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Abstract
First we introduce the notion of Killing structure Jacobi operator for real hypersurfaces in the

complex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm . Next we give a complete classification of

real hypersurfaces in Qm∗ = SO0
2,m/SO2SOm with Killing structure Jacobi operator.
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1. Introduction

1. Introduction
In case of Hermitian symmetric space of rank 1, we say a complex projective space CPm

and a complex hyperbolic space CHm. In the complex projective space CPm, a full classi-
fication of real hypersurfaces with isometric Reeb flow was obtained by Okumura in [16].
He proved that the Reeb flow on a real hypersurface in CPm = SUm+1/S (UmU1) is isometric
if and only if M is an open part of a tube around a totally geodesic CPk ⊂ CPm for some
k ∈ {0, . . . ,m − 1}. Moreover, Takagi [41] gave a complete classification of homogeneous
hypersurfaces in CPm and Kimura and etc., [7] considered the notion GTW Reeb parallel
shape operator. In the complex hyperbolic space CHm, Montiel and Romero [13] have given
a complete classification of real hypersurface with isometric Reeb flow.

As another kind of Hermitian symmetric space with rank 2 of non-compact type differ-
ent from the above ones, we can give the example of complex hyperbolic quadric Qm∗ =
SO0

2,m/SO2SOm. By using the method given in Kobayashi and Nomizu [12], Chapter XI,
Example 10.6, the complex hyperbolic quadric Qm∗ = SO0

2,m/SO2SOm can be immersed
in indefinite complex hyperbolic space CHm+1

1 as a space-like complex hypersurface (see
Montiel and Romero [15] and Suh [34]). The complex hyperbolic quadric Qm∗ is the non-
compact Hermitian symmetric space SO0

2,m/SO2SOm of rank 2 and also can be regarded as
a kind of real Grassmann manifold of all oriented space-like 2-dimensional subspaces in in-
definite flat Riemannian space Rm+2

2 (see Montiel and Romero [14] and [15]). Accordingly,
the complex hyperbolic quadric admits both a complex conjugation structure A and a Kähler
structure J, which anti-commutes with each other, that is, AJ = −JA. Then for m ≥ 2 the
triple (Qm∗, J, g) is a Hermitian symmetric space of noncompact type with rank 2 and its
minimal sectional curvature is equal to −4 (see Klein [8] and Reckziegel [22]).

2020 Mathematics Subject Classification. Primary 53C40; Secondary 53C55.



2 Y.J. Suh

Now let us consider a real hypersurface in the complex hyperbolic quadric Qm∗ with
isometric Reeb flow. Then from the view of the previous results a natural expectation might
be the totally geodesic Qm−1∗ ⊂ Qm∗. But, suprisingly, in the complex hyperbolic quadric
Qm∗ the situation is quite different from the above ones. Recently, Suh [34] has introduced
the following result:

Theorem A. Let M be a real hypersurface of the complex hyperbolic quadric Qm∗ =
SOo

m,2/SOmSO2, m ≥ 3. The Reeb flow on M is isometric if and only if m is even, say m = 2k,
and M is locally congruent to an open part of a tube around a totally geodesic CHk ⊂ Q2k∗

or a horosphere whose center at infinity is A-isotropic singular.

Jacobi fields along geodesics of a given Riemannian manifold (M, g) satisfy a well known
differential equation. This equation naturally inspires the so-called Jacobi operator. That is,
if R denotes the curvature operator of M, and X is tangent vector field to M, then the Jacobi
operator RX∈End(TxM) with respect to X at x∈M, defined by (RXY)(x) = (R(Y, X)X)(x)
for any Y∈TxM, becomes a self adjoint endomorphism of the tangent bundle T M of M.
Thus, each tangent vector field X to M provides a Jacobi operator RX with respect to X. In
particular, for the Reeb vector field ξ, the Jacobi operator Rξ is said to be a structure Jacobi
operator.

Recently Ki, Pérez, Santos and Suh [5] have investigated the Reeb parallel structure Ja-
cobi operator in the complex space form Mm(c), c�0 and have used it to study some principal
curvatures for a tube over a totally geodesic submanifold. In particular, Pérez, Jeong and
Suh [20] have investigated real hypersurfaces M in G2(Cm+2) with parallel structure Jacobi
operator, that is, ∇XRξ = 0 for any tangent vector field X on M. Jeong, Suh and Woo [4]
and Pérez and Santos [18] have generalized such a notion to the recurrent structure Jacobi
operator, that is, (∇XRξ)Y = β(X)RξY for a certain 1-form β and any vector fields X, Y on
M in G2(Cm+2). Moreover, Pérez, Santos and Suh [19] have further investigated the prop-
erty of the Lie ξ-parallel structure Jacobi operator in complex projective space CPm, that is,
ξRξ = 0.

The Reeb vector field ξ is Killing on M in Qm∗ if and only if g(∇Xξ, Y) + g(∇Yξ, X) = 0
for any vector fields X and Y on M. As a generalization of such a Killing vector field first
Yano [42] defined the notion of Killing tensor as follows:

A skew symmetric tensor Ti1···ir is called a Killing tensor of order r if it satisfies

∇i1Ti2···ir+1 + ∇i2Ti1···ir+1 = 0.

Next Blair [2] has applied the notion of Killing tensor to a tensor field of T type (1, 1)
on a Riemannian manifold and a geodesic γ on M. If we denote by γ′ the tangent vector
of the geodesic γ, then Tγ′ is parallel along the geodesic γ for the Killing tensor field T .
Geometrically, this means that (∇γ′T )γ′ = 0 along a geodesic γ on M. If this is the case for
any geodesic on M, we have

(∇XT )X = 0 or equivalently (∇XT )Y + (∇YT )X = 0

for any vector fields X and Y on M. In this case we say that the tensor T is a Killing tensor
field of type (1, 1).
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Now we consider such a situation to the structure Jacobi operator Rξ, which is a tensor
field of type (1, 1) on a real hypersurface M in Qm∗. The structure Jacobi operator Rξ of M
in Qm is said to be Killing if the structure Jacobi operator Rξ satisfies

(∇XRξ)Y + (∇YRξ)X = 0

for any X, Y∈TzM, z ∈M. The equation is equivalent to (∇XRξ)X = 0 for any X∈TzM, z ∈M,
because of polarization. Moreover, we can give the geometric meaning of the Killing Jacobi
operator as follows:

When we consider a geodesic γ with initial conditions such that γ(0) = z and γ̇(0) = X.
Then the transformed vector field Rξγ̇ is Levi-Civita parallel along the geodesic γ of the
vector field X (see Blair [2] and Tachibana [40]).

In addition to the complex structure J there is another distinguished geometric structure
on Qm∗, namely a parallel rank two vector bundle A which contains an S 1-bundle of real
structures, that is, complex conjugations A on the tangent spaces of Qm∗. This geometric
structure determines a maximal A-invariant subbundle  of the tangent bundle T M of a real
hypersurface M in Qm∗ as follows:

 = {X∈TzM | AX∈TzM for all A∈A}.

