∞(Rd) be a function satisfying 0 � ϕ � 1 and

ϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 for |x| � R2

0 for |x| � R1.

To prove Proposition 2.1, we need the following Lemma.

Lemma 2.1. We assume the hypothesis of Proposition 2.1 and we consider ϕ as above.
Then for every ε > 0, there exists Cε > 0 such that for all solution (u, v) of (1.7) with initial
data (u0, u1, v0, v1) ∈ γ, we have∫ t

0

∫
Ω

b(x)ϕ|∂tv|2 dxds � Cε(Eu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0))(2.2)

+Cε

∫ t

0

∫
ΩR2

|v|2 dxds + ε
∫ t

0
Eu,v(s) ds,
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for all t > 0.

Proof of Lemma 2.1. Multiplying the first and the second equation of (1.7) respectively
by ϕ∂tv and 1

γ2ϕ∂tu and integrating the sum of these results on [0, t] ×Ω, we obtain

[ ∫
Ω

1
γ2ϕ∂tu∂tv + m1ϕuv dx

]t

0
+

∫ t

0

∫
Ω

b(x)ϕ|∂tv|2 dxds

=

∫ t

0

∫
Ω

1
γ2 b(x)ϕ|∂tu|2 − ϕa(x)∂tu∂tv + ϕΔu∂tv

+ (m1 − m2

γ2 )ϕv∂tu + ϕΔv∂tu − (1 − 1
γ2 )ϕ∂tv∂

2
t u dxds.

Note that ∫ t

0

∫
Ω

ϕΔu∂tv dxds =
[ ∫
Ω

ϕΔuv dx
]t

0
−

∫ t

0

∫
Ω

ϕΔ∂tuv dxds(2.3)

= −
[ ∫
Ω

∇u(∇ϕv + ϕ∇v) dx
]t

0
−

∫ t

0

∫
Ω

Δ(ϕv)∂tu dxds

= −
∫ t

0

∫
Ω

(Δϕv + Δvϕ + 2∇v∇ϕ)∂tu dxds

−
[ ∫
Ω

∇u(∇ϕv + ϕ∇v) dx
]t

0
.

Then using Young’s inequality, we get
[
Fγ

]t

0
+

∫ t

0

∫
Ω

b(x)ϕ|∂tv|2 dxds �
∫ t

0

∫
Ω

((
1
γ2 a(x) + 2)ϕ +Cε|∇ϕ|2)|∂tu|2

+Cεϕ(1 − 1
γ2 )2|∂2

t u|2 + |Δϕ|2|v|2 dxds

+ ε

∫ t

0

∫
Ω

|∇v|2 + (m1 − m2

γ2 )2‖ϕ‖∞|v|2

+ |∂tu|2 + ‖ϕ‖∞|∂tv|2 dxds,

where

Fγ =

∫
Ω

ϕ(
1
γ2 ∂tu∂tv + m1uv) + ∇u(∇ϕv + ϕ∇v) dx.

By hypothesis

supp(ϕ) ⊂ {x ∈ Ω, a(x) > a−},(2.4)

so, we deduce that
[
Fγ

]t

0
+

∫ t

0

∫
Ω

b(x)ϕ|∂tv|2 dxds � Cε

∫ t

0

∫
Ω

a(x)(|∂tu|2(2.5)

+ (1 − 1
γ2 )2|∂2

t u|2) dxds +
∫ t

0

∫
ΩR2

|v|2 dxds + ε
∫ t

0
Eu,v(s) ds.

Using the energy decay (1.9) and the fact that (m1,m2) ∈ {(0, 0)} ∪ R+ × R∗+, we can see that∣∣∣∣Fγ(s)
∣∣∣∣ � Eu,v(s) � Eu,v(0), ∀ s � 0.(2.6)
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Combining (1.9), (2.5) and (2.6), we obtain (2.2). �

Lemma 2.2. Let γ ∈ R∗+ and (m1,m2) = (0, 0). Let R1 > 0 be such that (2) is satisfied
and R2 > R1. Then for every ε > 0, there exists Cε > 0 such that for all solution (u, v) of
(1.7) with initial data (u0, u1, v0, v1) ∈ γ, we have

‖(u, v)(t)‖2L2∗L2 +

∫ t

0
ER2 (v, s)ds � Cε(Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0))(2.7)

+ ε

∫ t

0
Eu,v(s) ds +Cε(

∫ t

0

∫
ΩR2

|u|2 + |v|2 dxds + ‖(u, v)(0)‖2L2∗L2 ),

for all t > 0. Where ER2 (v, t) = 1
2

∫
|x|>R2

|∂tv(t, x)|2 + γ2|∇v(t, x)|2 dx.

