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(Received April 5, 2019, revised October 28, 2019)

Abstract
The contraction of the image of the Johnson homomorphism is called the Chillingworth class.

In this paper, we derive a combinatorial description of the Chillingworth class for Putman’s
subsurface Torelli groups. We also prove the naturality and uniqueness properties of the map
whose image is the dual of the Chillingworth classes of the subsurface Torelli groups. More-
over, we relate the Chillingworth class of the subsurface Torelli group to the partitioned Johnson
homomorphism.

1. Introduction

1. Introduction
The Torelli group of an oriented surface with genus g and n boundary components Σg,n,

(Σg,n), is the normal subgroup of the mapping class group (Σg,n) of Σg,n that acts triv-
ially on H1(Σg,n;Z). In the study of the Torelli group, the Johnson homomorphism has an
important role. The Johnson homomorphism determines the abelianization of (Σg,1) mod
torsion [6]. As no finite presentation for the Torelli group is known, the finiteness informa-
tion inherent in the abelianization of the Torelli group is a fundamental tool.

The tensor contraction of the image of the Johnson homomorphism is the Chillingworth
class. The Chillingworth class was first defined by Earle [4] by using complex analytic
methods. Johnson in [5] defined the Chillingworth class by considering Chillingworth’s
conjecture in [2]. In [5], Johnson called the homomorphism t : (Σg,1) → H1(Σg,1;Z)
sending each f ∈ (Σg,1) to the Chillingworth class of f the Chillingworth homomorphism.

In [7], Putman defined the subsurface Torelli groups in order to use inductive arguments
in the Torelli group. An embedding of a subsurface Σg,n into a larger surface Σg′ gives
a partition  of the boundary components of Σg,n and this partition records which of the
boundary components of Σg,n become homologous in Σg′ [3]. Putman [7] defined the sub-
surface Torelli group (Σg,n,) by restricting (Σg′) to Σg,n. The subsurface Torelli groups
(Σg,n,) restore functoriality and are therefore of central importance to the study of the
Torelli group.

In this paper, we construct a combinatorial description of the Chillingworth class of the
subsurface Torelli groups via winding numbers in the projective tangent bundle of Σg,n.
Given the definition of Putman’s subsurface Torelli groups, the difficulty in finding a combi-
natorial description via winding numbers is to make sense of the winding number of an arc
with end points on the boundary of the subsurface. By defining a difference cocycle on the
projective tangent bundle of the surface we are able to make sense of the winding number
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of the difference of two arcs.
The rest of this paper is structured as follows:
In Section 2, we review basic definitions related to the Torelli group and the subsurface

Torelli groups. We define a symplectic basis for the homology group H
1 (Σg,n;Z) defined by

Putman [7].
In Section 3, we construct a well-defined map ẽX : (Σg,n,) → Hom(H

1 (Σg,n;Z),Z)
using the projective tangent bundle of Σg,n. Here, X is a nonvanishing vector field on Σg,n.
We show that ẽX is a homomorphism. We call the dual of ẽX( f ) the Chillingworth class of f .
One reason for calling this dual the Chillingworth class, is that it is shown to factor through
the partitioned Johnson homomorphism. Therefore, we obtain a combinatorial description of
the Chillingworth class of the subsurface Torelli groups using the projective tangent bundle
of Σg,n.

We use the Torelli category  Surf defined by Church [3], which is the refinement of the
category TSur defined by Putman [7]. The Torelli group is a functor from  Surf to the
category of groups and homomorphisms [7]. For a morphism i : (Σg,n,) → (Σg′,n′ , ′) of
 Surf and a nonvanishing vector field X on Σg′,n′ , we prove the following:

Main Theorem. There exists a homomorphism i′∗ such that the following diagram com-
mutes:

(1.1) (Σg,n,) i∗ ��

ẽY
��

(Σg′,n′ , ′)

ẽX
��

Hom(H
1 (Σg,n;Z),Z)

i′∗
�� Hom(H ′

1 (Σg′,n′ ;Z),Z)

Here Y is the restriction of X to Σg,n.

We also prove that ẽY is unique in the sense that it is the only nontrivial homomorphism
such that diagram (1.1) commutes. A commutative diagram for the Chillingworth homo-
morphism t(Σg,n,) : (Σg,n,)→ H

1 (Σg,n;Z) is also obtained.

2. Preliminaries

2. Preliminaries
In this section, we review some background knowledge and give some preliminary defi-

nitions that will be used throughout the paper.
The mapping class group (Σg,n) of Σg,n is the group of isotopy classes of orientation-

preserving diffeomorphisms of Σg,n onto itself which fix the boundary components of Σg,n
pointwise.

Throughout this paper, we will be working with representatives of mapping classes that
fix a neighborhood of the boundary pointwise. We will use the notation f ◦h or f h to denote
the composition of maps, where h is assumed to be applied first.

The subgroup of (Σg,1) acting trivially on H1(Σg,1;Z) is a normal subgroup of (Σg,1)
and is called the Torelli group. In other words, the Torelli group is the kernel of the sym-
plectic representation ρ : (Σg,1)→ Sp(2g,Z). It will be denoted by the symbol (Σg,1).

Winding Number: If a surface Σg,n has nonempty boundary, a nonvanishing vector field
X on Σg,n exists. By choosing an appropriate parametrisation for a smooth closed curve, it
can be assumed without loss of generality that the curve has a nonvanishing tangent vector
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at each point of the curve.
Let us choose a Riemannian metric on Σg,n with which we define a norm on TxΣg,n, the

tangent space to Σg,n at x ∈ Σg,n, for each x ∈ Σg,n.
Informally, given a nonvanishing vector field X, the winding number wX(γ) of a smooth

closed oriented curve γ on a surface is defined as the number of rotations its tangent vector
makes with respect to X as γ is traversed once in the positive direction [1].

