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Abstract
Let L be a positive-definite, even, integral lattice and θ an automorphism of a central extension

of L. In this paper, we study the lattice vertex operator algebra VL associated with L and its θ-
twisted modules. We also discuss the fusion products of VL-modules and completely determine
the fusion rules among them.

1. Introduction

1. Introduction
The theory of vertex operator algebras is relatively new compared to other branches of

mathematics and has evolved quite rapidly since its inception in the late 1980s. Motivated
by the representation theory of affine Lie algebras and the “moonshine module”, Borcherds
introduced the mathematical formulation of vertex algebras in 1986 [4]. Two years later,
Frenkel, Lepowsky, and Meurman modified Borcherds’s definition and introduced vertex
operator algebras in their foundational work [14] on the subject. An active field of mathe-
matical research took off from there. The theory of vertex operator algebras was motivated
by and has applications in many areas of mathematics, such as number theory, group the-
ory, the theory of modular functions, etc. Vertex (operator) algebras are the mathematical
local counterpart of what theoretical physicists call “chiral algebras” in two-dimensional
conformal field theory.

In his original paper [4], Borcherds developed a new abstract theory of what he called
vertex operators by using the explicit structure of an even integral lattice L. Specifically, for
any such lattice, he constructed a space on which the vertex operators corresponding to the
elements in C[L] act. These actions were shown to satisfy infinitely many relations, which
then formed the axioms in the definition of a vertex algebra. In other words, the vertex
algebra of an even lattice is the original example of vertex algebras.

In this paper, we study the lattice vertex operator algebra VL associated with a positive-
definite even lattice and completely determine its fusion rules. For a vertex operator alge-
bra V with irreducible modules M1,M2, and M3, the fusion rule of type

(
M3

M1 M2

)
is defined

to be the dimension of the vector space formed by all intertwining operators of this type. In
conformal field theory, these numbers are closely related to the fusion coefficients Nk

i j in the
operator product expansion of two conformal families [φi] and [φ j]:

[φi] × [φ j] =
∑

k

Nk
i j[φk]
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(see [5]). Roughly speaking, the fusion coefficients Nk
i j give the scattering amplitudes of the

outgoing primary fields φk when two primary fields φi and φ j come into contact. We shall
see that the above equation is exactly the physical counterpart of what is called a fusion
product in mathematics literature.

Let us now give an overview of this paper. Let L be a positive-definite, even, integral
lattice of rank d and denote by L◦ its dual lattice. Since L is even, one can show that L ⊆ L◦.
We set S = {λ1, . . . , λk} to be the complete set of representatives of equivalence classes of L
in L◦. It is well known that {VL+λ | λ ∈ S } is the complete list of (inequivalent) irreducible
(untwisted) VL-modules (see [14] and [6]). There are also VL-modules of twisted type, whose
construction is outlined as follows.

First, denote by L̂ be the central extension of L by the cyclic group

Z2 =
〈
κ | κ2 = 1

〉
= 〈−1〉 .

Let θ ∈ Aut(L̂) be an automorphism of L̂ such that θ2 = idL̂ and θ(κ) = −κ. Let Tχ be
the irreducible L̂/K-module, where K = {a−1θ(a) | a ∈ L̂}, associated to a central character
χ : Z(L̂/K) → C× which sends κK = (−1)K to −1; that is, Tχ is an irreducible L̂/K-module
on which κK = (−1)K acts as −1. Finally, set VTχ

L = M(1)(θ) ⊗ Tχ, then the set of all VTχ
L

such that Tχ is an irreducible L̂/K-module associated to central character χ is the complete
list of irreducible VL-modules of twisted type (see [7]).

For any vertex operator algebra V , the fusion product of two irreducible V-modules M1

and M2 is defined by a universal property. The pair (M,) is called the fusion product of
M1 and M2 if M is a V-module and  is an intertwining operator of type

(
M

M1 M2

)
such that

for any V-module W and any intertwining operator W of type
(

W
M1 M2

)
, there exists a unique

V-module homomorphism f : M → W such that W = f ◦  . The fusion product of M1

and M2 is denoted by M1 �V M2. If V is a rational, C2-cofinite vertex operator algebra, then
the fusion product of any two irreducible V-modules always exists [17], in which case we
use the following definition:

(1) M1 �V M2 :=
∑

i

NV

(
Mi

M1M2

)
Mi

where Mi runs over the set of equivalence classes of irreducible V-modules and the symbol
NV

(
Mi

M1 M2

)
denotes the dimension of the space formed by all intertwining operators of type(

Mi

M1 M2

)
, namely, the fusion rule of type

(
Mi

M1 M2

)
. We note that this definition works for when

Mi are irreducible θ-twisted modules since the category of θ-twisted modules is semi-simple
and thus a fusion product of two irreducible θ-twisted modules is defined.

Our main object of interest, the lattice VOA VL, is known to be rational and C2-cofinite,
and thus the fusion products of its modules always exist. The fusion product of two un-
twisted irreducible VL-modules is well-known, namely VL+λ �VL VL+μ = VL+λ+μ (see [9],
Proposition 12.9). In this paper, we determine the other two fusion products: VL+λ �VL VTχ

L

and V
Tχ1
L �VL V

Tχ2
L by a method briefly outlined here. We invoke a result proved in [2], which

says that the fusion rule of type
(

M1

M2 M3

)
for VL is either 0 or 1 for any irreducible module

Mi for VL. For VL+λ �VL VTχ
L , we show that it is equal to V

Tχ(λ)
L (a twisted VL-module deter-



Fusion Rules for Lattice VOA VL 219

mined by λ and χ) by showing that the fusion rule NVL

( V
T
χ(λ)

L

VL+λ V
Tχ
L

)
= 1 and all other fusion rules

NVL

(
M

VL+λ V
Tχ
L

)
= 0 where M is any other irreducible VL-module. This is proved by an explicit

construction of a non-trivial intertwining operator of type
( V

T
χ(λ)

L

VL+λ V
Tχ
L

)
. In almost exactly the

same way, we can determine the fusion product V
Tχ1
L �VL V

Tχ2
L .