Proof of Lemma 2.2. We write the system (1.7) in the form

(2.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2

t u − Δu +
a(x)
b(x)

∂2
t v −

a(x)
b(x)

γ2Δv + b(x)∂tv = 0 in R+ ×ΩRc
1
,

− ∂2
t v + γ

2Δv + b(x)∂tu = 0 in R+ ×ΩRc
1
.

Multiplying the first equation of (2.8) by ϕv and the second one by 1
γ2ϕu and integrating the

sum of these results on [0, t] ×Ω, we obtain∫
Ω

ϕb(x)
2

(
1
γ2 |u(t)|2 + |v(t)|2) dx + β

∫ t

0

∫
Ω

ϕ(|∂tv|2 + γ2|∇v|2) dxds

=

∫ t

0

∫
Ω

2ϕβ|∂tv|2 + γ
2βΔϕ

2
|v|2 − ∇u(∇ϕv + ϕ∇v)

+ ∇v(∇ϕu + ϕ∇u) + (1 − 1
γ2 )ϕ∂tu∂tv dxds

+

∫
Ω

ϕb(x)
2

(
1
γ2 |u(0)|2 + |v(0)|2) dx −

[
Gγ

]t

0
,

where

Gγ =

∫
Ω

ϕ(∂tuv + β∂tvv − 1
γ2 ∂tvu) dx.

According to Lemma 2.1, hypothesis (2) and using Young’s inequality, we deduce that∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx +
∫ t

0

∫
Ω

ϕ(|∂tv|2 + γ2|∇v|2) dxds(2.9)

� CεEu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2

+

∫ t

0

∫
ΩR2

|v|2 + |u|2 dxds + ε
∫ t

0
Eu,v(s) ds +

∣∣∣∣∣∣
[
Gγ

]t

0

∣∣∣∣∣∣.
But we have ∣∣∣∣Gγ(t)

∣∣∣∣ � Cε1 Eu,v(t) + ε1

∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx

� Cε1 Eu,v(0) + ε1

∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx.
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So, for ε1 small enough we get∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx +
∫ t

0

∫
Ω

ϕ(|∂tv|2 + γ2|∇v|2) dx ds(2.10)

� CεEu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2

+

∫ t

0

∫
ΩR2

|v|2 + |u|2 dxds + ε
∫ t

0
Eu,v(s) ds.

Since

ϕ ≡ 1 f or |x| � R2,(2.11)

we deduce that∫
|x|>R2

|u(t)|2 + |v(t)|2 dx +
∫ t

0
ER2 (v, s) ds

�
∫
ΩRc

1

ϕ(|u(t)|2 + |v(t)|2) dx +
∫ t

0

∫
ΩRc

1

ϕ(|∂tv|2 + γ2|∇v|2) dxds.

Combining this estimate with (2.10), we conclude (2.7). This finishes the proof of Lemma
2.2. �

Now we give the proof of Proposition 2.1.

Proof of Proposition 2.1. We distinguish the case m1 = m2 = 0 and the case where
m1 ∈ R+ and m2 ∈ R∗+.
First case m1 = m2 = 0. Multiplying the first equation of (1.7) by ϕu and integrating on
[0, t] ×Ω, we obtain

[ ∫
Ω

ϕ(∂tuu +
a(x)|u|2

2
+ b(x)uv) dx

]t

0
+

∫ t

0

∫
Ω

ϕ(|∇u|2 + |∂tu|2) dxds(2.12)

=

∫ t

0

∫
Ω

2ϕ|∂tu|2 + Δϕ2 |u|
2 + ϕb(x)v∂tu dxds.

Note that we have ∫ t

0

∫
Ω

ϕb(x)v∂tu dxds =
∫ t

0

∫
Ω

ϕv(∂2
t v − γ2Δv) dxds(2.13)

=
[ ∫
Ω

ϕ∂tvv dx
]t

0
+

∫ t

0

∫
Ω

ϕ(γ2|∇v|2 − |∂tv|2) − γ2Δϕ

2
|v|2 dxds.