Recall that a nonzero tangent vector W ∈ T[z]Qm∗ is called singular if it is tangent to
more than one maximal flat in Qm∗. There are two types of singular tangent vectors for the
complex hyperbolic quadric Qm∗:

1. If there exists a conjugation A ∈ A such that W ∈ V(A), then W is singular. Such a
singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V(A) such that
W/||W || = (X + JY)/

√
2, then W is singular. Such a singular tangent vector is called

A-isotropic
where V(A) = {X ∈ T[z]Qm∗| AX = X} and JV(A) = {X ∈ T[z]Qm∗| AX = −X}, [z] ∈ Qm∗, are
the (+1)-eigenspace and (−1)-eigenspace for the involution A on T[z]Qm∗, [z] ∈ Qm∗.

In the study of real hypersurfaces in the complex quadric Qm we considered the notion
of parallel Ricci tensor, that is, ∇Ric = 0 (see Suh [31]). But from the assumption of Ricci
parallel, it was difficult for us to derive the fact that either the unit normal N is A-isotropic or
A-principal. So in [31] we gave a classification with the further assumption of A-isotropic.
But fortunately, if we consider a Hopf real hypersurfaces, which is defined by S ξ = αξ for
the Reeb function α = g(S ξ, ξ) and the shape operator S , in the complex hyperbolic quadric
Qm∗ with Killing structure Jacobi operator, we can assert that the unit normal vector field N
becomes either A-isotropic or A-principal as follows:

Main Theorem 1. Let M be a Hopf real hypersurface in Qm∗, m≥3, with Killing struc-
ture Jacobi operator. Then the unit normal vector field N is singular, that is, N is A-isotropic
or A-principal.

When we consider a hypersurface M in the complex hyperbolic quadric Qm∗, the unit
normal vector field N of M in Qm∗ can be divided into two cases : N is A-isotropic or
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A-principal (see [34], [35] and [27]). In the first case where M has an A-isotropic unit
normal N, we have asserted in [34] and [35] that M is locally congruent to a tube over a
totally geodesic complex hyperbolic space CHk in Q2k∗ or a horosphere with A-isotropic
unit normal vector field centered at the infinity. In the second case when N is A-principal
we have proved that M is locally congruent to a tube over a totally geodesic and totally real
submanifold Qm−1∗ in Qm∗ (see [34], [36] and [38]).

In this paper we consider the case that the structure Jacobi operator Rξ of M in Qm∗ is
Killing , that is, (∇XRξ)Y + (∇YRξ)X = 0 for any tangent vector field X and Y on M, and we
prove the following

Main Theorem 2. There does not exist a Hopf hypersurface in Qm∗, m ≥ 3 with Killing
stucture Jacobi operator and A-principal unit normal vector field.

Now it remains to prove the case that the unit normal vector field is A-isotropic. Then
by our Main Theorems 1 and 2, we give a classification of real hypersurfaces in Qm∗ with
Killing structure Jacobi operator as follows:

Main Theorem 3. Let M be a Hopf hypersurface in Qm∗, m ≥ 3 with Killing stucture
Jacobi operator. If the Reeb function is constant along the Reeb direction, then M has 4
distinct constant principal curvatures

α, β = 0, λ1 λ2.

Here the corresponding eigen spaces ξ∈Tα, Tβ = ⊥, and Tλ1⊕Tλ2 = , where the principal
curvatures λ1 and λ2 are two distinct constants given by

λ1 =
α(α2 − 1) + α

√
(α2 − 1 − 2

√
2)(α2 − 1 + 2

√
2)

4
and

λ2 =
α(α2 − 1) − α

√
(α2 − 1 − 2

√
2)(α2 − 1 + 2

√
2)

4
.

with multiplicities (m − 2) respectively and α2 > 2
√

2 + 1.

Remark 1.1. In [29] Suh has proved that the Reeb function α = g(S ξ, ξ) is constant
for real hypersurfaces with singular normal vector field in the complex quadric Qm . But in
the complex hyperbolic quadric Qm∗ the Reeb function α is constant only if the unit normal
vector field N is A-principal (see Suh, Pérez and Woo [39]). Until now it does not known to
us whether the Reeb function α is constant for real hypersurfaces in the complex hyperbolic
quadric Qm∗ with A-isotropic unit normal vector field.

The subbundle  mentioned in Main Theorem 3 is the maximal invariant subbundle of
TzM, z∈M, such that ⊕⊥ = [ξ]⊥, where ⊥ = Span{Aξ, AN} and [ξ]⊥ denotes the orthog-
onal complement of the Reeb vector field ξ in TzM, z∈M, in Qm∗.

When we consider a parallel structure Jacobi operator on M in Qm∗, we know that
(∇XRξ)Y = 0 for any vector fields X and Y on M. This gives a condition stronger than
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the notion of Killing structure Jacobi operator. So naturally it satisfies the assumptions of
Killing in Main Theorems 1, 2 and 3. For the case of isotropic unit normal N, it can be
easily checked that the results in our Main Theorem 3 do not satisfy the strong assumption
of parallel structure Jacobi operator. So we also conclude the following

Corollary (see [39]). There does not exist a Hopf hypersurface in the complex hyperbolic
quadric Qm∗, m≥3, with parallel stucture Jacobi operator.

2. The complex hyperbolic quadric

2. The complex hyperbolic quadric
In this section, let us introduce a new known result of the complex hyperbolic quadric

Qm∗ different from the complex quadric Qm. This section is due to Klein and Suh [10].
The m-dimensional complex hyperbolic quadric Qm∗ is the non-compact dual of the m-

dimensional complex quadric Qm, which is a kind of Hermitian symmetric space of non-
compact type with rank 2 (see Besse [1], and Helgason [3]).

The complex hyperbolic quadric Qm∗ cannot be realized as a homogeneous complex hy-
persurface of the complex hyperbolic space CHm+1. In fact, Smyth [24, Theorem 3(ii)] has
shown that every homogeneous complex hypersurface in CHm+1 is totally geodesic. This
is in marked contrast to the situation for the complex quadric Qm, which can be realized
as a homogeneous complex hypersurface of the complex projective space CPm+1 in such
a way that the shape operator for any unit normal vector to Qm is a real structure on the
corresponding tangent space of Qm, see [8] and [22]. Another related result by Smyth, [24,
Theorem 1], which states that any complex hypersurface CHm+1 for which the square of the
shape operator has constant eigenvalues (counted with multiplicity) is totally geodesic, also
precludes the possibility of a model of Qm∗ as a complex hypersurface of CHm+1 with the
analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Qm∗ as the quotient manifold
SO0

2,m/SO2SOm. As Q1∗ is isomorphic to the real hyperbolic space RH2 = SO0
1,2/SO2, and

Q2∗ is isomorphic to the Hermitian product of complex hyperbolic spaces CH1 × CH1,
we suppose m ≥ 3 in the sequel and throughout this paper. Let G := SO0

2,m be the
transvection group of Qm∗ and K := SO2SOm be the isotropy group of Qm∗ at the “origin”
p0 := eK ∈ Qm∗. Then

σ : G → G, g �→ sgs−1 with s :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 −1

1
1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is an involutive Lie group automorphism of G with Fix(σ)0 = K, and therefore Qm∗ = G/K
is a Riemannian symmetric space. The center of the isotropy group K is isomorphic to SO2,
and therefore Qm∗ is in fact a Hermitian symmetric space.