The Chillingworth Class: In [5], Johnson defined the following homomorphism

e : (Σg,1)→ H1(Σg,1;Z)

such that e( f )([γ]) = wX( fγ) − wX(γ).
For f ∈ (Σg,1), in Section 5 of [5], Johnson dualized the class e( f ) to a homology

class t( f ) defined as follows: [γ] · t( f ) = e( f )[γ]. The homology class t( f ) is called the
Chillingworth class of f . In [5], Johnson proved that C(τ( f )) = t( f ) holds for any f ∈
(Σg,1), where τ is the Johnson homomorphism and C is the tensor contraction map. The
Johnson homomorphism τ : (Σg,1) → ∧3 H1(Σg,1;Z) is a surjective homomorphism. The
tensor contraction map C :

∧3 H1(Σg,1;Z)→ H1(Σg,1;Z) is defined as follows:

C(x ∧ y ∧ z) = 2[(x · y)z + (y · z)x + (z · x)y],

where · denotes the intersection pairing of homology classes.

2.1. Subsurface Torelli Groups.
2.1. Subsurface Torelli Groups. A partitioned surface is a pair (Σ,) consisting of a

surface Σ and a partition  of the boundary components of Σ. Note that when the genus
and the number of boundary components are not important, we use Σ to denote the surface.
Each element Pk of  is called a block. If each element of the partition contains only one
boundary component, it is called a totally separated surface [3].

For a given embedding i : Σ ↪→ Σg, let the connected components of Σg\Σ◦ be {S 0, S 1, . . . ,

S m} and let Pk denote the set of boundary components of S k for each k ∈ {0, . . . ,m}. Here,
Σ◦ denotes the interior of Σ. Consider the partition

 = {P0, P1, . . . , Pm}.
Then i : Σ ↪→ Σg is called a capping of (Σ,) (c.f. [7]).

For a partitioned surface (Σ,), in [7] Putman defined the subsurface Torelli group (Σ,)
to be the subgroup i−1∗ ((Σg)) of (Σ) for any capping i : Σ ↪→ Σg.

In [7], Section 3, a special homology group H
1 (Σ;Z) is defined on a partitioned surface

(Σ,) such that (Σ,) is the kernel of (Σ)→ Aut(H
1 (Σ;Z)).

Consider a partition

 = {{∂1
1, . . . , ∂

1
k1
}, . . . , {∂m

1 , . . . , ∂
m
km
}}.

Suppose the boundary components ∂ j
i are oriented so that

∑
i, j[∂

j
i ] = 0 in H1(Σ;Z). Define

the homology group

H


1 (Σ;Z) := H1(Σ;Z)/∂H
1 (Σ;Z),

where

∂H
1 (Σ;Z) =

〈
([∂1

1] + . . . + [∂1
k1

]), . . . , ([∂m
1 ] + . . . + [∂m

km
])
〉
⊂ H1(Σ;Z).



276 H. Ünlü Eroğlu

Definition 2.1 ( [7], Section 3.1). Let (Σ,) be a partitioned surface, and let  denote
a set containing one point from each boundary component of Σ. The homology group
H

1 (Σ;Z) is defined to be the image of the following subgroup of H1(Σ,;Z) in
H1(Σ,;Z)/∂H

1 (Σ;Z):

〈{[h] ∈ H1(Σ,;Z)| h is either a simple closed curve or a properly embedded arc a

connecting two boundary curves in the same block of  and with

∂a ∈ }〉

One can easily see that (Σ) acts on H
1 (Σ;Z). In Theorem 3.3 of [7], Putman proves that

the subsurface Torelli group (Σ,) is the subgroup of (Σ) that acts trivially on H
1 (Σ;Z).

A -separating curve on a partitioned surface (Σ,) is a simple closed curve γ with
[γ] = 0 in H

1 (Σ;Z). A twist about -bounding pair is defined to be Tγ1T
−1
γ2

, where γ1 and
γ2 are disjoint, nonisotopic simple closed curves and [γ1] = [γ2] in H

1 (Σ;Z). For g ≥ 1,
(Σg,n,) is generated by twists about -separating curves and twists about -bounding
pairs [7].

A category TSur was defined in [7] such that (Σg,n,) is a functor from TSur to the
category of groups and homomorphisms. The objects of TSur are partitioned surfaces (Σ,)
and the morphisms from (Σg1,n1 ,1) to (Σg2,n2 ,2) are exactly those embeddings i : Σg1,n1 ↪→
Σg2,n2 which induce morphisms i∗ : (Σg1,n1 ,1)→ (Σg2,n2 ,2). The embeddings satisfy the
following condition: for any 1-separating curve γ, the curve i(γ) must be a 2-separating
curve. In this paper, we will use the refinement of this category defined by Church in [3].

Before giving the definition of the category defined by Church, we need to describe a
construction of a minimal totally separated surface Σ̂ containing Σ.

Remark 2.2 ( [3]). Given a partitioned surface (Σ,), a minimal totally separated surface
containing Σ can be constructed as follows: For each P ∈  with |P| = n, we attach a sphere
with n + 1 boundary components to the n boundary components in P of Σ to obtain Σ̂ with a
partition ̂ . Each element of the partition ̂ contains only one boundary component.

Notation. Given a partitioned surface (Σ,), the partitioned surface (̂Σ, ̂) will denote a
minimal totally separated surface containing Σ.

Note that H̂
1 (̂Σ;Z) is isomorphic to HP

1 (Σ;Z).

Definition 2.3 ( [3], Section 2.3). Objects of the Torelli category  Surf are partitioned
surfaces (Σ,). A morphism from (Σ1,1) to (Σ2,2) is an embedding i : Σ1 ↪→ Σ2 satisfy-
ing the following conditions:

• i takes 1-separating curves to 2-separating curves.
• i extends to an embedding î : Σ̂1 ↪→ Σ̂2.