So, combining this identity with (2.12) and using (2.4), we get∫ t

0

∫
Ω

ϕ(|∂tu|2 + |∇u|2) dxds �
∫ t

0

∫
Ω

a(x)|∂tu|2 +
∫ t

0

∫
Ω

ϕ(|∂tv|2(2.14)

+ γ2|∇v|2) dxds +
∫ t

0

∫
ΩR2

|u|2 + |v|2 dxds

+

∣∣∣∣∣∣
[ ∫
Ω

ϕ(∂tuu + b(x)uv +
a(x)|u|2

2
− ∂tvv) dx

]t

0

∣∣∣∣∣∣.
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Using that,
∣∣∣∣
∫
Ω

ϕ(∂tuu + b(x)uv +
a(x)|u|2

2
− ∂tvv)(t) dx

∣∣∣∣ � Eu,v(0) +
∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx

and ∣∣∣∣
∫
Ω

ϕ(∂tuu + b(x)uv +
a(x)|u|2

2
− ∂tvv)(0) dx

∣∣∣∣ � Eu,v(0) + ‖(u, v)(0)‖2L2∗L2 ,

we obtain ∫ t

0

∫
Ω

ϕ(|∂tu|2 + |∇u|2) dxds � Eu,v(0) +
∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx(2.15)

+

∫ t

0

∫
Ω

ϕ(|∂tv|2 + γ2|∇v|2) dx ds +
∫ t

0

∫
ΩR2

|u|2 + |v|2 dxds + ‖(u, v)(0)‖2L2∗L2 .

According to (2.7), we find∫ t

0
ER2 (u, s)ds � CεEu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0) + ε
∫ t

0
Eu,v(s) ds(2.16)

+

∫ t

0

∫
ΩR2

|u|2 + |v|2 dxds + ‖(u, v)(0)‖2L2∗L2 ,

where ER2 (u, t) = 1
2

∫
|x|>R2

|∂tu(t, x)|2 + |∇u(t, x)|2 dx.
Combining (2.7) and (2.16), we conclude (2.1).
Second case m1 ∈ R+ and m2 ∈ R∗+. Multiplying the first and the second equation of (1.7)
respectively by ϕu and ϕv and integrating the sum of these results on [0, t] ×Ω, we obtain∫

Ω

ϕ
a(x)|u(t)|2

2
dx +

∫ t

0

∫
Ω

ϕ(|∂tu|2 + |∇u|2 + m1|u|2 + |∂tv|2(2.17)

+ γ2|∇v|2 + m2|v|2) dxds =
∫ t

0

∫
Ω

2ϕ(|∂tu|2 + |∂tv|2) dxds

+

∫ t

0

∫
Ω

Δϕ

2
(|u|2 + γ2|v|2) + 2ϕb(x)v∂tu dxds

−
[ ∫
Ω

ϕ(∂tuu + ∂tvv + b(x)uv) dx
]t

0
+

∫
Ω

ϕ
a(x)|u(0)|2

2
dx

�
∫ t

0

∫
Ω

a(x)|∂tu|2 + ϕ|∂tv|2 + ε‖ϕ‖∞|v|2 dxds

−
[ ∫
Ω

ϕ(∂tuu + ∂tvv + b(x)uv) dx
]t

0
+

∫
Ω

ϕ
a(x)|u(0)|2

2
dx

+

∫ t

0

∫
ΩR2

|u|2 + |v|2 dxds.

Using the following estimates for ε2 small enough∣∣∣∣
∫
Ω

ϕ((∂tuu + ∂tvv + b(x)uv)(t)) dx
∣∣∣∣ � Cε2 Eu,v(0) + ε2

∫
Ω

ϕ|u(t)|2 dx,

∣∣∣∣
∫
Ω

ϕ((∂tuu + ∂tvv + b(x)uv)(0)) dx
∣∣∣∣ � Eu,v(0) + ‖u(0)‖2L2 ,
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and according to Lemma 2.1, we infer (2.1). The proof of Proposition 2.1 is now completed.
�

3. Estimate of energy in bounded region

3. Estimate of energy in bounded region
In this section, we will study the energy in bounded domain. For this aim, we consider a

function ψ ∈ C∞0 (Rd) such that 0 � ψ � 1 and

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 for |x| � R3,

0 for |x| � R4,

where R4 > R3 > R1 and R1 > 0 be such that (2) is satisfied.
It is easy to verify that (ui, vi) = (ψu, ψv) satisfies the following system