This paper is organized as follows. In Section 2, we recall the definitions and some impor-
tant results about intertwining operators and fusion rules. Section 3 contains the construc-
tion of vertex operator algebra VL and its modules. Section 4 reviews a well-known result
by Dong and Lepowsky [9] concerning the fusion product of two untwisted VL-modules,
namely VL+λ �VL VL+μ. The last two sections are heart of this paper, where we give detailed
computations of the two fusion products: VL+λ �VL VTχ

L and V
Tχ1
L �VL V

Tχ2
L .

2. Intertwining operators and fusion rules

2. Intertwining operators and fusion rules
Throughout this paper, we denote by V a vertex operator algebra (over the complex num-

ber field) with vacuum vector 1 and conformal vector ω.

Definition 2.1. Let (Mi, YMi) (i = 1, 2, 3) be weak V-modules. An intertwining operator

of type
(

M3

M1 M2

)
is a linear map:

 = (·, z) : M1 → (Hom(M2,M3)){z}
u 	→ (u, z) =

∑
n∈C

unz−n−1, where un ∈ Hom(M2,M3)

satisfying the following properties:
(1) For any u ∈ M1, v ∈ M2, and λ ∈ C, um+λv = 0 for sufficiently large integer m,
(2) For any a ∈ V, u ∈ M1, the Jacobi identity holds:

z−1
0 δ

(
z1 − z2

z0

)
YM3 (a, z1)(u, z2) − z−1

0 δ

(
z2 − z1

−z0

)
(u, z2)YM2 (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
(YM1 (a, z0)u, z2),

(3) For u ∈ M1, the L(−1) derivative property is satisfied:

(L(−1)u, z) =
d
dz

(u, z).

Definition 2.2. Let g1, g2, g3 be automorphisms of V and let M1,M2, and M3 be g1-, g2-,

and g3-twisted V-modules, respectively. A twisted intertwining operator of type
(

M3

M1 M2

)

is a linear map:

 = (·, z) : M1 → (Hom(M2,M3)){z}[log z]

u 	→ (u, z) =
K∑

k=0

∑
n∈C

un,kz−n−1(log z)k, where un ∈ Hom(M2,M3)
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satisfying the lower truncation property, the duality property, and the L(−1) derivative prop-
erty as detailed in [16].

Denoting by V

(
M3

M1 M2

)
the vector space spanned by all intertwining operators of type(

M3

M1 M2

)
, we have the following definition.

Definition 2.3. The fusion rule of type
(

M3

M1 M2

)
for V is defined by

NV

(
M3

M1 M2

)
= dim V

(
M3

M1 M2

)
.

Fusion rules have the following well-known symmetries (see [13], Propositions 5.4.7 and
5.5.2):

Proposition 2.4. Let Mi (i = 1, 2, 3) be V-modules and M′i the corresponding contragre-
dient modules, then

NV

(
M3

M1 M2

)
= NV

(
M3

M2 M1

)
= NV

(
M′2

M1 M′3

)
.

We also quote here a useful result from [3], which shall be invoked repeatedly in the
derivation of our main results:

Proposition 2.5. Let V be a vertex operator algebra and let M1,M2,M3 be V-modules,
where M1 and M2 are irreducible. Suppose that U is a vertex operator subalgebra of V
(with the same Virasoro element) and that N1 and N2 are irreducible U-submodules of M1

and M2, respectively. Then the restriction map from V

(
M3

M1 M2

)
to U

(
M3

N1 N2

)
is injective. In

particular,

dim V

(
M3

M1 M2

)
≤ dim U

(
M3

N1 N2

)
.

Definition 2.6. Let V be a vertex operator algebra and M1,M2 its modules. The fusion
product of M1 and M2 is a V-module, denoted by M1 �V M2, together with an intertwining
operator  ∈ V

(
M1�V M2

M1 M2

)
that satisfies the following universal property: For any V-module

W and W ∈ V

(
W

M1 M2

)
, there exists a unique V-module homomorphism f : M1�V M2 → W

such that W = f ◦  .

Remark. A fusion product may not exist; but when it does, it is unique up to isomorphism
as a consequence of the universal property.

If V is a rational and C2-cofinite vertex operator algebra, then the fusion product of any
two irreducible V-modules exists (Proposition 4.13 in [17]). Motivated by the concept of
a fusion algebra in conformal field theory (Equation (2.130) in [5]), we define the fusion
product, if it exists, as follows:

M1 �V M2 =
∑

i

NV

(
Mi

M1M2

)
Mi,
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where Mi runs over the set of equivalence classes of irreducible V-modules. If the context
is clear, we may drop the subscript V in M1 �V M2 and simply write M1 � M2.

3. The vertex operator algebra VL and its modules

3. The vertex operator algebra VL and its modules
Let L denote a positive-definite even lattice of rank d, that is, L is a free abelian group

of rank d equipped with a Z-valued non-degenerate, positive-definite symmetric Z-bilinear
form 〈 , 〉 : L × L → Z satisfying 〈α, α〉 ∈ 2Z for α ∈ L. The form being non-degenerate
means that if 〈α, L〉 = {0}, then α = 0, while being positive-definite means 〈α, α〉 > 0 for
any non-zero α ∈ L. Our main interests are VL, whatever this symbol means at this point,
and its irreducible modules. The space VL is a tensor product of M(1) and C[L]; therefore,
we first recall a construction of M(1).

3.1. The vertex operator algebra M(1) and its modules.
3.1. The vertex operator algebra M(1) and its modules. Let h = C⊗ZL be the complex

extension of L, then h is a d-dimensional vector space which naturally inherits a C- bilinear
form 〈 , 〉 as the extension of the form on L. The lattice L is identified with 1 ⊗Z L as a
Z-submodule of h. Viewing h as an abelian Lie algebra, we define the following Lie algebra
affinization:

ĥ = h ⊗ C[t, t−1] ⊕ CC

with the following commutation relations:

[α1 ⊗ tm, α2 ⊗ tn] = m 〈α1, α2〉 δm+n,0C, [C, ĥ] = 0

for any α1, α2 ∈ h and any m, n ∈ Z. The Lie algebra ĥ has an abelian Lie subalgebra
ĥ+ = h ⊗ C[t] ⊕ CC.