In [3], given a surface (Σ,) with  = {P0, P1, . . . , Pk}, Church defined the partitioned
Johnson homomorphism τ(Σ,) with image W(Σ,) given in Definition 5.8 of [3]. The defi-
nition of the partitioned Johnson homomorphism is similar to the definition of the Johnson
homomorphism. Church stated in [3], Definition 5.12, that W(Σ,) can be considered to be a
subspace of

∧3 H̂
1 (̂Σ;Z)⊕ (Zk⊗H̂

1 (̂Σ;Z)). Basis elements of W(Σ,) is shown to be a∧b∧c
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for the
∧3 H̂

1 (̂Σ;Z) component and as zi ∧ x for Zk ⊗ H̂
1 (̂Σ;Z), where a, b, c, x ∈ H̂

1 (̂Σ;Z)
and zi is the boundary component of Σ̂ corresponding to Pi ∈  for each 1 ≤ i ≤ k.

2.2. Symplectic Basis for H
1 (Σ;Z).

2.2. Symplectic Basis for H
1 (Σ;Z). In this section, we introduce a symplectic basis for

H
1 (Σ;Z).
Let (Σ,) be a partitioned surface of genus g with the partition  = {P1, P2, . . . , Pn},

|Pl| = nl. For an l = 1, 2, . . . , n, suppose that Pl = {∂l
1, ∂

l
2, . . . , ∂

l
nl
}. Let  be a subset of the

boundary ∂Σ containing exactly one point from each boundary component.
Let us choose a set of simple closed curves {x1, y1, x2, y2, . . . , xg, yg} on Σ satisfying
• xi ∩ x j = ∅, xi ∩ y j = ∅, yi ∩ y j = ∅ for i � j,
• xi intersects yi transversely at one point, and
• under the filling map

H1(Σ;Z)→ H1(Σ;Z)

{[xi], [yi] | i = 1, . . . , g} maps to a symplectic basis of H1(Σ;Z). Here, Σ denotes the
closed surface obtained by gluing a disc along each boundary component and the
filling map is induced by inclusion.

For each l = 1, 2, . . . , n, choose oriented arcs hl
j connecting ∂l

j ∩  to ∂l
j+1 ∩  for j =

1, 2, . . . , nl − 1 such that
• hl

j are disjoint from xi, yi,
• hl

j are pairwise disjoint except perhaps at endpoints,
• each hl

j is oriented so that the algebraic intersection number of the homology classes
[hl

j] and [∂l
1 + · · ·+ ∂l

j] is 1, where the orientations of the boundary components are
induced from the orientation of the surface.

The union of the sets
• {[x1], [y1], . . . , [xg], [yg]},
• {[h1

1], [h1
2], . . . , [h1

n1−1], [h2
1], . . . , [h2

n2−1], . . . , [hn
1], . . . , [hn

nn−1]},
• {[∂1

1], [∂1
1 + ∂

1
2], . . . , [∂1

1 + · · ·+ ∂1
n1−1], [∂2

1], . . . , [∂2
1 + · · ·+ ∂2

n2−1], . . . , [∂n
1], . . . , [∂n

1 +

· · · + ∂n
nn−1]}

is a basis B of H
1 (Σ;Z).

In this basis, {xi, yi} are closed curves, the {hl
j}s are arcs, and {∂l

j}s are boundary curves as
shown in Figure 1.

This basis B has the following properties:
• î([xi], [x j]) = î([yi], [y j]) = 0, î([xi], [y j]) = δi j, for all 1 ≤ i, j ≤ g,
• î([hl

i], [∂
l
1 + · · · + ∂l

j]) = δi j, for all 1 ≤ i, j ≤ nl − 1, 1 ≤ l ≤ n,

• î([hl
j], [xi]) = î([hl

j], [yi]) = 0, for all 1 ≤ i ≤ g, 1 ≤ j ≤ nl − 1, 1 ≤ l ≤ n,

• î([∂l
1+ · · ·+∂l

j], [xi]) = î([∂l
1+ · · ·+∂l

j], [yi]) = 0, for all 1 ≤ i ≤ g, 1 ≤ j ≤ nl−1, 1 ≤
l ≤ n,
• î([hl

i], [h
n
j]) = 0, for any i, j, l, n.

Here, δi j denotes the Kronecker delta and î(·, ·) denotes the algebraic intersection number.

Remark 2.4. The pairing î(·, ·) is induced from the pairing on H̂
1 (̂Σ;Z). We can define an

isomorphism from H
1 (Σ;Z) to H̂

1 (̂Σ;Z) as follows: Suppose that Σ̂ is the totally separated
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Fig. 1. An example illustrating homology basis elements of H
1 (Σ2,6;Z),

where  = {{∂1
1, ∂

1
2, ∂

1
3, ∂

1
4}, {∂2

1, ∂
2
2}}.

surface, with the partition ̂ , obtained by gluing a sphere S l with nl + 1 holes along the
boundary components in Pl, i.e. the minimal totally separated surface containing Σ (c.f.
Remark 2.2). For each j = 1, 2, . . . , nl − 1, choose smooth arcs kl

j on the complement Σ̂ \ Σ◦
connecting  ∩ ∂l

j to  ∩ ∂l
j+1. Here, kl

j are pairwise disjoint except perhaps at endpoints.

Let us orient each kl
j so that concatenation hl

j ∗ kl
j is a smooth closed oriented curve in Σ̂,

where [hl
j] is an element of the basis B. Let l = {Pl, {zl}} be the partition of the boundary

of S l, where zl is the boundary component of Σ̂. Then Kl = {[kl
j]} is a set of basis elements

with arc representatives of Hl
1 (S l;Z). Let K denote the union K1 ∪ K2 ∪ · · · ∪ Kn. We then

have an isomorphism

ψK : H
1 (Σ;Z)→ H̂

1 (̂Σ;Z)

by mapping basis elements with closed curve representatives to themselves and [hl
j] to [hl

j ∗
kl

j]. One can observe that ψK preserves the algebraic intersection form, i.e. for any a, b ∈
H

1 (Σ;Z) we have î(a, b) = î(ψK (a), ψK (b)).