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t ui − Δui + m1ui + b(x)∂tv

i + a(x)∂tui = −2∇ψ∇u − uΔψ in R+ ×ΩR4 ,

∂2
t v

i − γ2Δvi + m2v
i − b(x)∂tui = −2γ2∇ψ∇v − γ2vΔψ in R+ ×ΩR4 ,

ui = vi = 0, on R+ × ∂ΩR4 ,

(ui
0, u

i
1, v

i
0, v

i
1) = (ψu0, ψu1, ψv0, ψv1).

Proposition 3.1. Let γ ∈ R∗+, (m1,m2) ∈ {(0, 0)} ∪ R+ × R∗+ and ψ be as above. Assume
that the assumption (1) holds and that (ωb, T ) geometrically controls Ω for some T > 0.
Then for every ε > 0, there exist Cε > 0 such that for all solution (u, v) of (1.7) with initial
data (u0, u1, v0, v1) ∈ γ, we have

∫ t+T

t
ER3 (u, v, s)ds � Cε

∫ t+T

t

∫
Ω

a(x)(|∂tu|2 + (1 − 1
γ2 )2|∂2

t u|2) dxds(3.2)

+ ε

∫ t+T

t
Eu,v(s) ds +Cε

∫ t+T

t

∫
ΩR4

|u|2 + |v|2 dxds +Cε

∫ t+T

t
ER3 (u, v, s)ds −

[
γ

]t+T

t

for all t > 0. Where

γ = −
∫
Ω

b(x)
γ2 ∂tui∂tv

i + ∇ui∇((b(x)vi) + m1b(x)uivi dx.

In order to prove Proposition 3.1 we need the following result.

Lemma 3.1. Assume that the hypothesis of Proposition 3.1 hold. Then for every ε > 0,
there exists Cε > 0 such that for all solution (u, v) of (1.7) with initial data (u0, u1, v0, v1) ∈
γ, we have

∫ t+T

t

∫
Ω

b(x)2|∂tv
i|2 dxds � Cε

∫ t+T

t

∫
Ω

a(x)(|∂tu|2 + (1 − 1
γ2 )2|∂2

t u|2) dxds(3.3)

+ ε

∫ t+T

t
Eu,v(s) ds +Cε

∫ t+T

t

∫
ΩR4

|v|2 + |u|2 dxds

+Cε

∫ t+T

t

∫
CR3 ,R4

|∇u|2 + |∇v|2 dxds −
[
γ

]t+T

t
,

for all t > 0.
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Proof of Lemma 3.1 . We multiply the first and the second equation of (3.1) respectively
by b(x)∂tv

i and b(x)
γ2 ∂tui and we integrate the sum of these results on [t, t + T ] ×Ω, we get

[
γ

]t+T

t
+

∫ t+T

t

∫
Ω

b(x)2|∂tv
i|2 dxds =

∫ t+T

t

∫
Ω

b(x)2

γ2 |∂tui|2 − ab(x)∂tui∂tv
i

+ (m1 − m2

γ2 )b(x)vi∂tui) dxds −
∫ t+T

t

∫
Ω

b(x)(2∇u∇ψ + Δψu)∂tv
i

+
b(x)
γ2 (2∇v∇ψ + Δψv)∂tui dxds +

∫ t+T

t

∫
Ω

(
1
γ2 − 1)b(x)∂2

t ui∂tv
i dxds

−
∫ t+T

t

∫
Ω

∂tui(Δb(x)vi + 2∇b(x)∇vi) dxds.

From Young’s inequality and using hypothesis (1), we infer that

[
γ

]t+T

t
+

∫ t+T

t

∫
Ω

b(x)2|∂tv
i|2 dxds(3.4)

� Cε

∫ t+T

t

∫
Ω

a(x)(|∂tu|2 + (1 − 1
γ2 )2|∂2

t u|2) dxds

+ ε

∫ t+T

t

∫
Ω

(m1 − m2

γ2 )2|v|2 + |∂tu|2 + |∂tv|2 + |∇v|2 dxds

+Cε

∫ t+T

t

∫
ΩR4

|u|2 + |v|2 dxds +Cε

∫ t+T

t

∫
CR3 ,R4

|∇u|2 + |∇v|2 dxds.