For any λ ∈ h, let Ceλ denote the 1-dimensional ĥ+-module with module actions defined by

h ⊗ tC[t] · eλ = {0}, h ⊗ t0 · eλ = 〈λ, h〉 eλ, C · eλ = eλ

for h ∈ h. Now consider the induced ĥ-module:

M(1, λ) = Indĥ
ĥ+
Ceλ = U(ĥ) ⊗U(ĥ+) Ceλ � S(t−1

C[t−1]) ⊗ h,
where U(·) denotes the universal enveloping algebra and S(·) the symmetric algebra. The
action of h ⊗ tn ∈ ĥ on any ĥ-module is denoted by h(n) (h ∈ h, n ∈ Z). The space M(1, 0)
is spanned by vectors of the form v = h1(−n1) · · · hk(−nk) ⊗ e0 where hi ∈ h and ni ≥ 1. The
vertex operator of v on M(1, λ) is given by the following linear map

Y = Y(·, z) : M(1, 0)→ (EndM(1, λ))[[z, z−1]],

Y(v, z) := ◦
◦

⎛⎜⎜⎜⎜⎜⎝ 1
(n1 − 1)!

(
d
dz

)n1−1

h1(z)

⎞⎟⎟⎟⎟⎟⎠ · · ·
⎛⎜⎜⎜⎜⎜⎝ 1

(nk − 1)!

(
d
dz

)nk−1

hk(z)

⎞⎟⎟⎟⎟⎟⎠ ◦
◦ ,

where hi(z) =
∑

n∈Z hi(n)z−n−1.
The symbol ◦

◦ · ◦◦ denotes a normally ordered product (or normal ordering) which rear-
ranges the items enclosed between the colons so that the operators hi(n), for n < 0, are to
be placed to the left of the operators hi(n), for n > 0, before the multiplication is performed.
When λ = 0, we simply write M(1) = M(1, 0).
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Suppose that {β1, . . . , βd} is an orthonormal basis of h (= C⊗Z L) with respect to the form
〈 , 〉. We use the notations 1 and ω to denote the following two elements of M(1):

1 = 1 ⊗ e0 ∈ M(1), ω =
1
2

d∑
i=1

βi(−1)βi(−1) ⊗ e0 ∈ M(1).

Then, as shown in [14], (M(1), Y(·, z), 1, ω) is a simple vertex operator algebra and M(1, λ),
where λ ∈ h, are the irreducible M(1)-modules.

3.2. The lattice vertex operator algebra VL and its modules.
3.2. The lattice vertex operator algebra VL and its modules. We closely follow the

set-up in [14]. Let (L̂,−) be the central extension of L by the cyclic group 〈κ〉 =
〈
κ | κ2 = 1

〉
.

This means that we have the following exact sequence

associated with a commutator map

c : L × L→ C×, c(α, β) = κ〈α, β〉 = (−1)〈α, β〉

for any α, β ∈ L. Let e : L → L̂, α 	→ eα be a section such that 0 	→ e0 = 1. Then we have
L̂ = {κieα | α ∈ L, i = 0, 1 }. This section defines a 2-cocycle given by

ε : L × L→ C×, eαeβ = ε(α, β)eα+β

In [14], the following properties of ε are known for any α, β, γ ∈ L

ε(α, β)ε(α + β, γ) = ε(β, γ)ε(α, β + γ),

ε(α, β)(ε(β, α))−1 = c(α, β),

ε(α, 0) = ε(0, α) = 1.

We next discuss the group algebra C[L] =
⊕
λ∈L Ceλ, which is an L̂-module under the

actions

L̂ × C[L]→ C[L], eα · eλ = ε(α, λ)eα+λ, κ · eλ = −eλ

for any α, λ ∈ L. We are now ready to define

VL = M(1) ⊗ C[L].

The ĥ-module structure of M(1) extends naturally to the ĥ-module structure of VL

ĥ × VL → VL

h(n) · (u⊗ eλ) = (h(n) ·u)⊗ eλ (n � 0), h(0) · (u⊗ eλ) = 〈h, λ〉 (u⊗ eλ), C · (u⊗ eλ) = u⊗ eλ

for any h ∈ h, u ∈ M(1), and λ ∈ L.
Next, we explain that VL has the structure of a vertex operator algebra. For each v ∈

VL, v = h1(−n1) · · · hk(−nk) ⊗ eλ for λ ∈ L, hi ∈ h, and ni ≥ 1. We define the vertex operator
associated to eλ by

Y(eλ, z) = exp

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=1

λ(−n)
n

zn

⎞⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎝−
∞∑

n=1

λ(n)
n

z−n

⎞⎟⎟⎟⎟⎟⎠ eλzλ.
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Note that C[L] is an L̂-module as described above, so eλ is the left action of eλ ∈ L̂ on C[L].
The operator zλ on C[L] is defined by

zλ · eμ = z〈λ,μ〉eμ.
We then define the vertex operator associated to v ∈ VL by

Y = Y(·, z) : VL → (EndVL){z},

Y(v, z) = ◦
◦

⎛⎜⎜⎜⎜⎜⎝ 1
(n1 − 1)!

(
d
dz

)n1−1

h1(z)

⎞⎟⎟⎟⎟⎟⎠ · · ·
⎛⎜⎜⎜⎜⎜⎝ 1

(nk − 1)!

(
d
dz

)nk−1

hk(z)

⎞⎟⎟⎟⎟⎟⎠ Y(eλ, z) ◦◦ .

With 1 = 1⊗ e0 ∈ M(1) ⊆ VL and ω =
1
2

∑d
i=1 βi(−1)βi(−1)⊗ e0 ∈ M(1) ⊆ VL, the quadruple

(VL, Y, 1, ω) was shown (in [14] and [20]) to be a simple vertex operator algebra.
To classify VL-modules, we first need to introduce the dual lattice of L, which is denoted

by L◦ = {β ∈ h| 〈α, β〉 ∈ Z, α ∈ L}. Since L is an even lattice, one can show that L ⊆ L◦. Let
S = {λ1, . . . , λk } be the complete set of representatives of equivalence classes of L in its dual
lattice L◦. Then it follows that

C[L◦] = C[L + λ1] ⊕ · · · ⊕ C[L + λk],

VL◦ = VL+λ1 ⊕ · · · ⊕ VL+λk ,

where VL+λi = M(1)⊗C[L+λi] (i = 1, 2, . . . , k). It was shown in [14] and [6] that {VL+λ | λ ∈
S } is the complete list of (inequivalent) irreducible (untwisted) VL-modules.