The Lie algebra g := so2,m of G is given by

g =
{
X ∈ gl(m + 2,R)

∣∣∣ Xt · s = −s · X}
(see [11, p. 59]). In the sequel we will write members of g as block matrices with respect to
the decomposition Rm+2 = R2 ⊕ Rm, i.e. in the form
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X =
(

X11 X12
X21 X22

)
,

where X11, X12, X21, X22 are real matrices of the dimension 2 × 2, 2 × m, m × 2 and m × m,
respectively. Then

g =

{ (
X11 X12
X21 X22

) ∣∣∣∣ Xt
11 = −X11, Xt

12 = X21, Xt
22 = −X22

}
.

The linearisation σL = Ad(s) : g→ g of the involutive Lie group automorphism σ induces
the Cartan decomposition g = k ⊕m, where the Lie subalgebra

k =Eig(σ∗, 1) = {X ∈ g | sXs−1 = X}
=

{ (
X11 0
0 X22

) ∣∣∣∣ Xt
11 = −X11, Xt

22 = −X22

}
�so2 ⊕ som

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

m = Eig(σ∗,−1) = {X ∈ g | sXs−1 = −X} =
{ (

0 X12
X21 0

) ∣∣∣∣ Xt
12 = X21

}
is canonically isomorphic to the tangent space Tp0 Qm∗. Under the identification Tp0 Qm∗ �
m, the Riemannian metric g of Qm∗ (where the constant factor of the metric is chosen so that
the formulae become as simple as possible) is given by

g(X, Y) =
1
2

tr(Yt · X) = tr(Y12 · X21) for X, Y ∈ m.
g is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant Riemannian
metric on Qm∗. The complex structure J of the Hermitian symmetric space is given by

JX = Ad( j)X for X ∈ m, where j :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1−1 0

1
1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ K .

Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant, and thus
defines an Ad(G)-invariant Hermitian structure on Qm∗. By identifying the multiplication
with the unit complex number i with the application of the linear map J, the tangent spaces
of Qm∗ thus become m-dimensional complex linear spaces, and we will adopt this point of
view in the sequel.

As mentioned for the complex quadric (again compare [8], [9], and [22]), there is another
important structure on the tangent bundle of the complex quadric besides the Riemannian
metric and the complex structure, namely an S 1-bundle A of real structures. The situation
here differs from that of the complex quadric in that for Qm∗, the real structures in A cannot
be interpreted as the shape operator of a complex hypersurface in a complex space form, but
as the following considerations will show, A still plays an important role in the description
of the geometry of Qm∗.
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Let

a0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1

1
1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Note that we have a0 � K, but only a0 ∈ O2 SOm. However, Ad(a0) still leaves m invariant,
and therefore defines an R-linear map A0 on the tangent space m � Tp0 Qm∗. A0 turns out to
be an involutive orthogonal map with A0◦J = −J◦A0 (i.e. A0 is anti-linear with respect to the
complex structure of Tp0 Qm∗), and hence a real structure on Tp0 Qm∗. But A0 commutes with
Ad(g) not for all g ∈ K, but only for g ∈ SOm ⊂ K. More specifically, for g = (g1, g2) ∈ K
with g1 ∈ SO2 and g2 ∈ SOm, say g1 =

(
cos(t) − sin(t)
sin(t) cos(t)

)
with t ∈ R (so that Ad(g1) corresponds

to multiplication with the complex number μ := eit), we have

A0 ◦ Ad(g) = μ−2 · Ad(g) ◦ A0 .

This equation shows that the object which is Ad(K)-invariant and therefore geometrically
relevant is not the real structure A0 by itself, but rather the “circle of real structures”

Ap0 := {λ A0|λ ∈ S 1} .
Ap0 is Ad(K)-invariant, and therefore generates an Ad(G)-invariant S 1-subbundle A of the
endomorphism bundle End(T Qm∗), consisting of real structures on the tangent spaces of
Qm∗. For any A ∈ A, the tangent line to the fibre of A through A is spanned by JA.

For any p ∈ Qm∗ and A ∈ Ap, the real structure A induces a splitting

TpQm∗ = V(A) ⊕ JV(A)

into two orthogonal, maximal totally real subspaces of the tangent space TpQm∗. Here V(A)
resp. JV(A) are the (+1)-eigenspace resp. the (−1)-eigenspace of A. For every unit vector
W ∈ TpQm∗ there exist t ∈ [0, π4 ], A ∈ Ap and orthonormal vectors X, Y ∈ V(A) so that

W = cos(t) · X + sin(t) · JY

holds; see [22, Proposition 3]. Here t is uniquely determined by W. The vector W is singular,
i.e. contained in more than one Cartan subalgebra of m, if and only if either t = 0 or t = π4
holds. The vectors with t = 0 are called A-principal, whereas the vectors with t = π

4 are
called A-isotropic. If W is regular, i.e. 0 < t < π4 holds, then also A and X, Y are uniquely
determined by W.

The singular tangent vectors correspond to the values t = 0 and t = π/4. If 0 < t < π/4
then the unique maximal flat containing W is RX ⊕RJY . Later we will need the eigenvalues
and eigenspaces of the Jacobi operator RW = R(·,W)W for a singular unit tangent vector W.

1. If W is an A-principal singular unit tangent vector with respect to A ∈ A, then the
eigenvalues of RW are 0 and 2 and the corresponding eigenspaces are RW⊕ J(V(A)�
RW) and (V(A) � RW) ⊕ RJW, respectively.

2. If W is an A-isotropic singular unit tangent vector with respect to A ∈ A and X, Y ∈
V(A), then the eigenvalues of RW are 0, 1 and 4 and the corresponding eigenspaces
are RW ⊕ C(JX + Y), TzQm � (CX ⊕ CY) and RJW, respectively.
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Like for the complex quadric, the Riemannian curvature tensor R̄ of Qm∗ can be fully
described in terms of the “fundamental geometric structures” g, J and A. In fact, under
the correspondence Tp0 Qm∗ � m, the curvature R̄(X, Y)Z corresponds to −[[X, Y], Z] for
X, Y, Z ∈ m, see [12, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression
explicitly, one can show that one has

R̄(X, Y)Z = −g(Y, Z)X + g(X, Z)Y

− g(JY,Z)JX + g(JX, Z)JY + 2g(JX, Y)JZ

− g(AY, Z)AX + g(AX, Z)AY

− g(JAY,Z)JAX + g(JAX, Z)JAY

for arbitrary A ∈ Ap0 . Therefore the curvature of Qm∗ is the negative of that of the complex
quadric Qm, compare [22, Theorem 1]. This confirms that the symmetric space Qm∗ which
we have constructed here is indeed the non-compact dual of the complex quadric.

3. Some general equations

3. Some general equations
Let M be a real hypersurface in the complex hyperbolic quadric Qm∗ and denote by

(φ, ξ, η, g) the induced almost contact metric structure. Note that ξ = −JN, where N is a
(local) unit normal vector field of M. The tangent bundle T M of M splits orthogonally into
T M =  ⊕ Rξ, where  = ker(η) is the maximal complex subbundle of T M. The struc-
ture tensor field φ restricted to  coincides with the complex structure J restricted to , and
φξ = 0.

At each point z ∈ M we define the maximal A-invariant subspace of TzM, z∈M as follows:

z = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.
Lemma 3.1 (see [29]). For each z ∈ M we have

(i) If Nz is A-principal, then z = z.
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors

X, Y ∈ V(A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have
z = z � C(JX + Y).