This implies (3.3). �

Proof of Proposition 3.1. First, we recall the following observability estimate for the
wave equation (see Proposition 3, [11]).

Lemma 3.2. Let γ, T > 0 and  a bounded domain. Let φ be a nonnegative function on
 and setting

 = {φ(x) > 0}.
We assume that ( , T ) satisifies the GCC. There exists CT > 0, such that for all (u0, u1) ∈
H1

0() × L2(), f ∈ L2
loc(R+, L2()), and all t > 0 the solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂2

t u − γ2Δu + mu = f in R+ × ,
u = 0 on R+ × ∂,
(u(0, .), ∂tu(0, .)) = (u0, u1) in ,

where m � 0, satisfies with

Eu(t) =
1
2

∫


|∂tu(t, x)|2 + m|u(t, x)|2 + γ2|∇u(t, x)|2 dx,

the inequality

(3.5)
∫ t+T

t
Eu(s) ds � CT

∫ t+T

t

∫


φ(x)|∂tu|2 + | f |2 dxds.
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Let ωb,1 = ωb ∩ BR4 = {x ∈ Ω ∩ BR4 , b(x) > b− > 0}. Since (ωb, T ) satisfies the GCC,
BRc

1
⊂ ωb and R4 > R1, we conclude that (ωb,1, T ) geometrically controls ΩR4 .

So, according to Lemma 3.2 and using hypothesis (1), we have∫ t+T

t
Evi(s)ds �

∫ t+T

t

∫
ωb,1

|∂tv
i|2 dxds +

∫ t+T

t

∫
Ω

b(x)|∂tui|2dxds(3.6)

+

∫ t+T

t

∫
CR3 ,R4

|∇v|2 dxds +
∫ t+T

t

∫
ΩR4

|v|2 dxds

�
∫ t+T

t

∫
Ω

b2(x)|∂tv
i|2 dxds +

∫ t+T

t

∫
Ω

a(x)|∂tu|2dxds

+

∫ t+T

t

∫
CR3 ,R4

|∇v|2 dxds +
∫ t+T

t

∫
ΩR4

|v|2 dxds, t > 0,

where

Evi(t) =
1
2

∫
Ω

γ2|∇vi(t, x)|2 + |∂tv
i(t, x)|2 + m2|vi(t, x)|2 dx.

We have also ∫ t+T

t
Eui(s)ds �

∫ t+T

t

∫
Ω

a(x)|∂tu|2 + b2(x)|∂tv
i|2dxds(3.7)

+

∫ t+T

t

∫
CR3 ,R4

|∇u|2 dxds +
∫ t+T

t

∫
ΩR4

|u|2 dxds, t > 0,

where

Eui(t) =
1
2

∫
Ω

|∇ui(t, x)|2 + |∂tui(t, x)|2 + m1|ui(t, x)|2 dx.

Adding the two estimates above and using (3.3), we deduce that∫ t+T

t
Eui,vi(s)ds � Cε

∫ t+T

t

∫
Ω

a(x)(|∂tu|2 + (1 − 1
γ2 )2|∂2

t u|2)dxds(3.8)

+ ε

∫ t+T

t
Eu,v(s) ds +Cε

∫ t+T

t
ER3 (u, v, s)ds +Cε

∫ t+T

t

∫
ΩR4

|u|2 + |v|2dxds +
[
γ

]t+T

t
.

Since ψ ≡ 1 for |x| � R3, we get∫ t+T

t
ER3 (u, v, s) ds �

∫ t+T

t
Eui,vi(s)ds.

Combining this estimate with (3.8), we conclude (3.2). �

4. Weak observability estimate

4. Weak observability estimate
In this section, we prove the following Proposition.

Proposition 4.1. Let γ ∈ R∗+ and m1,m2 ∈ R+. Let R1 > 0 be such that (2) is satisfied
and R5 > R1. We assume that the assumption (1) holds. Then for every T > Tωb and α > 0,
there exists CT,α > 0, such that for all (u0, u1, v0, v1) ∈ (H1

0(Ω) × L2(Ω))2, and all t > 0, the
solution of the system (1.7) satisfies the following inequality
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(4.1)
∫ t+T

t

∫
ΩR5

|v|2 + |u|2 dxds � CT,α

∫ t+T

t

∫
Ω

a(x)|∂tu|2 dxds + α
∫ t+T

t
Eu,v(s) ds.