We now define the dual of a homology class of H
1 (Σ;Z) by using this intersection form.

Note that the intersection form î is nondegenerate. Therefore the map

D : H
1 (Σ;Z)→ Hom(H

1 (Σ;Z),Z)

sending [x] ∈ H
1 (Σ;Z) to î(·, [x]) is an isomorphism.

3. Results

3. Results
In this section, we construct a well-defined map ẽX by means of the projective tangent

bundle. We prove that ẽX and the homomorphism obtained by taking the dual of ẽX( f ) for
any f ∈ (Σ,) satisfy the naturality property. We define the homomorphism from the
subsurface Torelli groups to H

1 (Σ;Z) obtained by taking dual of ẽX( f ) to be the Chilling-
worth homomorphism of the subsurface Torelli groups. Moreover, we show that ẽX is the
unique nontrivial homomorphism satisfying naturality. Finally, we relate the Chillingworth
classes of the subsurface Torelli groups to the partitioned Johnson homomorphism defined
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by Church.
In this section, if (Σ1,1) and (Σ2,2) are partitioned surfaces, then by an embedding

i : (Σ1,1) ↪→ (Σ2,2) of partitioned surfaces, we mean a morphism i : (Σ1,) → (Σ2,)
of  Surf.

3.1. Winding Number In The Projective Tangent Bundle.
3.1. Winding Number In The Projective Tangent Bundle. This section starts with the

definition of the projective tangent bundle and we introduce the winding number in the
projective tangent bundle.

Let Σ be a smooth compact connected oriented surface with nonempty boundary. Let us
choose a Riemannian metric on Σ. Let UT (Σ) be the unit tangent bundle of Σ. Since Σ has
nonempty boundary, there are nonvanishing vector fields on Σ. Choice of two nonvanishing
vector fields which are orthogonal to each other gives a parallelization of Σ. The unit tangent
bundle UT (Σ) is therefore homeomorphic to Σ × S 1.

By using this unit tangent bundle, the projective tangent bundle PT (Σ) is constructed as
follows: By identifying antipodal points in each fiber S 1, we obtain a fiber bundle whose
fiber is RP1, which is homeomorphic to S 1. The projective tangent bundle PT (Σ) is also
homeomorphic to the product Σ × S 1 since Σ has nonempty boundary.

Let {[αi]}i∈I ∪ {[x j], [y j]} j∈J be a basis for H
1 (Σ;Z). Here, I and J are finite index sets,

each αi is an arc, and each x j, y j is a simple closed curve. We assume that all representatives
are smooth.

In this paper, we always take representatives of mapping classes that fix points in a regular
neighborhood of each boundary component. Therefore, f (αi) and αi have the same tangent
vectors on a small neighborhood of the boundary components. We denote by f (αi) ∗α−1

i the
closed curve obtained by first traversing the arc f (αi) then αi with the reversed orientation.
The resulting closed curve has two nondifferentiable points on the boundary of the subsur-
face. Since f (αi) and αi have the same tangent vectors at the end points, in the projective
tangent bundle we can calculate the winding number of closed oriented curves having two
such nondifferentiable points on the boundary. When we concatenate arcs to obtain a closed
curve, we will assume that the tangent spaces of the arcs at the end points coincide.

The winding number in the projective tangent bundle is defined in analogy to the winding
number in the tangent bundle. We define winding number in the projective tangent bundle
for smooth closed oriented curves or for closed oriented curves constructed by concatenating
a pair of smooth arcs as just described.

Let us denote the winding number in the projective tangent bundle of a closed oriented
curve γ with respect to a nonvanishing vector field X by w̃X(γ). Since S 1 is a double cover
of RP1, for a smooth closed oriented curve γ we have wX(γ) = w̃X(γ)

2 .

3.2. Construction of ẽX.
3.2. Construction of ẽX. In this section our aim is to define a well-defined map ẽX :

(Σ,)→ Hom(H
1 (Σ;Z),Z).

Let X be a nonvanishing vector field on a partitioned surface (Σ,) and f be an element
of the subsurface Torelli group of (Σ,). Choose a set of simple closed curves representing
a basis of H1(Σ;Z). Assigning an integer to each basis element determines a homomorphism
from H1(Σ;Z) to Z. This integer is chosen to be the total number of times that X rotates rela-
tive to f −1X as we traverse the basis element. This homomorphism, denoted by d(X, f −1X),
is defined in [1]. By Lemma 4.1 in [1], we have
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d(X, f −1X)[γ] = wX( fγ) − wX(γ),

for any smooth closed oriented curve γ. In the projective tangent bundle we get

d(X, f −1X)[γ] =
w̃X( fγ) − w̃X(γ)

2
.

Since f fixes every boundary component of Σ, d(X, f −1X)[∂] = 0 for any boundary compo-
nent ∂. Therefore, d(X, f −1X) induces a homomorphism d(X, f −1X) : H



1 (Σ;Z)→ Z defined
by

d(X, f −1X)[γ] =
w̃X( fγ) − w̃X(γ)

2
.

Now our aim is to get a well-defined map

d̃(X, f −1X) : H
1 (Σ;Z)→ Z

mapping an element [α] of H
1 (Σ;Z) to the half of the number of times that X rotates relative

to f −1X in the projective tangent bundle as we traverse α.
For a closed oriented curve γ, we define

d̃(X, f −1X)[γ] = d(X, f −1X)[γ].

Now, let h be a smooth oriented arc whose endpoints are on the boundary components of Σ
contained in the same element of  and let f ∈ (Σ,). Since f fixes all points of a regular
neighborhood of the boundary components, h and f (h) have the same tangent spaces at the
end points and f (h) ∗ h−1 is a closed oriented curve with two cusps. We define

d̃(X, f −1X)[h] :=
w̃X( f (h) ∗ h−1)

2
.