The classification of irreducible θ-twisted modules for VL was done in [7] and is recalled
next. Let θ ∈ Aut(L̂) be an automorphism of L̂ such that θ2 = idL̂ and θ(κ) = −κ. Recall that
L̂ = 〈eα,−eα |α ∈ L 〉, so the action of θ on L̂ can be viewed as

θ(κieα) = κie−α.

It can be easily observed that θ induces an automorphism θ̄ on L such that θ̄2 = idL and
θ̄(α) = −α, for any α ∈ L. One can now define the action of θ on VL by

h1(−n1) · · · hk(−nk) ⊗ eα 	→ (−1)kh1(−n1) · · · hk(−nk) ⊗ e−α,

for hi ∈ h, ni ≥ 1, and α ∈ L. In fact, the map θ turns out to be an automorphism of VL which
has two eigensubspaces V+L = {v ∈ VL | θ(v) = v } and V−L = {v ∈ VL | θ(v) = −v }. A thorough
treatment of the fusion rules for V+L has been done in [3], which lays the foundation for our
study in this paper.

We now recall a θ-twisted affine Lie algebra ĥ[θ] = h⊗t1/2
C[t, t−1]⊕CC with the following

brackets

[α1 ⊗ tm, α2 ⊗ tn] = m 〈α1, α2〉 δm+n,0C, [C, ĥ[θ]] = 0

for all α1, α2 ∈ h and m, n ∈ Z + 1
2 . The Lie algebra ĥ[θ] has the subspaces

ĥ[θ]+ = h ⊗ t1/2
C[t], ĥ[θ]− = h ⊗ t−1/2

C[t−1].

Viewing C as a module for ĥ[θ]+ ⊕ CC on which ĥ[θ]+ acts trivially and C acts as a
multiplication by 1, we have the induced module

M(1)(θ) = Indĥ[θ]
ĥ[θ]+⊕CC

C = U(ĥ[θ]) ⊗U(ĥ[θ]+⊕CC) C � S
(
t−1/2
C[t−1] ⊗ h).
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Define K = {a−1θ(a) | a ∈ L̂ }. Let Tχ be the irreducible L̂/K-module associated to a central
character χ : Z(L̂/K)→ C× such that (−1)K 	→ −1 (that is, Tχ is an irreducible L̂/K-module
on which (−1)K acts as −1). For each such Tχ, define a twisted space by

VTχ
L = M(1)(θ) ⊗ Tχ.

Then {VTχ
L }, where Tχ is an irreducible L̂/K-module as described above, are the irreducible

θ-twisted VL modules. The action of θ on M(1)(θ) extends to an action on VTχ
L

θ : VTχ
L → VTχ

L , h1(−n1) · · · hk(−nk) ⊗ t 	→ (−1)kh1(−n1) · · · hk(−nk) ⊗ t

for hi ∈ h, ni ∈ 1
2+Z, and t ∈ Tχ. As before, we denote by VTχ,+

L and VTχ,−
L the eigensubspaces

of VTχ
L of eigenvalues 1 and −1, respectively.

We can now state two results from [3] and [2] on V+L :

Proposition 3.2.1 ([3], Theorem 3.4). Let L be a positive-definite even lattice and let {λi}
be a set of representatives of L◦/L. Then any irreducible V+L -module is isomorphic to one
of the irreducible modules V±L ,Vλi+L with 2λi � L,V±λi+L with 2λi ∈ L or VTχ,±

L for a central
character χ of L̂/K with χ(κ) = −1.

Proposition 3.2.2 ([2], Proposition 3.3). Let W1,W2, and W3 be irreducible V+L -modules.
Then the following hold:
(1) The fusion rules N

(
W3

W1 W2

)
is either zero or one.

(2) If all Wi (i = 1, 2, 3) are of twisted type, then the fusion rule N
(

W3

W1 W2

)
is zero.

(3) If one of Wi (i = 1, 2, 3) is of twisted type and the others are of untwisted type, then the
fusion rule N

(
W3

W1 W2

)
is zero.

The next three sections discuss the three different fusion products of VL-modules. The
first one, Section 4, is a result directly obtained from [9] concerning modules of untwisted
type and the fusion product VL+λ�VL+μ. Sections 5 and 6 discuss the cases when at least one
module of twisted type is involved in the fusion product; specifically, we compute VL+λ�VTχ

L

and V
Tχ1
L � V

Tχ2
L , which are new.

4. Fusion products VL+λ � VL+μ

4. Fusion products VL+λ � VL+μ
For the rest of this paper, we drop the subscript VL in the fusion rule NVL and fusion

product �VL notations and simply write N and �, respectively. Recall that S = {λ1, . . . , λk}
is a complete set of representatives of equivalence classes of L in its dual lattice L◦. The
following proposition is an immediate consequence of Proposition 12.9 [9].

Proposition 4.1. For any λ, μ ∈ S, we have VL+λ � VL+μ = VL+λ+μ.

Proof. Let Mi run over the equivalence classes of irreducible VL-modules. By the defini-
tion of a fusion product, we have

VL+λ � VL+μ =
∑

i

N
(

Mi

VL+λ VL+μ

)
Mi
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=
∑
ν∈S

N
(

VL+ν

VL+λ VL+μ

)
VL+ν +

∑
V

Tχ
L

N
(

VTχ
L

VL+λ VL+μ

)
VTχ

L ,

where VTχ
L runs over the equivalence classes of irreducible θ-twisted VL-modules. Now by

Proposition 12.9 in [9], we have

N
(

VL+ν

VL+λ VL+μ

)
= 1

if and only if ν + L = λ + μ + L. Recall that V+L is a vertex operator subalgebra of VL, and
that {VL+λ | λ ∈ S } is the set of all inequivalent irreducible VL-modules and

{
VTχ

L

}
the set of

all inequivalent irreducible θ-twisted VL-modules. By Proposition 2.5, we have

NVL

(
VTχ

L

VL+λ VL+μ

)
≤ NV+L

(
VTχ

L

VL+λ VL+μ

)
= 0.