Proof of Proposition 4.1. We note that for each (u0, u1, v0, v1) ∈ (H0
1(Ω) × L2(Ω))2,

the solution (u, v) are given as the limit of smooth solutions (un, vn)(t) with (un, vn)(0) =
(un,0, vn,0) ∈ (C∞0 (Ω))2 and (∂tun, ∂tvn)(0) = (un,1, vn,t) ∈ (C∞0 (Ω))2 such that (un,0, vn,0) →
(u0, v0) ∈ (H1

0(Ω))2 and (un,1, vn,1)→ (u1, v1) ∈ (L2(Ω))2. Note that

‖un(t, .) − u(t, .)‖H1 + ‖∂tun(t, .) − ∂tu(t, .)‖L2 −−−−−→
n→+∞ 0,

‖vn(t, .) − v(t, .)‖H1 + ‖∂tvn(t, .) − ∂tv(t, .)‖L2 −−−−−→
n→+∞ 0,

uniformly on the each closed interval [0, T ] for any T > 0. Therefore we may assume that
(u, v) is smooth.

To prove the estimate (4.1), we argue by contradiction. We assume that there exist a
positive sequence (tn) and a sequence

n = (un, ∂tun, vn, ∂tvn)

of solution of the system (1.7) with initial data (un,0, un,1, vn,0, vn,1) ∈ (H1
0(Ω)× L2(Ω))2, such

that ∫ tn+T

tn

∫
ΩR5

|un|2 + |vn|2 dxds � n
∫ tn+T

tn

∫
Ω

a(x)|∂tun|2 dxdt + α
∫ tn+T

tn
Eun,vn ds.

Set

β2
n =

∫ tn+T

tn

∫
ΩR5

|un|2 + |vn|2 dxds

and

(yn, ∂tyn, zn, ∂tzn)(t) :=
n(t + tn)

βn
.

We infer that ∫ T

0

∫
ΩR5

|yn|2 + |zn|2 dxds = 1,(4.2)

∫ T

0

∫
Ω

a(x)|∂tyn|2 dxds �
1
n
,(4.3)

∫ T

0
Eyn,zn(s) ds �

1
α
.(4.4)

Therefore

(yn, zn) ⇀ (y, z) in L2((0, T ),H1
0(Ω)) ∩W1,2((0, T ), L2(Ω)),

with respect to the weak topology. By Rellich’s lemma, we can assume that

(yn, zn)→ (y, z) in (L2((0, T ) ×ΩR5 ))
2.

It is easy to see that the limit (y, z) satisfies the system
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(4.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t y − Δy + m1y + b(x)∂tz = 0 in (0, T ) ×Ω,
∂2

t z − γ2Δz + m2z = 0 in (0, T ) ×Ω,
y = z = 0 on (0, T ) × Γ,
a(x)∂ty = 0 in (0, T ) ×Ω

and ∫ T

0

∫
ΩR5

|y|2 + |z|2 dxds = 1.(4.6)

It is clear that (∂ty, ∂tz) satisfies the following system

(4.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t (∂ty) − Δ(∂ty) + m1∂ty + b(x)∂t(∂tz) = 0 in (0, T ) ×Ω,
∂2

t (∂tz) − γ2Δ(∂tz) + m2∂tz = 0 in (0, T ) ×Ω,
∂ty = ∂tz = 0 on (0, T ) × ∂Ω,
a(x)∂ty = 0 in (0, T ) ×Ω.

From the first and previous equations in (4.7), we deduce that b(x)∂2
t z = 0 on supp(a). But

supp(b) ⊂ supp(a), so ∂2
t z = 0 on supp(b). Setting w = ∂tz, we have

(4.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tw = 0 in (0, T ) × ωb,

∂2
t w − γ2Δw + m2w = 0 in (0, T ) ×Ω,
w = 0 on (0, T ) × ∂Ω,
w ∈ L2((0, T ) ×Ω).