We now assume that M is a Hopf hypersurface. Then for the Reeb vector field ξ the shape
operator S becomes

S ξ = αξ

with the smooth function α = g(S ξ, ξ) on M. When we consider a transform JX of the
Kaehler structure J on the complex hyperbolic quadric Qm∗ for any vector field X on M in
Qm∗, we may put

JX = φX + η(X)N

for a unit normal N to M.
Then we now consider the Codazzi equation
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g((∇XS )Y − (∇YS )X, Z) = −η(X)g(φY, Z) + η(Y)g(φX, Z) + 2η(Z)g(φX, Y)(3.1)

− g(X, AN)g(AY, Z) + g(Y, AN)g(AX, Z)

− g(X, Aξ)g(JAY, Z) + g(Y, Aξ)g(JAX, Z).

Putting Z = ξ we get

g((∇XS )Y − (∇YS )X, ξ) = 2g(φX, Y)

− g(X, AN)g(Y, Aξ) + g(Y, AN)g(X, Aξ)

+ g(X, Aξ)g(JY, Aξ) − g(Y, Aξ)g(JX, Aξ).

On the other hand, we have

g((∇XS )Y − (∇YS )X, ξ)

= g((∇XS )ξ, Y) − g((∇YS )ξ, X)

= (Xα)η(Y) − (Yα)η(X) + αg((Sφ + φS )X, Y) − 2g(SφS X, Y).

Comparing the previous two equations and putting X = ξ yields

(3.2) Yα = (ξα)η(Y) − 2g(ξ, AN)g(Y, Aξ) + 2g(Y, AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g((∇XS )Y − (∇YS )X, ξ)

= 2g(ξ, AN)g(X, Aξ)η(Y) − 2g(X, AN)g(ξ, Aξ)η(Y)

−2g(ξ, AN)g(Y, Aξ)η(X) + 2g(Y, AN)g(ξ, Aξ)η(X)

+αg((φS + Sφ)X, Y) − 2g(SφS X, Y).

Altogether this implies

0 = 2g(SφS X, Y) − αg((φS + Sφ)X, Y) + 2g(φX, Y)

−g(X, AN)g(Y, Aξ) + g(Y, AN)g(X, Aξ)

+g(X, Aξ)g(JY, Aξ) − g(Y, Aξ)g(JX, Aξ)

−2g(ξ, AN)g(X, Aξ)η(Y) + 2g(X, AN)g(ξ, Aξ)η(Y)

+2g(ξ, AN)g(Y, Aξ)η(X) − 2g(Y, AN)g(ξ, Aξ)η(X).

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V(A) and 0 ≤ t ≤ π4 (see Proposition 3 in [22]). Note
that t is a function on M. First of all, since ξ = −JN, we have

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.

This implies g(ξ, AN) = 0 and hence

0 = 2g(SφS X, Y) − αg((φS + Sφ)X, Y) + 2g(φX, Y)
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−g(X, AN)g(Y, Aξ) + g(Y, AN)g(X, Aξ)

+g(X, Aξ)g(JY, Aξ) − g(Y, Aξ)g(JX, Aξ)

+2g(X, AN)g(ξ, Aξ)η(Y) − 2g(Y, AN)g(ξ, Aξ)η(X).

We have JAξ = −AJξ = −AN, and inserting this into the previous equation implies

Lemma 3.2. Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗ with
(local) unit normal vector field N. For each point z ∈ M we choose A ∈ Az such that
Nz = cos(t)Z1 + sin(t)JZ2 holds for some orthonormal vectors Z1, Z2 ∈ V(A) and 0 ≤ t ≤ π4 .
Then

0 = 2g(SφS X, Y) − αg((φS + Sφ)X, Y) + 2g(φX, Y)

−2g(X, AN)g(Y, Aξ) + 2g(Y, AN)g(X, Aξ)

−2g(ξ, Aξ){g(Y, AN)η(X) − g(X, AN)η(Y)}
holds for all vector fields X and Y on M.

We can write for any vector field Y on M in Qm∗

AY = BY + ρ(Y)N,

where BY denotes the tangential component of AY and ρ(Y) = g(AY,N).

If N is A-prinicipal, that is, AN = N, we have ρ = 0, because ρ(Y) = g(Y, AN) = g(Y,N) =
0 for any tangent vector field Y on M in Qm∗. So we have AY = BY for any tangent vector
field Y on M in Qm∗. Otherwise we can use Lemma 3.1 to calculate ρ(Y) = g(Y, AN) =
g(Y, AJξ) = −g(Y, JAξ) = −g(Y, JBξ) = −g(Y, φBξ) for any tangent vector field Y on M in
Qm∗. From this, together with Lemma 3.2, we have proved

Lemma 3.3. Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗,
m ≥ 3. Then we have

(2SφS − α(φS + Sφ) + 2φ)X = 2ρ(X)(Bξ − βξ) + 2g(X, Bξ − βξ)φBξ,

where the function β is given by β = g(ξ, Aξ) = −g(N, AN).

If the unit normal vector field N is A-principal, we can choose a real structure A ∈ A such
that AN = N. Then we have ρ = 0 and φBξ = −φξ = 0, and therefore

(3.3) 2SφS − α(φS + Sφ) = −2φ.

If N is not A-principal, we can choose a real structure A ∈ A as in Lemma 3.1 and get

ρ(X)(Bξ − βξ) + g(X, Bξ − βξ)φBξ(3.4)

= − g(X, φ(Bξ − βξ))(Bξ − βξ) + g(X, Bξ − βξ)φ(Bξ − βξ)
=||Bξ − βξ||2{g(X,U)φU − g(X, φU)U}
= sin2(2t){g(X,U)φU − g(X, φU)U},

which is equal to 0 on  and equal to sin2(2t)φX on  �. Altogether we have proved:
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Lemma 3.4. Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗,
m ≥ 3. Then the tensor field

2SφS − α(φS + Sφ)

leaves  and  � invariant and we have

2SφS − α(φS + Sφ) = −2φ on 

and

2SφS − α(φS + Sφ) = −2β2φ on  �,
where β = g(Aξ, ξ) = − cos 2t as in section 3.

Then from the equation of Gauss the curvature tensor R of M in complex quadric Qm∗ is
defined so that

R(X, Y)Z = −g(Y, Z)X + g(X, Z)Y − g(φY, Z)φX + g(φX, Z)φY + 2g(φX, Y)φZ

−g(AY, Z)(AX)T + g(AX, Z)(AY)T − g(JAY, Z)(JAX)T

+g(JAX, Z)(JAY)T + g(S Y, Z)S X − g(S X, Z)S Y,

where (AX)T and S denote the tangential component of the vector field AX and the shape
operator of M in Qm∗ respectively.

From this, putting Y = Z = ξ and using g(Aξ,N) = 0, the structure Jacobi operator is
defined by

Rξ(X) = R(X, ξ)ξ

= −X + η(X)ξ − g(Aξ, ξ)(AX)T + g(AX, ξ)Aξ

+g(X, AN)(AN)T + g(S ξ, ξ)S X − g(S X, ξ)S ξ.

Then we may put the following

(AY)T = AY − g(AY,N)N.