For each P ∈  with |P| = n, let us attach a sphere with n + 1 boundary components to
the n boundary components in P of Σ to obtain Σ̂ with a partition ̂ as in Remark 2.2. Thus,
(̂Σ, ̂) is totally separated. Extend X to the obtained larger surface Σ̂ so that it is again a
nonvanishing vector field on Σ̂. For simplicity, the extension will also be denoted by X. Let
h1 be a smooth oriented arc in the complement of Σ whose end points are ∂h. Let γ := h ∗ h1

denote the smooth closed oriented curve obtained by concatenating h and h1. Notice that
we choose a consistent orientation for h1 to get a closed oriented curve γ. We parametrize
γ such that its initial and terminal points are on one of the boundary components of the
subsurface Σ. Then fγ is isotopic to f (h) ∗ h1.

Remark 3.1. The winding number in the projective tangent bundle of the concatenation of
smooth closed oriented curves is equal to the sum of the winding numbers of each smooth
closed oriented curve if the tangent spaces of the curves at the end points are the same.
Therefore, we obtain the following equalities:

w̃X( fγ) − w̃X(γ)
2

=
w̃X( fγ ∗ γ−1)

2

=
w̃X( f (h) ∗ h1 ∗ (h ∗ h1)−1)

2
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=
w̃X( f (h) ∗ h−1)

2
.

One can easily observe that the obtained equality

w̃X( fγ) − w̃X(γ)
2

=
w̃X( f (h) ∗ h−1)

2

does not depend on the choice of the arc representative h1 on Σ̂ \ Σ◦.
Lemma 3.2. Let h be a smooth oriented arc representing a homology class [h] in

H
1 (Σ;Z). Then the number w̃X( f (h)∗h−1)

2 is independent of the choice of the representative
of [h].

Proof. Let [h] = [h′] be in H
1 (Σ;Z). Then we have [h ∗ h′−1] = 0 in H

1 (Σ;Z). Since
the embedding (Σ,) ↪→ (̂Σ, ̂) of partitioned surfaces takes -separating curves to ̂-
separating curves by the first condition of Definition 2.3, we get [h ∗ h′−1] = 0 in H̂

1 (̂Σ;Z).
We have [γ] = [γ′] by using the following equalities:

[h ∗ h′−1] = [h ∗ h1 ∗ h−1
1 ∗ h′−1] = [h ∗ h1] − [h′ ∗ h1] = 0,

where [γ] = [h ∗ h1] and [γ′] = [h′ ∗ h1].
Since we have

w̃X( fγ) − w̃X(γ)
2

=
w̃X( fγ′) − w̃X(γ′)

2
,

for any smooth homologous simple closed curves γ and γ′ in H̂
1 (̂Σ;Z), we get

w̃X( f (h) ∗ h−1)
2

=
w̃X( f (h′) ∗ h′−1)

2
.

�

Lemma 3.3. The map d̃(X, f −1X) : H
1 (Σ,Z)→ Z is a homomorphism.

Proof. For smooth closed oriented curves γ1 and γ2 by the definition of d(X, f −1X), we
have

d̃(X, f −1X)[γ1 ∗ γ2] = d̃(X, f −1X)[γ1] + d̃(X, f −1X)[γ2].

Let h1 and h2 be smooth oriented arcs whose endpoints are on the boundary components
of Σ contained in the same element of  and let us assume that the initial point of h2 is the
same as the terminal point of h1. Let [h] denote the sum of two homology classes [h1] and
[h2]. We obtain the following equalities:

d̃(X, f −1X)[h1] + d̃(X, f −1X)[h2] =
w̃X( f (h1) ∗ h−1

1 )
2

+
w̃X( f (h2) ∗ h−1

2 )
2

=
w̃X(h−1

1 ∗ f (h1))
2

+
w̃X( f (h2) ∗ h−1

2 )
2

=
w̃X(h−1

1 ∗ f (h1) ∗ f (h2) ∗ h−1
2 )

2

=
w̃X( f (h1) ∗ f (h2) ∗ h−1

2 ∗ h−1
1 )

2
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=
w̃X( f (h1 ∗ h2) ∗ (h1 ∗ h2)−1)

2
= d̃(X, f −1X)[h1 ∗ h2]

= d̃(X, f −1X)[h].

Now let [h′] denote a homology class whose representatives are arcs. Let γ be a smooth
oriented arc whose homology class [γ] is the sum of [h′] and a homology class [α] with
closed curve representatives. As in the previous paragraph of Remark 3.1, we can obtain
a smooth closed oriented curve α′ by concatenating h′ with a smooth oriented arc in the
complement of Σ. Hence, we have

d̃(X, f −1X)[h′] + d̃(X, f −1X)[α] =
w̃X( f (h′) ∗ h′−1)

2
+
w̃X( fα) − w̃X(α)

2

=
w̃X( fα′) − w̃X(α′)

2
+
w̃X( fα) − w̃X(α)

2
= d̃(X, f −1X)[α′ ∗ α]

= d̃(X, f −1X)[h′ ∗ α] (by Remark 3.1)

= d̃(X, f −1X)[γ].
�

Definition 3.4. The map ẽX : (Σ,) → Hom(H
1 (Σ;Z),Z) is defined to be ẽX( f ) :=

d̃(X, f −1X). More explicitly, it is defined as follows:
If [γ] has a smooth closed curve representative γ,

ẽX( f )[γ] :=
w̃X( fγ) − w̃X(γ)

2
.

If h is a smooth oriented arc representing a homology class [h] in H
1 (Σ;Z),

ẽX( f )[h] :=
w̃X( f (h) ∗ h−1)

2
.

Lemma 3.5. The map ẽX : (Σ,)→ Hom(H
1 (Σ;Z),Z) is a homomorphism.