Using the first and second equations in (4.8), we can see that WF1(w)∩ (0, T )×ωb ×R×Rd

is a subset of

{(t, x, τ, ξ) ∈ (0, T ) ×Ω × R × Rn; τ2 − γ2|ξ|2 = τ = 0} = (0, T ) ×Ω × {0} × {0},
where WF1(w) denotes the H1-wavefront set of w. Since Bc

R1
⊂ ωb, we deduce that w ∈

H1
loc((0, T ) × Bc

R1
). Next, we will show that w ∈ H1

loc([0, T ] × BR1 ). Let ρ0 = (t0, x0, τ0, ξ0) ∈
T ∗([0, T ] × BR1 ) and Γ0 be the generalized bicharacteristic issued from ρ0. Set {ρ1 :=
(0, x1, τ1, ξ1)} = Γ0 ∩ {t = 0} and {ρ2 := (T, x2, τ2, ρ2)} = Γ0 ∩ {t = T }, so we distin-
guish two cases,
1st case: x1 or x2 � BR1 . In this case ρ1 or ρ2 � WF1(w). Since T > Tωb , then using
the propagation of regularity along the bicharacteristic flow of the operator ∂2

t − γ2Δ (see
[17, 18]), we obtain ρ0 � WF1(w).
2nd case: x1, x2 ∈ BR1 . Since ρ1, ρ2 ∈ T ∗([0, T ] × BR1 ) and ωb controls geometrically
[0, T ]×Ω, then Γ0 intersects the region [0, T ]× (ωb∩ΩR1 ). But w ∈ H1

loc([0, T ]× (ωb∩ΩR1 )),
then applying again the regularity propagation theorem, we deduce that ρ0 � WF1(w).
Therefore, we conclude that w ∈ H1

loc((0, T ) × Ω). Now, set w̃ = ∂tw. Since Rd \ ΩR5 ⊂ ωb,
so w̃ = 0 on Rd \ΩR5 and satisfies
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(4.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t w̃ − γ2Δw̃ + m2w̃ = 0 in (0, T ) ×ΩR5 ,

w̃ = 0 on (0, T ) × ∂ΩR5 ,

w̃ = 0 in (0, T ) × (ωb ∩ΩR5 ),

w̃ ∈ L2((0, T ) ×ΩR5 ).

Since ωb ∩ ΩR5 controls geometrically ΩR5 , then using the classical unique continuation
result (see [7, 8] ), we infer that w̃ ≡ 0 on (0, T ) ×ΩR5 . Therefore, the function z satisfies

(4.10)

⎧⎪⎪⎨⎪⎪⎩
− γ2Δz + m2z = 0 in (0, T ) ×Ω,
z = 0 in (0, T ) × ∂Ω.

This implies that z = 0 on (0, T ) ×Ω. Now, from (4.5) we obtain

(4.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t y − Δy + m1y = 0 in (0, T ) ×Ω,

a(x)∂ty = 0 on (0, T ) ×Ω,
y = 0 on (0, T ) × ∂Ω,
y ∈ H1((0, T ) ×Ω).

Arguing as for z, we can prove that y = 0. This is in contradiction with (4.6). �

5. Proof of Theorem 1.1

5. Proof of Theorem 1.1
Let R2 > R1. According to (2.1) for t = nT , n ∈ N∗, we have∫ nT

0
ER2 (u, v, s)ds � Cε

(
Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0) +
∫ nT

0

∫
ΩR2

|u|2(5.1)

+ |v|2dxds
)
+ ε

∫ nT

0
Eu,v(s) ds + ‖(u, v)(0)‖2L2∗L2 .

Next, using (3.2) with R3 = 2R2 and R4 = 3R2, we get∫ (k+1)T

kT
E2R2 (u, v, s)ds � Cε

∫ (k+1)T

kT

∫
Ω

a(x)(|∂tu|2 + (1 − 1
γ2 )2|∂2

t u|2)dxds(5.2)

+ ε

∫ (k+1)T

kT
Eu,v(s) ds +Cε

∫ (k+1)T

kT
E2R2 (u, v, s)ds

+Cε

∫ (k+1)T

kT

∫
Ω3R2

|u|2 + |v|2dxds −
[
γ

](k+1)T

kT
, ∀ k ∈ N.