The last equality follows from Proposition 3.2.2 (3). Thus, it follows that

VL+λ � VL+μ = N
(

VL+λ+μ

VL+λ VL+μ

)
VL+λ+μ = VL+λ+μ.

�

5. Fusion products VL+λ � VTχ
L

5. Fusion products VL+λ � VTχ
L

Let Mk run over the set of all inequivalent irreducible VL-modules and θ-twisted VL-
modules, then by the definition of fusion product, we have

VL+λ � VTχ
L =

∑
k

N
(

Mk

VL+λ VTχ
L

)
Mk =

∑
μ∈S

N
( VL+μ

VL+λ VTχ
L

)
VL+μ +

∑
V

Tχ2
L

N
( V

Tχ2
L

VL+λ VTχ
L

)
V

Tχ2
L ,

where V
Tχ2
L runs over the equivalence classes of irreducible θ-twisted VL-modules.

Lemma 5.1. For any λ, μ ∈ L◦ and any central character χ of L̂/K such that χ(κ) = −1,
we have

N
( VL+μ

VL+λ VTχ
L

)
= 0.

Proof. For any μ ∈ L◦, the space VL+μ is a VL-module and thus is also a V+L -module. Recall
that VTχ

L is a twisted irreducible VL-module while its submodule VTχ,+
L is an irreducible V+L -

module of twisted type by Proposition 3.2.1. �

Case 1. If 2λ � L, then VL+λ is an untwisted irreducible V+L -module by Proposition 3.2.1.
Therefore, by Propositions 2.4 and 3.2.2 (3), we have

NVL

( VL+μ

VL+λ VTχ
L

)
≤ NV+L

( VL+μ

VL+λ VTχ,+
L

)
= 0.

Case 2. If 2λ ∈ L, then V±L+λ are (untwisted) irreducible V+L -modules by Proposition 3.2.1.
It follows that
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NVL

( VL+μ

VL+λ VTχ
L

)
≤ NV+L

( VL+μ

V+L+λ VTχ,+
L

)
= 0.

We now show that there exists an intertwining operator of type
( V

Tχ1
L

VL+λ V
Tχ
L

)
for VL. We point

out that χ1 is, in fact, determined by both χ and λ by a formula to be given below.
Let χ : Z(L̂/K) → C× such that χ(κ) = −1 be any central character of L̂/K and Tχ the

corresponding irreducible L̂/K-module under the action κ · v = −v for any v ∈ Tχ. As shown
in Section 4, we have VTχ

L = M(1)(θ) ⊗ Tχ, which is a θ-twisted VL-module.
Let λ ∈ L◦ and define an automorphism σλ of L̂ by σλ(a) = κ〈λ,ā〉a = (−1)〈λ,ā〉a. Let

a ∈ L̂, then σλ(θ(a)) = κ
〈
λ,θ(a)

〉
θ(a), while θ(σλ(a)) = θ(κ〈λ,ā〉a) = κ〈λ,ā〉θ(a). Therefore,

σλ(θ(a)) = θ(σλ(a)). For any a−1θ(a) ∈ K, σλ sends it back to K since

σλ(a−1θ(a)) = σλ(a−1)σλ(θ(a)) = (σλ(a))−1θ(σλ(a)) ∈ K.

Thus, the automorphism σλ stabilizes K and consequently induces an automorphism on L̂/K
such that σλ(aK) = σλ(a)K = κ〈λ,ā〉aK = (−1)〈λ,ā〉aK for any aK ∈ L̂/K.

For any L̂/K-module T , we denote by T ◦ σλ the L̂/K-module twisted by σλ, namely
T ◦σλ = T as vector spaces and there is an action of L̂/K on T ◦σλ which is determined by
σλ as follows

L̂/K × T ◦ σλ (= T )→ T ◦ σλ (= T ), a · t = σλ(a)t.

If T = Tχ, we have

L̂/K × Tχ ◦ σλ (= Tχ)→ Tχ ◦ σλ (= Tχ), κ · t = −t, a · t = σλ(a)t

for any a ∈ L̂/K and t ∈ Tχ. Moreover, the module Tχ ◦ σλ is irreducible since Tχ is
irreducible. Since the number of central characters of L̂/K which send κ to −1 is finite
([14], Proposition 7.4.8), there exists a unique central character χ1 of L̂/K such that the
corresponding L̂/K-module Tχ1 satisfies Tχ1 � Tχ ◦ σλ. To emphasize the fact that χ1 is
dependent on χ and λ, we use the notation χ(λ) instead of χ1 and thus have Tχ(λ) � Tχ ◦ σλ.
Let f denote this isomorphism: f : Tχ ◦ σλ → Tχ(λ) .

Let λ ∈ L◦ and α ∈ L. Define a linear isomorphism

ηλ+α : Tχ ◦ σλ → Tχ(λ) , ηλ+α = ε(−α, λ)eα ◦ f

Recall that eα is the left action of eα ∈ L̂ on C[L] with the following properties.

Lemma 5.2. For any α, β ∈ L, we have eαeβ = (−1)〈α,β〉eβeα as operators on C[L].

Proof. Let eμ ∈ C[L] for μ ∈ L. Then it follows that

eαeβ · eμ = eα(ε(β, μ)eβ+μ) = ε(β, μ)ε(α, β + μ)eα+(β+μ) = ε(β, μ)ε(α, β)ε(α, μ)eα+β+μ.

Exchanging α and β in the above computation, we immediately have

eβeα · eμ = ε(α, μ)ε(β, α)ε(β, μ)eβ+α+μ

Multiplying both sides by (−1)〈α,β〉 yields

(−1)〈α,β〉eβeα · eμ = (−1)〈α,β〉ε(β, α)ε(α, μ)ε(β, μ)eβ+α+μ
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= ε(α, β)ε(α, μ)ε(β, μ)eβ+α+μ

= eαeβ · eμ

since ε(α, β)ε(β, α) = (−1)〈α,β〉. �

Lemma 5.3. For the L̂/K-module isomorphism f : Tχ ◦ σλ → Tχ(λ) and any α ∈ L, we
have eα ◦ f = (−1)〈α,λ〉 f ◦ eα as operators on C[L].