Proof. By Lemma 5B of [5], it is easy to see that ẽX( fg)[γ] = ẽX( f )[γ] + ẽX(g)[γ] for a
smooth closed oriented curve γ.

For a smooth oriented arc αi,

ẽX( fg)[αi] =
w̃X( fg(αi) ∗ α−1

i )
2

=
w̃X( f (gαi) ∗ g(α−1

i ) ∗ g(αi) ∗ α−1
i )

2

=
w̃X( f (gαi) ∗ g(α−1

i ))
2

+
w̃X(g(αi) ∗ α−1

i )
2

= ẽX( f )[g(αi)] + ẽX(g)[αi].

Since g ∈ (Σ,), g(αi) and αi represent the same element of H
1 (Σ;Z). Hence we get

ẽX( fg) = ẽX( f ) + ẽX(g).
�
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Notice that ẽX depends on the choice of the nonvanishing vector field X.

3.3. Naturality and Uniqueness of ẽX.
3.3. Naturality and Uniqueness of ẽX. In this section, we show that ẽX is natural and

that it is the unique nontrivial natural homomorphism from (Σ,) to Hom(H
1 (Σ;Z),Z).

Remark 3.6. Suppose that (Σ,) is a totally separated surface with boundary components
z1, z2, . . . , zn, so that  = {{z1}, . . . , {zn}}. Suppose also that Σ′ is a partitioned surface with a
partition  ′ such that there is an embedding (Σ,) ↪→ (Σ′, ′) of partitioned surfaces. For
1 ≤ j ≤ n, let Vj be a connected component of Σ′ \Σ◦ containing z j as a boundary component
and let  j be the partition of the boundary of Vj consisting of {z j} and a subset of  ′. By
identifying H j

1 (Vj;Z) and H
1 (Σ;Z) with their images in H ′

1 (Σ′;Z), we can write

H ′
1 (Σ′;Z) = H

1 (Σ;Z) ⊕ H1
1 (V1;Z) ⊕ · · · ⊕ Hn

1 (Vn;Z).

If Σ is totally separated with the partition  and if i : (Σ,) ↪→ (Σ′, ′) is an embedding
of partitioned surfaces, then there is a natural projection

r∗ : H ′
1 (Σ′;Z)→ H

1 (Σ;Z)

which gives a natural homomorphism

r∗ : Hom(H
1 (Σ;Z),Z)→ Hom(H ′

1 (Σ′;Z),Z).

Proposition 3.7. Let Σ be a totally separated surface with the partition  and let i :
(Σ,) ↪→ (Σ′, ′) be an embedding of partitioned surfaces. Let X be a nonvanishing vector
field on Σ′ and let Y denote the restriction of X to Σ. Then the homomorphism ẽY is natural
in the sense that the diagram

(3.1) (Σ,)
i∗ ��

ẽY
��

(Σ′, ′)

ẽX
��

Hom(H
1 (Σ;Z),Z)

r∗
�� Hom(H ′

1 (Σ′;Z),Z)

commutes.

Proof. Let f ∈ (Σ,), and let i∗( f ) = f̃ . Thus (the class of) the diffeomorphism f̃ is
equal to f on Σ and is the identity on the complement Σ′ \Σ. We show that r∗(̃eY( f )) = ẽX( f̃ ).

Let γ be a smooth oriented simple closed curve in Σ representing a basis element of
H

1 (Σ;Z). Then, we have

r∗(̃eY( f ))[γ] = ẽY( f )(r∗[γ]) = ẽY( f )[γ] =
w̃Y( fγ) − w̃Y(γ)

2
and

ẽX( f̃ )[γ] =
w̃X( f̃γ) − w̃X(γ)

2
=
w̃X( fγ) − w̃X(γ)

2
.

Since Y is the restriction of X to Σ, we have r∗(̃eY( f ))[γ] = ẽX( f̃ )[γ].
Now let γ′ be a smooth closed oriented curve or smooth oriented arc in some Vj represent-

ing a homology basis element in H j

1 (Vj;Z). In this case, r∗(̃eY( f ))[γ′] = ẽY( f )(r∗([γ′])) = 0
because r∗([γ′]) = 0. Since f (γ′) = γ′, we have
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ẽX( f̃ )[γ′] =
w̃X( f̃γ′) − w̃X(γ′)

2
=
w̃X(γ′) − w̃X(γ′)

2
= 0.

Since H ′
1 (Σ′;Z) is the direct sum of H

1 (Σ;Z) and H j

1 (Vj;Z), it follows that r∗(̃eY( f )) =
ẽX( f̃ ) for every f in (Σ,), and hence r∗ẽY = ẽXi∗. �

Suppose now that Σ is any surface with a partition  = {P1, P2, . . . , Pn}, |Pl| = nl. Let us
fix the symplectic basis B of H

1 (Σ;Z) defined as in Subsection 2.2.
By using ψK in Remark 2.4, we get the isomorphism

ψ∗K : Hom(H̂
1 (̂Σ;Z),Z)→ Hom(H

1 (Σ;Z),Z)

defined to be ψ∗K (χ) = χ ◦ ψK for any χ ∈ Hom(H̂
1 (̂Σ;Z),Z).

Proposition 3.8. Let (Σ,) be a partitioned surface and let (̂Σ, ̂) be a minimal totally
separated surface containing Σ. Let i : (Σ,) ↪→ (̂Σ, ̂) be an inclusion coming from an
embedding of partitioned surfaces. Let X be a nonvanishing vector field on Σ̂ and let Y
denote the restriction of X to Σ. Then the homomorphism ẽY is natural in the sense that the
diagram

(3.2) (Σ,)
i∗ ��

ẽY

��

 (̂Σ, ̂)

ẽX
��

Hom(H
1 (Σ;Z),Z) Hom(H̂

1 (̂Σ;Z),Z)
ψ∗K��

commutes.