Now let us denote by ∇ and ∇̄ the covariant derivative of M and the covariant derivative
of Qm∗ respectively. Then by using the Gauss and Weingarten formulas we can assert the
following

Lemma 3.5. Let M be a real hypersurface in the complex hyperbolic quadric Qm∗.
Then

∇X(AY)T =q(X)JAY + A∇XY + g(S X, Y)AN(3.5)

− g({q(X)JAY + A∇XY + g(S X, Y)AN},N)N

+ g(AY,N)S X.
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Proof. First let us use the Gauss formula to (AY)T = AY − g(AY,N)N. Then it follows
that

∇X(AY)T =∇̄X(AY)T − σ(X, (AY)T )

=∇̄X{AY − g(AY,N)N} − g(S X, (AY)T )N

=(∇̄XA)Y + A∇̄XY − g((∇̄XA)Y + A∇̄XY,N)N − g(AY, ∇̄XN)N

− g(AY,N)∇̄XN − g(S X, (AY)T )N,

where σ denotes the second fundamental form and N the unit normal vector field on M in
Qm∗. Then from this, if we use Weingarten formula ∇̄XN = −S X, then we get the above
formula. �

By puting Y = ξ and using g(Aξ,N) = 0, we have

∇X(Aξ) =q(X)JAξ + AφS X + αη(X)AN(3.6)

− {q(X)g(JAξ,N) + g(AφS X,N) + αη(X)g(AN,N)}N.
Moreover, let us also use Gauss and Weingarten formula to (AN)T = AN − g(AN,N)N.

Then it follows that

∇X(AN)T =∇̄X(AN)T − σ(X, (AN)T )(3.7)

=∇̄X{AN − g(AN,N)N} − σ(X, (AN)T )

=(∇̄XA)N + A∇̄XN − g((∇̄XA)N + A∇̄XN,N)

− g(AN, ∇̄XN)N − g(AN,N)∇̄XN − σ(X, (AN)T )

=q(X)JAN − AS X − g(q(X)JAN − AS X,N)N + g(AN,N)S X.

On the other hand, we know that

Xβ =X(g(Aξ, ξ))(3.8)

=g((∇̄XA)ξ + A∇̄Xξ, ξ) + g(Aξ, ∇̄Xξ)

=g(q(X)JAξ + AφS X + g(S X, ξ)AN, ξ) + g(Aξ, φS X + g(S X, ξ)N)

=2g(AφS X, ξ).

4. Some Important Lemmas and Proof of Theorem 1

4. Some Important Lemmas and Proof of Theorem 1
The curvature tensor R(X, Y)Z for a Hopf real hypersurface M in the complex hyperbolic

quadric Qm∗ induced from the curvature tensor of Qm∗ is given in section 3. Now the struc-
ture Jacobi operator Rξ can be rewritten as follows:

Rξ(X) =R(X, ξ)ξ(4.1)

= − X + η(X)ξ − β(AX)T + g(AX, ξ)Aξ + g(AX,N)(AN)T

+ αS X − g(S X, ξ)S ξ,

where we have put α = g(S ξ, ξ) and β = g(Aξ, ξ), because we assume that M is Hopf.
The Reeb vector field ξ = −JN and the anti-commuting property AJ = −JA gives that the
function β becomes β = −g(AN,N). When this function β = g(Aξ, ξ) identically vanishes,
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we say that a real hypersurface M in Qm∗ is A-isotropic as in section 1.

Here let us differentiate the structure Jacobi operator Rξ along any direction X on M in
the complex hyperbolic quadric Qm∗. Then (4.1), together with (3.5), (3.6), (3.7), give that

∇XRξ(Y) = ∇X(Rξ(Y)) − Rξ(∇XY)(4.2)

=g(φS X, Y)ξ + η(Y)φS X − (Xβ)(AY)T

− β
[
q(X)JAY + A∇XY + g(S X, Y)AN

− g({q(X)JAY + A∇XY + g(S X, Y)AN},N)N

+ g(AY,N)S X
]

+ g(q(X)JAξ + AφS X + αη(X)AN, Y)Aξ

+ g(AY, ξ)
[
g(q(X)JAξ + AφS X + αη(X)AN

− {q(X)g(JAξ,N) + g(AφS X,N) + αη(X)g(AN,N)}N
]

+
[
g(q(X)JAN − AS X + g(AN,N)S X, Y)(AN)T

+ g(Y, (AN)T ){q(X)JAN − AS X + g(AN,N)S X

− g(q(X)JAN − AS X,N)N}
]

+ (Xα)S Y + α(∇XS )Y − X(α2)η(Y)ξ

− α2(∇Xη)(Y)ξ − α2η(Y)∇Xξ,

where we have used g(Aξ,N) = 0, and N the unit normal to M in Qm∗.

Here let us assume that the structure Jacobi operator is Killing, that is, (∇XRξ)Y+(∇YRξ)X
= 0 for any tangent vector fields X and Y on M in Qm∗. Then from this, together with (4.1),
we have the following

0 =∇XRξ(Y) + ∇YRξ(X)(4.3)

={g(φS X, Y) + g(φS Y, X)}ξ + η(Y)φS X + η(X)φS Y

− (Xβ)(AY)T − (Yβ)(AX)T

− β
[
q(X)JAY + q(Y)JAX + A(∇XY + ∇Y X) + 2g(S X, Y)AN

− g({q(X)JAY + q(Y)JAX + A(∇XY + ∇Y X) + 2g(S X, Y)AN},N)N

+ g(AY,N)S X + g(AX,N)S Y
]

+
[
g(q(X)JAξ + AφS X + αη(X)AN, Y)

+ g(q(Y)JAξ + AφS Y + αη(Y)AN, X)
]
Aξ

+ g(AY, ξ)
[
q(X)JAξ + AφS X + αη(X)AN

− {q(X)g(JAξ,N) + g(AφS X,N) + αη(X)g(AN,N)}N
]

+ g(AX, ξ)
[
q(Y)JAξ + AφS Y + αη(Y)AN

− {q(Y)g(JAξ,N) + g(AφS Y,N) + αη(Y)g(AN,N)}N
]

+
[
{g(q(X)JAN − AS X + g(AN,N)S X, Y)



14 Y.J. Suh

+ g(q(Y)JAN − AS Y + g(AN,N)S Y, X)}(AN)T

+ g(Y, (AN)T ){q(X)JAN − AS X − g(q(X)JAN − AS X,N)N

+ g(AN,N)S X}
+ g(X, (AN)T ){q(Y)JAN − AS Y − g(q(Y)JAN − AS Y,N)N

+ g(AN,N)S Y}
]

+ (Xα)S Y + (Yα)S X + α{(∇XS )Y + (∇YS )X}
− X(α2)η(Y)ξ − (Yα2)η(X)ξ − α2{(∇Xη)(Y)ξ + (∇Yη)(X)ξ}
− α2{η(Y)∇Xξ + η(X)∇Yξ}.

From this, by taking the inner product of (4.3) with the Reeb vector field ξ, we have

0 =g((φS − Sφ)X, Y) − (Xβ)g(AY, ξ) − (Yβ)g(AX, ξ)

− β{q(X)g(JAY, ξ) + q(Y)g(JAX, ξ) + g(A(∇XY + ∇Y X), ξ)

+ g(AY,N)g(S X, ξ) + g(AX,N)g(S Y, ξ)}
+ {g(q(X)JAξ + AφS X + αη(X)AN, Y)

+ g(q(Y)JAξ + AφS Y + αη(Y)AN, X)}g(Aξ, ξ)
+ g(AY, ξ)g(AφS X, ξ) + g(AX, ξ)g(AφS Y, ξ)

+ g(Y, (AN)T ){g(q(X)JAN, ξ) − g(AS X, ξ) + g(AN,N)g(S X, ξ)}
+ g(X, (AN)T ){g(q(Y)JAN, ξ) − g(AS Y, ξ) + g(AN,N)g(S Y, ξ)}
+ α(Xα)η(Y) + α(Yα)η(X)

+ α{g((∇XS )Y, ξ) + g((∇YS )X, ξ)}
− X(α2)η(Y) − Y(α2)η(X) − α2(∇Xη)(Y) − α2(∇Yη)(X).