Thus
n−1∑
k=0

∫ (k+1)T

kT
E2R2 (u, v, s)ds �

n−1∑
k=0

(
Cε

∫ (k+1)T

kT

∫
Ω

a(x)(|∂tu|2(5.3)

+ (1 − 1
γ2 )2|∂2

t u|2)dxds + ε
∫ (k+1)T

kT
Eu,v(s) ds −

[
γ

](k+1)T

kT

+Cε

( ∫ (k+1)T

kT
E2R2 (u, v, s)ds +

∫ (k+1)T

kT

∫
Ω3R2

|u|2 + |v|2dxds
))
, ∀ n ∈ N∗.
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This gives ∫ nT

0
E2R2 (u, v, s) ds � Cε

∫ nT

0

∫
Ω

a(x)(|∂tu|2 + (1 − 1
γ2 )2|∂2

t u|2)dxds(5.4)

+ ε

∫ nT

0
Eu,v(s) ds +Cε

∫ nT

0
E2R2 (u, v, s) ds

+Cε

∫ nT

0

∫
Ω3R2

|u|2 + |v|2dxds −
[
γ

]nT

0
, ∀ n ∈ N∗.

From the following estimate ∣∣∣∣γ(s)
∣∣∣∣ � Eu,v(0), ∀s � 0,

and using (1.9) and (5.1), we deduce that∫ nT

0
E2R2 (u, v, s) ds � Cε(Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0))(5.5)

+ ε

∫ nT

0
Eu,v(s) ds +Cε

∫ nT

0

∫
Ω3R2

|u|2 + |v|2dxds, ∀ n ∈ N∗.

So, combining (5.5) and (5.1), we conclude for small enough ε the following estimate∫ nT

0
Eu,v(s)ds � Cε(Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0))(5.6)

+ ‖(u, v)(0)‖2L2 +Cε

∫ nT

0

∫
Ω3R2

(|v|2 + |u|2) dxds.

Next, from (4.1) with R5 = 3R2 we have
n−1∑
k=0

∫ (k+1)T

kT

∫
Ω3R2

|v|2 + |u|2 dxds �
n−1∑
k=0

( ∫ (k+1)T

kT

∫
Ω

a(x)|∂tu|2 dxds

+ α

∫ (k+1)T

kT
Eu,v(s) ds

)
.

Thus

(5.7)
∫ nT

0

∫
Ω3R2

|v|2 + |u|2 dxds � Eu,v(0) + α
∫ nT

0
Eu,v(s) ds.

Finally, using (5.7) for α small enough in (5.6), we find

(5.8)
∫ nT

0
Eu,v(s)ds � Cε(Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0)) + ‖(u, v)(0)‖2L2∗L2 .

Therefore ∫ +∞

0
Eu,v(s)ds � Eu,v(0) + (1 − 1

γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2 .

As the energy is decreasing then
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(1 + t)Eu,v(t) �
∫ +∞

0
Eu,v(s)ds + Eu,v(0)(5.9)

� Eu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2 , for all t > 0.

On the other hand, using (2.1), (5.7) and (5.8), we deduce that

(5.10)
∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx � Eu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2 .

Since ϕ ≡ 1 for |x| � R2,∫
Ω

ϕ(|u(t)|2 + |v(t)|2) dx �
∫
Ωc

R2

|u(t)|2 + |v(t)|2 dx,(5.11)

therefore

(5.12)
∫
Ωc

R2

|u(t)|2 + |v(t)|2 dx � Eu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2 .

Poincare’s inequality and the fact that the energy of (u, v) is decreasing give∫
Ω3R2

|u(t)|2 + |v(t)|2 dx � CΩ

∫
Ω3R2

|∇u(t)|2 + |∇v(t)|2 dx � Eu,v(0)(5.13)

for all t > 0.
Adding (5.13) and (5.12), we infer that∫

Ω

|u(t)|2 + |v(t)|2 dx � Eu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0) + ‖(u, v)(0)‖2L2∗L2 ,(5.14)

for all t > 0. This finishes the proof of (1.12).
Now, using the density of γ in , we deduce from the first estimate in (1.12) that the
energy Eu,v(t) converges to zero as t goes to infinity, for every (u0, u1, v0, v1) ∈ . This
achieves the proof of Theorem 1.1.

Proof of Corollary 1. Let γ = 1. From (5.9), we deduce that

Eu,v(t) �
C
t

Eu,v(0), for all t > 0.

Now, using the semi-group property, we conclude the estimate (1.13).
In the case γ � 1, we have

Eu,v(t) �
C
t

(Eu,v(0) + (1 − 1
γ2 )2E∂tu,∂tv(0)), for all t > 0.

So, according to [1, Theorem 2.1], we infer the estimate (1.14). �
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