Proof. Let f ∈ (Σ,), and let i∗( f ) = f̃ . Thus f̃ is equal to f on Σ and is the identity on
the complement Σ̂ \ Σ. We show that ẽY( f ) = ψ∗K ẽX( f̃ ).

For any homology basis element [γ] ∈ H
1 (Σ;Z) with a smooth closed oriented curve

representative γ, we have

ẽY( f )[γ] =
w̃Y( fγ) − w̃Y(γ)

2
and

ψ∗K ẽX( f̃ )([γ]) = ẽX( f̃ )(ψK [γ])

= ẽX( f̃ )[γ]

=
w̃X( f̃γ) − w̃X(γ)

2

=
w̃X( fγ) − w̃X(γ)

2
.

Since X = Y on Σ, we get the desired equality.
For any homology basis element [hl

j] ∈ H
1 (Σ;Z) with a smooth oriented arc representa-

tive hl
j, we have

ẽY( f )[hl
j] =

wY( f (hl
j) ∗ (hl

j)
−1)

2
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and

ψ∗K ẽX( f̃ )[hl
j] = ẽX( f̃ )(ψK [hl

j])

= ẽX( f̃ )[hl
j ∗ kl

j]

=
w̃X( f̃ (hl

j ∗ kl
j)) − w̃X(hl

j ∗ kl
j)

2
.

Since we are working in the projective tangent bundle and we assume that representatives of
mapping classes fix a regular neighborhood of the boundary components, we get

ψ∗K ẽX( f̃ )[hl
j] =

w̃X( f̃ (hl
j ∗ kl

j) ∗ (hl
j ∗ kl

j)
−1)

2

=
w̃X( f (hl

j) ∗ kl
j ∗ (kl

j)
−1 ∗ (hl

j)
−1)

2

=
w̃X( f (hl

j) ∗ (hl
j)
−1)

2

=
w̃Y( f (hl

j) ∗ (hl
j)
−1)

2
.

Therefore, we obtain the equality ẽY = ψ
∗
K ẽXi∗. This concludes the proof. �

Note that commutativity of diagram (3.2) does not depend on the choice of basis {[kl
j]} ∈

Hl
1 (S l;Z).
Proposition 3.7 and Proposition 3.8 imply the following theorem.

Theorem 3.9. Let (Σ,) and (Σ′, ′) be partitioned surfaces and i : (Σ,) ↪→ (Σ′, ′)
be an embedding of partitioned surfaces. Let X be a nonvanishing vector field on Σ′ and
let Y denote the restriction of X to Σ. Then there exists a homomorphism i′∗ such that the
homomorphism ẽY is natural in the sense that the diagram

(3.3) (Σ,)
i∗ ��

ẽY
��

(Σ′, ′)

ẽX
��

Hom(H
1 (Σ;Z),Z)

i′∗
�� Hom(H ′

1 (Σ′;Z),Z)

commutes.

Proof. Let  = {P1, P2, . . . , Pn}, |Pl| = nl be the partition on Σ. For an l = 1, 2, . . . , n,
suppose that Pl = {∂l

1, ∂
l
2, . . . , ∂

l
nl
}. For each j = 1, 2, . . . , nl − 1, choose smooth oriented

simple arcs kl
j on the complement Σ′\Σ◦ connecting ∩∂l

j to ∩∂l
j+1. Here, kl

j are pairwise
disjoint except perhaps at endpoints. We consider a closed tubular neighbourhood of the
union ∂l

1 ∪ ∂l
2 ∪ · · · ∪ ∂l

nl
∪ kl

1 ∪ · · · kl
nl−1. This tubular neighbourhood is homeomorphic to a

sphere S l with nl + 1 holes. Let us consider now a minimal totally separated surface (̂Σ, ̂)
containing Σ and all S l as a subsurface.

Let us fix bases B and K as in Proposition 3.8.
Consider the composition of the embedding ĵ : (Σ,) ↪→ (̂Σ, ̂) of partitioned surfaces

with the embedding j′ : (̂Σ, ̂) ↪→ (Σ′, ′) of partitioned surfaces. Let Ŷ denote the restric-
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tion of X to Σ̂. After showing that both diagrams in (3.4) are commutative, our proof will be
complete.

(3.4) (Σ,)
ĵ∗ ��

ẽY

��

 (̂Σ, ̂)
j′∗ ��

ẽŶ
��

(Σ′, ′)

ẽX

��
Hom(H

1 (Σ;Z),Z)
(ψ∗K )−1

�� Hom(HP̂
1 (̂Σ;Z),Z)

r∗
�� Hom(H ′

1 (Σ′;Z),Z)

Proposition 3.7 implies the commutativity of the right-hand side in diagram (3.4). The
commutativity of the left-hand side in diagram (3.4) follows from Proposition 3.8. No-
tice that the composition of (ψ∗K )−1 and r∗ in diagram (3.4) gives the homomorphism i′∗ :
Hom(H

1 (Σ;Z),Z) → Hom(H ′
1 (Σ′;Z),Z) in diagram (3.3). For the sake of clarity, for any

χ ∈ Hom(H
1 (Σ;Z),Z) and [γ] ∈ H ′

1 (Σ′;Z) we get

i′∗(χ)[γ] = r∗ ◦ (ψ∗K )−1(χ)[γ] = χ(ψ−1
K r∗)[γ].

We conclude that we have i′∗ = r∗ ◦ (ψ∗K )−1 such that diagram (3.3) is commutative. �

Remark 3.10. Theorem 3.9 remains true for any capping i : (Σ,) ↪→ Σg under the
condition that the chosen vector field X on Σg has only one singularity in the complement of
Σ̂.

Proposition 3.11. The homomorphism ẽY is unique in the sense that it is the only nontriv-
ial homomorphism from (Σ,) to Hom(H

1 (Σ;Z),Z) such that diagram (3.3) commutes.