Then, first, by putting Y = ξ and using g(Aξ,N) = 0, we have

0 = − (Xβ)g(Aξ, ξ) − βg(AφS X, ξ) + βg(AφS X, ξ) + βg(AφS X, ξ)(4.4)

− (ξβ)g(AX, ξ) − β{q(ξ)g(JAX, ξ) + g(A∇ξX, ξ) + αg(AX,N)}
+ {g(q(ξ)JAξ + AφS ξ + αAN, X)}g(Aξ, ξ)
+ g(X, AN)(q(ξ) − 2α)β

= − β{g(AφS X, ξ) + g(A∇ξX, ξ) − (q(ξ) − 2α)g(X, AN)}.
Here if the function β = g(Aξ, ξ) = − cos 2t = 0, we have t = π4 . Then the unit normal

vector field N becomes

N =
1√
2

(Z1 + JZ2)

for Z1, Z2∈V(A) as in section 3, that is, the unit normal N is A-isotropic .

Now hereafter, from (4.4) let us consider the following case

(4.5) 0 = {g(AφS X, ξ) + g(A∇ξX, ξ) − (q(ξ) − 2α)g(X, AN)}.
On the other hand, by using (3.1) for any tangent vector field X⊥Aξ, we have
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g(A∇ξX, ξ) =g(∇ξX, Aξ) = −g(X,∇ξ(Aξ))(4.6)

= − g(q(ξ)JAξ + αAN, X) = (q(ξ) − α)g(AN, X).

Then from (4.5) and (4.6) we have the following for any tangent vector field X orthogonal
to Aξ

0 =g(AφS X, ξ) + (q(ξ) − α)g(AN, X) − (q(ξ) − 2α)g(AN, X)(4.7)

=g(AφS X, ξ) + αg(AN, X)

=g(S AN + αAN, X).

So it follows that

(4.8) g(S (AN)T , (AN)T ) = −α(1 − β2),

where g((AN)T , (AN)T ) = g(AN − g(AN,N)N, AN − g(AN,N)N) = 1 − g(AN,N)2 = 1 − β2.
On the other hand, by using (3.3) to the second term of (4.5) for X = (AN)T , we have

g(A∇ξ(AN)T , ξ) =g(q(ξ)ξ − S ξ + αg(AN,N)Aξ, ξ)(4.9)

=q(ξ) − α − αβ2,

where we have used A2 = I and g(AN,N) = −g(Aξ, ξ) = −β.
Then by putting X = (AN)T in (4.5) and using (4.8) and (4.9), we have

0 =g(AφS (AN)T , ξ) + g(A∇ξ(AN)T , ξ) − (q(ξ) − 2α)g((AN)T , (AN)T )(4.10)

= − α(1 − β2) + q(ξ) − α − αβ2 − (q(ξ) − 2α)(1 − β2)

=(q(ξ) − 2α)β2,

where we have used g(AφS (AN)T , ξ) = g(S (AN)T , (AN)T ) = −α(1 − β2). Here we note that
ξβ = 0, because we can calculate the following

ξβ =ξg(Aξ, ξ)

=g((∇̄ξA)ξ + A∇̄ξξ, ξ) + g(Aξ, ∇̄ξξ)
=g(q(ξ)JAξ, ξ)

= − q(ξ)g(Aξ,N)

=0.

Now we consider an open subset  = {p∈M|β(p)�0} in M. Then by (4.10), we have

Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3. Then

q(ξ) = 2α

holds on  on M in Qm∗.

Now hereafter unless otherwise stated, on such an open subset  let us prove that the
unit vector field N in the complex hyperbolic quadric Qm∗ is A-principal. Then by Lemma
4.1 and (4.4), we have the following for any tangent vector field X on M

g(AφS X, ξ) + g(A∇ξX, ξ) = 0.



16 Y.J. Suh

From this, by putting X = Aξ and using g(Aξ, Aξ) = 1, we know that

(4.11) 0 = g(AφS Aξ, ξ) = g(S Aξ, (AN)T ).

Moreover, for any X⊥Aξ the second term in the left side of the above equation becomes

g(A∇ξX, ξ) = −g(X,∇ξAξ) = αg((AN)T , X),

where in the third equality we have used Lemma 4.1. Consequently, for any tangent vector
field X⊥Aξ we conclude

0 =g(AφS X, ξ) + g(A∇ξX, ξ)
=g(X, S (AN)T ) + αg((AN)T , X)

=g(S (AN)T + α(AN)T , X).

Moreover, by (4.11) we also know that

g(S (AN)T + α(AN)T , Aξ) = 0.

So these two equations give the following

Lemma 4.2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m ≥ 3. Then

S (AN)T = −α(AN)T

holds on  on M in Qm∗.

Now let us differentiate the equation in Lemma 4.2. Then it follows that

(∇XS )(AN)T + S∇X(AN)T = −(Xα)(AN)T − α∇X(AN)T .

From this, by taking the inner product with the Reeb vector field ξ and using the formulas
(3.3), we have

0 =g((AN)T , (∇XS )ξ)

+ 2αg(q(X)JAN − AS X − g(q(X)JAN − AS X,N)N, ξ)

+ 2αg(AN,N)g(S X, ξ)

=g((AN)T , αφS X − SφS X)

+ 2α{q(X)g(Aξ, ξ) − g(S X, Aξ) + g(AN,N)g(S X, ξ)}.
Then by putting X = (AN)T and using Lemma 4.2, we have αq((AN)T ) = 0. When the

function α = 0, in section 3, βg(Y, AN) = 0 for any tangent vector field Y on M. Then on the
open subset  = {p∈M | β(p)�0} in M we conclude

Lemma 4.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3. Then either

q((AN)T ) = 0

or the unit normal vector field N is A-principal.
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On the other hand, by putting X = ξ in (3.3) and using Lemma 4.1, we have

∇ξ(AN)T =(q(ξ) − α)Aξ + αg(AN,N)ξ(4.12)

=α(Aξ − βξ).
Differentiating the equation in Lemma 4.2 along the Reeb direction ξ and using (4.12)

implies

(∇ξS )(AN)T = − S∇ξ(AN)T − (ξα)(AN)T − α∇ξ(AN)T(4.13)

= − α(S Aξ − αβξ) − (ξα)(AN)T − α2(Aξ − βξ).
Moreover, differentiating S ξ = αξ and using Lemma 4.2, we get the following

(∇(AN)T S )ξ ={(AN)Tα}ξ + αφS (AN)T − SφS (AN)T(4.14)

={(AN)Tα}ξ − α2φ(AN)T + αSφ(AN)T .