Proof. For any eμ ∈ C[L], we have

(−1)〈α,λ〉 f ◦ eα · eμ = (−1)〈α,λ〉 f (ε(α, μ)eα+μ).

Recall that f (σλ(a)t) = a f (t) for a ∈ L̂. Thus we see that

eα ◦ f · eμ = f (σλ(eα)eμ) = f (κ〈λ,eα〉eαeμ) = κ〈λ,ᾱ〉 f (ε(α, μ)eα+μ) = (−1)〈α,λ〉 f ◦ eα · eμ.
�

The following Lemma is known from ([3]):

Lemma 5.4 ([3] Lemma 5.8). For any γ ∈ L + λ and α ∈ L, we have

eα ◦ ηγ = (−1)〈α,γ〉ηγ ◦ eα, eα ◦ ηγ = ε(α, γ)ηγ+α = ε(−α, γ)ηγ−α.

We can now define a non-trivial intertwining operator of type
( V

T
χ(λ)

L

VL+λ V
Tχ
L

)
for VL, where

λ ∈ L◦. Following [14], we define a map


tw
λ (·, z) : M(1, λ)→ (End (M(1)(θ))){z}, v 	→ 

tw
λ (v, z)

for v = h1(−n1)h2(−n2) · · · hk(−nk) ⊗ eλ, where hi ∈ h and ni ≥ 1, by first defining its action
on eλ by


tw
λ (eλ, z) = 2−〈λ,λ〉z−

〈λ,λ〉
2 e

∑
n>0

λ(−n)
n zn

e−
∑

n>0
λ(n)

n z−n
,

where n ∈ N + 1
2 . Then we define

W(v, z) = ◦
◦

⎛⎜⎜⎜⎜⎜⎝ 1
(n1 − 1)!

(
d
dz

)n1−1

h1(z)

⎞⎟⎟⎟⎟⎟⎠ · · ·
⎛⎜⎜⎜⎜⎜⎝ 1

(nk − 1)!

(
d
dz

)nk−1

hk(z)

⎞⎟⎟⎟⎟⎟⎠ tw
λ (eλ, z) ◦◦ ,

where, as before, the normal ordering places hi(n) with n < 0 to the left of hi(n) with n > 0.
Finally, for v ∈ M(1, λ) we set  tw

λ (v, z) = W(eΔzv, z), where

Δz =

d∑
i=1

∞∑
m,n=0

cmnβi(m)βi(n)z−m−n,

and {β1, β2, . . . , βd} is an orthonormal basis of h, cmn are the coefficients determined by the
following expansion

− log
(
(1 + x)1/2 + (1 + y)1/2

2

)
=

∞∑
m,n=0

cmnxmyn.

It is known that the VL-module VL+λ has the following decomposition



228 D. Nguyen

VL+λ �
⊕
β∈L

M(1, β + λ),

where M(1, β + λ) are irreducible M(1)-modules. We also define another map by

̃
tw
λ (u, z) = 

tw
λ+β(u, z) ⊗ ηλ+β.

Recall that ηλ+β is a linear isomorphism between Tχ and Tχ(λ) , while the components of
 tw
λ (u, z) are elements of End(M(1)(θ)){z}, and M(1)(θ) can be identified with M(1)(θ) ⊗ 1

as a subspace of M(1)(θ) ⊗ Tχ = VTχ
L . Thus, we have the linear map

̃
tw
λ : VL+λ → (Hom(VTχ

L ,V
Tχ(λ)
L )){z}, u 	→ ̃

tw
λ (u, z) = 

tw
λ+β(u, z) ⊗ ηλ+β.

The next three lemmas show that ̃ tw
λ satisfies the three conditions stated in the definition

of an intertwining operator and thus is an intertwining operator of type
( V

T
χ(λ)

L

VL+λ V
Tχ
L

)
for VL.

From there, we show that the fusion rule NVL

( V
T
χ(λ)

L

VL+λ V
Tχ
L

)
= 1.

Lemma 5.5. For any u ∈ VL+λ, v ∈ VTχ
L , and any fixed α ∈ C, we have un+αv = 0 for

sufficiently large integer n.

Proof. Since v ∈ VTχ
L = M(1)(θ)⊗Tχ, we have v = w⊗ t for some w ∈ M(1)(θ) and t ∈ Tχ.

Then we have

̃
tw
λ (u, z)v = ̃

tw
λ (u, z)(w ⊗ t) = 

tw
λ+β(u, z)(w) ⊗ ηλ+β(t).

However,  tw
λ+β is a nonzero intertwining operator of type

(
M(1)(θ)

M(1,λ+β) M(1)(θ)

)
for M(1) (see [3],

pp.191). Then, for any u ∈ M(1, λ + β) ⊂ VL+λ, un+αw = 0 if n is a sufficiently large integer.
�

Lemma 5.6. Let α, β ∈ L. For any a ∈ M(1, α), u ∈ M(1, β + λ), we have

z−1
0 δ

(
z1 − z2

z0

)
Y

V
T
χ(λ)

L

(a, z1)̃ tw
λ (u, z2) − z−1

0 δ

(
z2 − z1

−z0

)
̃

tw
λ (u, z2)YV

Tχ
L

(a, z1)

=
1
2

∑
p=0,1

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝(−1)p (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ ̃ tw
λ

(
YVL+λ(θ

p(a), z0)u, z2
)
,

where Y
V

T
χ(λ)

L

(a, z1) is the vertex operator associated with a ∈ M(1, α) ⊆ VL defined by

Y
V

T
χ(λ)

L

(·, z1) : M(1, α) ⊆ VL → (End(V
Tχ(λ)
L )){z1}, a 	→ Y

V
T
χ(λ)

L

(a, z1).