Proof. Let us assume that there is another homomorphism G : (Σ,)→ Hom(H
1 (Σ;Z),

Z) satisfying the naturality condition, i′∗ ◦ G = ẽX ◦ i∗. Our aim is to show that ẽY = G,
hence proving the proposition. Since both G and ẽY satisfy the naturality condition, we get
i′∗ ◦ ẽY = i′∗ ◦ G. Observe that (ψ∗K )−1 is an isomorphism because ψK is an isomorphism.
Since r∗ is onto, r∗ is injective, which implies that the map i′∗ is injective. Therefore, we get
the equality ẽY = G, as desired. �

3.4. Naturality of the Chillingworth Homomorphism.
3.4. Naturality of the Chillingworth Homomorphism. In this section, we show that the

Chillingworth homomorphism is natural. We relate the Chillingworth class of the subsurface
Torelli group to the partitioned Johnson homomorphism.

For an element f ∈ (Σ,), let us define the dual of ẽY( f ). This will be called the
Chillingworth class of f . The algebraic intersection form for H

1 (Σ;Z) gives t(Σ,)( f ) defined
by:

î([γ], t(Σ,)( f )) = ẽY( f )[γ].

Therefore, we get the Chillingworth homomorphism:

t(Σ,) : (Σ,)→ H
1 (Σ;Z).

Let (Σ,) ↪→ (Σ′, ′) be an embedding of partitioned surfaces. Fix a symplectic basis
B of H

1 (Σ;Z) defined in Section 2.2. Recall that H ′
1 (Σ′;Z) is isomorphic to H̂

1 (̂Σ;Z) ⊕
H1

1 (V1;Z) ⊕ H2
1 (V2;Z) ⊕ · · · ⊕ Hn

1 (Vn;Z) as in Remark 3.6.
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As in the previous section, take a nonvanishing vector field X on Σ′. Restrict X to the
subsurface Σ and call the restriction Y .

Lemma 3.12. Let s∗ : H̂
1 (̂Σ;Z) → H ′

1 (Σ′;Z) be the inclusion map and D be the iso-
morphism defined in Section 2.2. Then the following diagram commutes:

(3.5) (Σ,)
i∗ ��

ẽY
��

(Σ′, ′)

ẽX
��

Hom(H
1 (Σ;Z),Z)

i′∗ ��

D−1

��

Hom(H ′
1 (Σ′;Z),Z)

D−1

��
H

1 (Σ;Z)
s∗◦ψK �� H ′

1 (Σ′;Z)

Proof. We showed in Theorem 3.9 that the upper square in diagram (3.5) commutes.
Hence our aim is to show that the lower square also commutes. Commutativity of the lower
square is proven by showing commutativity of diagram (3.6).

(3.6) Hom(H
1 (Σ;Z),Z)

(ψ∗K )−1

�� Hom(H̂
1 (̂Σ;Z),Z)

r∗ �� Hom(H ′
1 (Σ′;Z),Z)

H
1 (Σ;Z)

ψK ��

D

��

H̂
1 (̂Σ;Z)

s∗ ��

D

��

H ′
1 (Σ′;Z)

D

��

First, we show that the square on the left of diagram (3.6) commutes. For any homology
class [x] of H

1 (Σ;Z), we have

(ψ∗K )−1(D([x]))[γ] = D([x])(ψ−1
K ([γ])) = î(ψ−1

K [γ], [x])

and

D(ψK ([x]))[γ] = î([γ], ψK ([x])).

By Remark 2.4, ψ−1
K : H̂

1 (̂Σ;Z) → H
1 (Σ;Z) preserves the algebraic intersection form.

Therefore, we get the desired equality (ψ∗K )−1 ◦ D = D ◦ ψK .
Now our aim is to show that the square in the right-hand side of diagram (3.6) commutes.

Let [x] be an element of H̂
1 (̂Σ;Z). For any homology basis element [γ] ∈ H ′

1 (Σ′;Z) the
lemma follows:

r∗(D([x]))[γ] = D([x])(r∗([γ])) = î(r∗([γ]), [x])

D(s∗([x]))[γ] = î([γ], s∗([x])).

Since the direct sum decomposition

H ′
1 (Σ′;Z) = H̂

1 (̂Σ;Z) ⊕
n⊕

i=1

Hi
1 (Vi;Z)

in Remark 3.6 is orthogonal with respect to the intersection pairing, we obtain î(r∗([γ]), [x])
= î([γ], s∗([x])) and hence the equality r∗ ◦ D = D ◦ s∗ as desired.
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Consequently, we have proven that diagram (3.6) commutes. Since the dual maps D
are isomorphisms, we obtain that diagram (3.5) is also commutative. We conclude that
s∗ ◦ ψK ◦ t(Σ,) = t(Σ′, ′) ◦ i∗ by diagram (3.5). �

Corollary 3.13. The following diagram is commutative and hence we get the following
equality: t(Σ,) = ψ

−1
K ◦ r∗ ◦C ◦ pi ◦ τ(Σ,), where C is the contraction map. Here, τ(Σ,) is the

partitioned Johnson homomorphism defined in [3], Definition 5.2, and pi is the map defined
in [3], Definition 5.13.

(3.7)

Proof. We need to confirm that each triangle and square is commutative. We showed in
Theorem 3.9 that the left square in the middle part is commutative. Here, the homomorphism
i∗ is defined as in Theorem 3.9. That is, for any f ∈ (Σ,), i∗( f ) is equal to f on Σ and
is the identity on the complement Σg,1\Σ. The commutativity of the right square in the
middle follows from Theorem 2 of [5] and the definition of the Chillingworth class. The
partitioned Johnson homomorphism is natural [3], Theorem 5.14. Hence, the upper triangle
is commutative. Finally, the commutativity of the lower triangle follows from Lemma 3.12.

�
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