Then substracting (4.14) from (4.13) and Lemma 4.2 give

g((∇ξS )(AN)T − (∇(AN)T S )ξ, (AN)T ) = −(ξα)(1 − β2)(4.15)

= − g(φ(AN)T , (AN)T ) − g(ξ, Aξ)g(JA(AN)T , (AN)T )

=0,

where in the second equality we have used the equation of Codazzi (3.1) in section 3. Then
it follows that

ξα = 0 or β2 = 1.

When the latter part β = ±1 occurs on  , then AN = ±N. So we know that the unit
normal vector filed N is A-principal. When ξα = 0, if we use the derivative formula Yα and
g(ξ, AN) = 0 in section 3, we have the following

Lemma 4.4. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m ≥ 3. Then either

grad α = 2β(AN)T

or the unit normal vector field N is A-principal.

Now let us consider the first formula in Lemma 4.4. Then by differentiating the above
formula it follows that

∇Xgrad α =2(Xβ)(AN)T + 2β∇X(AN)T(4.16)

=4g(AφS X, ξ)(AN)T + 2β{q(X)JAN − AS X

− g(q(X)JAN − AS X,N)N + g(AN,N)S X}.
Then we have

g(∇Xgrad α, Y) =4g(AφS X, ξ)g((AN)T , Y) + 2β{q(X)g(JAN, Y) − g(AS X, Y)}(4.17)

+ 2βg(AN,N)g(S X, Y).

Since g(∇Xgrad α, Y) = g(∇Ygrad α, X) and Lemma 4.2, we have
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0 = 2β{q(X)g(JAN, Y) − q(Y)g(JAN, X)} − 2β{g(AS X, Y) − g(AS Y, X)}.(4.18)

So on the open subset  = {p∈M | β(p)�0} in M it follows that

q(X)g(JAN,Y) − q(Y)g(JAN, X) = g(AS X, Y) − g(AS Y, X).

From this, by putting X = ξ, we know that

S Aξ = −αAξ + βgrad q.

Then differentiating this formula gives

(∇XS )Aξ + S∇XAξ = −(Xα)Aξ − α∇XAξ + (Xβ)grad q + β∇Xgrad q.(4.19)

First let us take the inner product of (4.19) with Y and make the skew-symmetric part with
respect X and Y . Next we use g(∇Xgrad q, Y) = g(∇Ygrad q, X) to the obtained equation.
Then finally by putting X = ξ, we have

g((∇ξS )Aξ, Y) − g((∇YS )Aξ, ξ) + g(S (∇ξAξ), Y) − g(S (∇Y Aξ), ξ)(4.20)

= − (ξα)g(Aξ, Y) + (Yα)g(Aξ, ξ)

− α{g(∇ξAξ, Y) − g(∇Y Aξ, ξ)} + (ξβ)q(Y) − (Yβ)q(ξ).

In this equation (4.20), we want to use the following formulas

q(ξ) = 2α, ξα = 0, ξβ = 0,

∇ξ(Aξ) =2αJAξ + αAN − {2αg(JAξ,N) + αg(AN,N)}N(4.21)

= − αAN − αβN
= − α(AN)T ,

and

g(∇Y(Aξ), ξ) =q(Y)g(JAξ, ξ) + g(AφS Y, ξ)(4.22)

=g(S Y, AN) = −αg((AN)T , Y).

Then by the help of (4.21) and (4.22), the equation (4.20) can be reformed as

g((∇ξS )Aξ, Y) − g((∇YS )Aξ, ξ) + 2α2g((AN)T , Y)(4.23)

=(Yα)β − 2α(Yβ).

On the other hand, if we use the equation of Codazzi (3.1) in the first term of (4.23), we
have

g((∇ξS )Aξ, Y) =g((∇ξS )Y, Aξ) = g((∇YS )ξ, Aξ)(4.24)

− g(φY, Aξ) + g(Y, AN)g(Aξ, Aξ) − g(ξ, Aξ)g(JAY, Aξ).

Then substituting (4.24) into the first term of (4.23) gives

−g(φY, Aξ) + g(Y, AN)g(Aξ, Aξ) − g(ξ, Aξ)g(JAY, Aξ) + 2α2g((AN)T , Y)(4.25)

=(Yα)β − 2α(Yβ)
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=2β2g(Y, AN) + 4α2g(Y, (AN)T ),

where in the second equality we have used ξα = 0 in (3.2) of section 3, Lemma 4.2 and (3.8)
in the following formula

Yβ =2g(AφS Y, ξ) = 2g(S Y, AJξ)

=2g(S Y, (AN)T ) = −2αg(Y, (AN)T ).

In (4.25) the first two terms of the left side cancelled out each other and the third term
vanishes identically. The fourth term 2α2g((AN)T , Y) can be deleted with the second term in
the right side of (4.25). So (4.25) implies 2(α2+β2)g(Y, AN) = 0 for any tangent vector field
Y on M, which means that on the open subset  = {p∈M | β(p)�0} the unit normal vector
field N is A-principal AN = g(AN,N)N.

Summing up the above discussions, we can prove our Main Theorem 1 in the introduction.

By virtue of Main Theorem 1, we can distinguish two classes of real hypersurfaces in
the complex hyperbolic quadric Qm∗ with Killing structure Jacobi operator : those that have
A-principal unit normal, and those that have A-isotropic unit normal vector field N. We treat
the respective cases in sections 5 and 6.

5. Killing structure Jacobi operator with A-principal normal

5. Killing structure Jacobi operator with A-principal normal
In this section we consider a real hypersurface M in the complex hyperbolic quadric

Qm∗ with A-principal unit normal vector field. Then the unit normal vector field N satisfies
AN = N for a complex conjugation A∈A. Naturally, we have also the following

Aξ = −ξ, and JAξ = −Jξ = −N.

Then the structure Jacobi operator Rξ is given by

(5.1) Rξ(X) = −X + 2η(X)ξ + AX + g(S ξ, ξ)S X − g(S X, ξ)S ξ.

Since we assume that M is Hopf, (5.1) becomes

(5.2) Rξ(X) = −X + 2η(X)ξ + AX + αS X − α2η(X)ξ.

By the assumption of the Killing structure Jacobi operator Rξ, the derivative of Rξ along
any tangent vector field Y on M is given by

(∇YRξ)(X) = ∇Y(Rξ(X)) − Rξ(∇Y X)(5.3)

= 2{(∇Yη)(X)ξ + η(X)∇Yξ} + (∇Y A)X + (Yα)S X

+ α(∇YS )X − (Yα2)η(X)ξ

− α2(∇Yη)(X)ξ − α2η(X)∇Yξ.

We can write

AY = BY + ρ(Y)N,

where BY denotes the tangential component of AY and ρ(Y) = g(AY,N) = g(Y, AN) =
g(Y,N) = 0. So for any tangent vector field Y on M the vector field AY(= BY) also becomes
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a tangent vector field on M in Qm∗. Then it follows

(∇Y A)X =∇Y(AX) − A∇Y X(5.4)

=∇̄Y(AX) − σ(Y, AX) − A∇Y X

=(∇̄Y A)X + A∇̄Y X − σ(Y, AX) − A∇Y X

=q(Y)JAX + Aσ(Y, X) − σ(Y, AX)

=q(Y)JAX + g(S X, Y)AN − g(S Y, AX)N,

where we have used the equation of Gauss in the second equality and the Weingarten formula
in the fifth equality. From this, together with (5.3) and using that A-principal, the Killing
structure Jacobi operator gives

0 =(∇YRξ)(X) + (∇XRξ)(Y)(5.5)

=(2 + α2){(∇Yη)(X)ξ + η(X)∇Yξ}
+ (2 + α2){(∇Xη)(Y)ξ + η(Y)∇Xξ}
+ {q(Y)JAX + g(S X, Y)N − g(S Y, AX)N}
+ {q(X)JAY + g(S Y, X)N − g(S X, AY)N}
+ (Yα)S X + α(∇YS )X − (Yα2)η(X)ξ

+ (Xα)S Y + α(∇XS )Y − (Xα2)η(Y)ξ.