Proof. By [14], this lemma gives the Jacobi identity for twisted vertex operators. Recall
the map ̃ tw

λ : M(1, λ + β) ⊆ VL+λ → (Hom(VTχ
L ,V

Tχ(λ)
L )){z}. Take λ = 0 and β = α, then we

have

(5.6.1) ̃
tw
0 : M(1, α) ⊆ VL → (End(VTχ

L )){z}
For any w ⊗ t ∈ M(1)(θ) ⊗ Tχ(= VTχ

L ), we have
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̃
tw
0 (a, z1)(w ⊗ t) = ( tw

0+α(a, z1) ⊗ η0+α)(w ⊗ t)

= 
tw
α (a, z1)(w) ⊗ ηα(t)

= 
tw
α (a, z1)(w) ⊗ eα(t)(5.6.2)

= ( tw
α (a, z1) ⊗ eα)(w ⊗ t).

The equality (5.6.2) follows from the fact that ηα = η0+α = ε(−α, 0)eα ◦ f = eα ◦ f = eα
since f is an isomorphism of Tχ. However, by (5.6.1), the map ̃ tw

0 (a, z1) is the twisted
vertex operator associated with a ∈ M(1, α) ⊆ VL, that is, Y

V
T
χ(λ)

L

(a, z1) = ̃ tw
0 (a, z1) =

 tw
α (a, z1) ⊗ eα. By the same argument, we have YV

Tχ
L

(a, z1) = ̃ tw
α (a, z1) ⊗ eα.

Remark. Recall the map

α,λ+β(·, z0) : M(1, α)→ (Hom(M(1, λ + β),M(1, α + λ + β))) {z0},
where M(1, α) ⊆ VL,M(1, λ + β) ⊆ VL+λ, and M(1, α + λ + β) ⊆ VL+λ. This map satisfies
the Jacobi identity and the L(−1)-derivative property. Therefore, it is the map giving a VL-
module structure for VL+λ. As a result, we obtain α,λ+β(a, z0) = YVL+λ(a, z0).

The left-hand side of the Jacobi identity is

z−1
0 δ

(
z1 − z2

z0

)
Y

V
T
χ(λ)

L

(a, z1)̃ tw
λ (u, z2) − z−1

0 δ

(
z2 − z1

−z0

)
̃

tw
λ (u, z2)YV

Tχ
L

(a, z1)

= z−1
0 δ

(
z1 − z2

z0

) (


tw
α (a, z1) ⊗ eα

)
̃

tw
λ (u, z2)

− z−1
0 δ

(
z2 − z1

−z0

)
̃

tw
λ (u, z2)

(


tw
α (a, z1) ⊗ eα

)

= z−1
0 δ

(
z1 − z2

z0

) (


tw
α (a, z1) ⊗ eα

) (


tw
λ+β(u, z2) ⊗ ηλ+β

)

− z−1
0 δ

(
z2 − z1

−z0

) (


tw
λ+β(u, z2) ⊗ ηλ+β

) (


tw
α (a, z1) ⊗ eα

)

= z−1
0 δ

(
z1 − z2

z0

) (


tw
α (a, z1) tw

λ+β(u, z2)
)
⊗

(
eα ◦ ηλ+β

)

− z−1
0 δ

(
z2 − z1

−z0

) (


tw
λ+β(u, z2) tw

α (a, z1)
)
⊗

(
ηλ+β ◦ eα

)

= z−1
0 δ

(
z1 − z2

z0

) (


tw
α (a, z1) tw

λ+β(u, z2)
)
⊗

(
eα ◦ ηλ+β

)

− z−1
0 δ

(
z2 − z1

−z0

) (


tw
λ+β(u, z2) tw

α (a, z1)
)
⊗

(
(−1)(α,λ+β)eα ◦ ηλ+β

)

=

{
z−1

0 δ

(
z1 − z2

z0

)


tw
α (a, z1) tw

λ+β(u, z2)

− (−1)(α,λ+β)z−1
0 δ

(
z2 − z1

−z0

)


tw
λ+β(u, z2) tw

α (a, z1)
}
⊗

(
eα ◦ ηλ+β

)
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=

{
1
2

∑
p=0,1

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝(−1)p (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+β+(−1)pα

(
(−1)pα,λ+β(θp(a), z0)u, z2

) }

⊗
(
eα ◦ ηλ+β

)

=
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝ (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+β+α

(
α,λ+β(a, z0)u, z2

)
⊗

(
eα ◦ ηλ+β

)

+
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝− (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+β−α

(
−α,λ+β(θ(a), z0)u, z2

)
⊗

(
eα ◦ ηλ+β

)

=
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝ (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+β+α

(
YVL+λ(a, z0)u, z2

) ⊗ (
ε(α, λ + β)ηλ+β+α

)
(5.6.3)

+
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝− (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+β−α

(
YVL+λ(θ(a), z0)u, z2

) ⊗ (
ε(−α, λ + β)ηλ+β−α

)

=
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝ (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+(β+α)

(
YVL+λ(a, z0)u, z2

) ⊗ ηλ+(β+α)

+
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝− (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ tw
λ+(β−α)

(
YVL+λ(θ(a), z0)u, z2

) ⊗ ηλ+(β−α)

=
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝ (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ ̃ tw
λ

(
YVL+λ(a, z0)u, z2

)

+
1
2

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝− (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ ̃ tw
λ

(
YVL+λ(θ(a), z0)u, z2

)

=
1
2

∑
p=0,1

z−1
2 δ

⎛⎜⎜⎜⎜⎜⎝(−1)p (z1 − z0)1/2

z1/2
2

⎞⎟⎟⎟⎟⎟⎠ ̃ tw
λ

(
YVL+λ(θ

p(a), z0)u, z2
)
.

Lines (5.6.3) follows from the Remark on the previous page. This completes the proof of
the Jacobi identity. �

Lemma 5.7. The map ̃ tw
λ satisfies the L(−1)-derivative property

̃
tw
λ (L(−1)u, z) =

d
dz

̃
tw
λ (u, z).

Proof. Let u ∈ M(1, λ + β) ⊆ VL+λ, then it follows that

̃
tw
λ (L(−1)u, z) = 

tw
λ+β(L(−1)u, z) ⊗ ηλ+β

=

(
d
dz


tw
λ+β(u, z)

)
⊗ ηλ+β

=
d
dz

(


tw
λ+β(u, z) ⊗ ηλ+β

)

=
d
dz

̃
tw
λ (u, z),
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where the second equality follows from Proposition 9.4.3 of [14]. �

Since ̃ tw
λ is a non-trivial intertwining operator of type

( V
T
χ(λ)

L

VL+λ V
Tχ
L

)
for VL, we have

N
( V

Tχ(λ)
L

VL+λ VTχ
L

)
≥ 1.

However, Proposition 3.2.2 (1) and Proposition 2.5 together imply that

(5.7.1) N
( V

Tχ(λ)
L

VL+λ VTχ
L

)
= 1.

Thus, by Lemma 5.1, we have shown

Theorem 5.8. For any λ ∈ S and any irreducible L̂/K-module Tχ, we have VL+λ � VTχ
L =

V
Tχ(λ)
L , where Tχ(λ) is an irreducible L̂/K-module such that χ(λ)(a) = (−1)〈λ,ā〉χ(a) for any

a ∈ L̂/K.

6. Fusion products VTχ1

L
� VTχ2

L

6. Fusion products VTχ1

L
� VTχ2

L

In this section we compute the fusion product of two VL-modules of twisted type. Let Mi

run over the set of equivalence classes of irreducible VL-modules, then by the definition of
fusion product, we have

V
Tχ1
L � V

Tχ2
L =

∑
λ∈S

NVL

(
VL+λ

V
Tχ1
L V

Tχ2
L

)
VL+λ +

∑
V

Tχ j
L

NVL

( V
Tχ j

L

V
Tχ1
L V

Tχ2
L

)
V

Tχ j

L ,

where S = {λ1, . . . , λk} is a set of representatives of equivalence classes of L in its dual lattice
L◦ and V

Tχ j

L runs over the equivalence classes of irreducible θ-twisted VL-modules. We begin
by quoting here only a part of an important theorem from [3].

Theorem 6.1 ([3], Theorem 5.1). Let L be a positive-definite even lattice. For any ir-
reducible V+L -modules Mi (i = 1, 2, 3), the fusion rule of type

(
M3

M1 M2

)
is either 0 or 1. The

fusion rule of type
(

M3

M1 M2

)
is 1 if and only if the Mi satisfy one of the following conditions:

(a) M1 = VTχ,+
L for an irreducible L̂/K-module Tχ and (M2,M3) is one of the following

pairs: (VL+λ,V
Tχ(λ) ,±
L ), ((V

Tχ(λ) ,±
L )′, (VL+λ)′) for λ ∈ Lo such that 2λ � L.

(b) M1 = VTχ,−
L for an irreducible L̂/K-module Tχ and (M2,M3) is one of the following

pairs: (VL+λ,V
Tχ(λ) ,±
L ), ((V

Tχ(λ) ,±
L )′, (VL+λ)′) for λ ∈ Lo such that 2λ � L.

We now show the first lemma of this section.

Lemma 6.2. Let λ ∈ S. If χ1 and χ2 are central characters of L̂/K such that χ2(a) =
(−1)〈ā,λ〉χ1(a) for any a ∈ L̂, then we have

NVL

(
VL+λ

V
Tχ1
L V

Tχ2
L

)
= 1.
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Proof. By Theorem 6.1 (a), for any λ ∈ L such that 2λ � L and χ2(a) = (−1)〈ā,λ〉χ1(a), for
any a ∈ L̂, we have

NV+L

( (VL+λ)′

V
Tχ1 ,+
L (V

Tχ2 ,+
L )′

)
= 1.

By Proposition 3.7 of [3], one can verify that (VL+λ)′ � VL−λ and (V
Tχ2 ,+
L )′ � V

Tχ′2 ,+
L , where

χ′2(a) = (−1)〈ā,ā〉/2χ2(a) for any a ∈ L̂. Therefore we have

NV+L

( VL−λ

V
Tχ1 ,+
L V

Tχ′2 ,+
L

)
= 1.

Proposition 2.5 now shows

NVL

( VL−λ

V
Tχ1
L V

Tχ′2
L

)
≤ NV+L

( VL−λ

V
Tχ1 ,+
L V

Tχ′2 ,+
L

)
= 1.

By the well-known symmetries of fusion rules (Proposition 2.4), it follows that

NVL

( VL−λ

V
Tχ1
L V

Tχ′2
L

)
= NVL

( (V
Tχ′2
L )′

V
Tχ1
L (VL−λ)′

)

= NVL

( V
Tχ′′2
L

V
Tχ1
L VL+λ

)

= NVL

( V
Tχ2
L

V
Tχ1
L VL+λ

)
(6.2.1)

= NVL

( V
Tχ2
L

VL+λ V
Tχ1
L

)

= 1.

In the computation above, the equality (6.2.1) follows from χ′′2 (a) = (−1)(ā,ā)/2χ′2(a) =
(−1)(ā,ā)/2(−1)(ā,ā)/2χ2(a) = χ2(a). �

Lemma 6.3. Let χ1 and χ2 be central characters of L̂/K such that χ2(a) = (−1)(ā,λ)χ1(a)
for any a ∈ L̂ and χi any central character of L̂/K such that χi(κ) = −1. Then we have

NVL

( V
Tχi
L

V
Tχ1
L V

Tχ2
L

)
= 0.

Proof. Let εi ∈ {±} and i ∈ {1, 2}, then

NVL

( V
Tχi
L

V
Tχ1
L V

Tχ2
L

)
≤ NV+L

( V
Tχi
L

V
Tχ1 ,ε1

L V
Tχ2 ,ε2

L

)

= NV+L

( (V
Tχ2 ,ε2

L )′

V
Tχ1 ,ε1

L (V
Tχi
L )′

)



Fusion Rules for Lattice VOA VL 233

= NV+L

( V
Tχ′2 ,ε2

L

V
Tχ1 ,ε1

L V
Tχ′i
L

)

≤ NV+L

( V
Tχ′2 ,ε2

L

V
Tχ1 ,ε1

L V
Tχ′i ,εi

L

)
= 0

since all three are of twisted type (see Proposition 3.2.2 (2)). �

Hence, we have shown

Theorem 6.4. If χ1 and χ2 are central characters of L̂/K, then V
Tχ1
L � V

Tχ2
L =

∑
λ VL+λ,

where λ ∈ L◦/L such that χ2(a) = (−1)〈ā,λ〉χ1(a) for any a ∈ L̂.
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