From this, taking the inner product of (5.5) with the Reeb vector field ξ, and using the
constancy of the Reeb function α in Lemma 3.2, we have

0 =(2 + α2){g(φS Y, X) + g(φS X, Y)} + αg((∇YS )X + (∇XS )Y, ξ)(5.6)

=2g((φS − Sφ)Y, X)

where we have used g(JAX, ξ) = −g(AX,N) = −g(X, AN) = −g(X,N) = 0 for any tangent
vector field X on M in Qm∗ and (∇XS )ξ = αφS X − SφS X. The formula (5.6) means that
the shape operator S commutes with the structure tensor φ. Then by Theorem A in the
introduction, M is locally congruent to an open part of a tube around a totally geodesic
CHk ⊂ Q2k∗ or a horosphere whose center at infinity is A-isotropic singular. That is, the
Reeb flow on M is isometric.

On the other hand, we want to introduce the following proposition (see Suh [34]).

Proposition 5.1. Let M be a real hypersurface in Qm∗, m≥3, with isometric Reeb flow.
Then the unit normal vector field N is A-isotropic everywhere.

By Proposition 5.1, we know that the unit normal vector field N of M is A-isotropic,
not A-principal. This rules out the existence of an A-principal unit normal N together with
Killing structure Jacobi operator. So we give the proof of our Main Theorem 2 with A-
principal unit normal N.

6. Killing structure Jacobi operator with A-isotropic normal

6. Killing structure Jacobi operator with A-isotropic normal
In this section we assume that the unit normal vector field N is A-isotropic and the Reeb
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function α = g(S ξ, ξ) is constant along the Reeb direction ξ, that is, ξα = 0. Then the
normal vector field N can be written as

N =
1√
2

(Z1 + JZ2)

for Z1, Z2∈V(A), where V(A) denotes a (+1)-eigenspace of the complex conjugation A∈A.
Then it follows that

AN =
1√
2

(Z1 − JZ2), AJN = − 1√
2

(JZ1 + Z2), and JN =
1√
2

(JZ1 − Z2).

Then it gives that

g(ξ, Aξ) = g(JN, AJN) = 0, g(ξ, AN) = 0 and g(AN,N) = 0.

By virtue of these formulas for A-isotropic unit normal, the structure Jacobi operator can be
given as follows:

Rξ(X) =R(X, ξ)ξ(6.1)

= − X + η(X)ξ + g(AX, ξ)Aξ + g(JAX, ξ)JAξ

+ g(S ξ, ξ)S X − g(S X, ξ)S ξ.

On the other hand, we know that JAξ = −JAJN = AJ2N = −AN, and g(JAX, ξ) =
−g(AX, Jξ) = −g(AX,N). Then the structure Jacobi operator Rξ can be rearranged as fol-
lows:

Rξ(X) = − X + η(X)ξ + g(AX, ξ)Aξ + g(X, AN)AN(6.2)

+ αS X − α2η(X)ξ.

Then by differentiating (6.2), we obtain

∇YRξ(X) =∇Y(Rξ(X)) − Rξ(∇Y X)(6.3)

=(∇Yη)(X)ξ + η(X)∇Yξ + g(X,∇Y(Aξ))Aξ

+ g(X, Aξ)∇Y(Aξ) + g(X,∇Y(AN))AN + g(X, AN)∇Y(AN)

+ (Yα)S X + α(∇YS )X − (Yα2)η(X)ξ

− α2(∇Yη)(X)ξ − α2η(X)∇Yξ.

Here let us consider the equation of Gauss. It is given by

∇̄XY = ∇XY + σ(X, Y)

for any vector fields X and Y on M in Qm∗, where ∇XY = (∇̄XY)T and σ(X, Y) respec-
tively denote the tangential and normal component on TzM of ∇̄XY in TzQm∗, z∈M. The
Weingarten formula is given by

∇̄XN = −S X

for an A-isotropic unit normal vector field N. Here S denotes the shape operator of M in the
complex hyperbolic quadric Qm∗ derived from the unit normal N. Then by using these two
equations to some terms in (6.3), we have the following :
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∇Y(Aξ) =∇̄Y(Aξ) − σ(Y, Aξ)

=(∇̄Y A)ξ + A∇̄Yξ − σ(Y, Aξ)

=q(Y)JAξ + A{φS Y + η(S Y)N} − g(S Y, Aξ)N

and

∇Y(AN) =∇̄Y(AN) − σ(Y, AN)

=(∇̄Y A)N + A∇̄Y N − σ(Y, AN)

=q(Y)JAN − AS Y − g(S Y, AN)N.

Substituting these formulas into (6.3) and using the assumption of Killing structure Jacobi
operator, we have

0 =∇YRξ(X) + ∇XRξ(Y)(6.4)

=g(φS Y, X)ξ + η(X)φS Y

+ g(φS X, Y)ξ + η(Y)φS X

+ {q(Y)g(Aξ, X) + g(AφS Y, X) + g(S Y, ξ)g(AN, X)}Aξ
+ {q(X)g(Aξ, Y) + g(AφS X, Y) + g(S X, ξ)g(AN, Y)}Aξ
+ g(X, Aξ){q(Y)JAξ + AφS Y + g(S Y, ξ)AN − g(S Y, Aξ)N}
+ g(Y, Aξ){q(X)JAξ + AφS X + g(S X, ξ)AN − g(S X, Aξ)N}
+ {q(Y)g(X, AN) − g(X, AS Y)}AN

+ {q(X)g(Y, AN) − g(Y, AS X)}AN

+ g(X, AN){q(Y)JAN − AS Y − g(S Y, AN)N}
+ g(Y, AN){q(X)JAN − AS X − g(S X, AN)N}
+ (Yα)S X + α(∇YS )X − (Yα2)η(X)ξ

+ (Xα)S Y + α(∇XS )Y − (Xα2)η(Y)ξ

− α2g(φS Y, X)ξ − α2η(X)φS Y

− α2g(φS X, Y)ξ − α2η(Y)φS X.

Taking the inner product of (6.4) with the unit normal N and using the properties of A-
isotropic, that is, g(Aξ, ξ) = 0, g(AN,N) = 0, it follows that

0 =g(X, Aξ)g(AφS Y,N) − g(X, Aξ)g(S Y, Aξ)(6.5)

+ g(Y, Aξ)g(AφS X,N) − g(Y, Aξ)g(S X, Aξ)

− g(X, AN)g(AS Y,N) − g(X, AN)g(S Y, AN)

− g(Y, AN)g(AS X,N) − g(Y, AN)g(S X, AN).

From this, putting X = AN and using that N is A-isotropic and Aξ = φAN, we have

0 = −2g(AS Y,N) − 2g(Y, AN)g(S AN, AN) + 2g(Y, Aξ)g(AφS AN,N).

By putting Y = AN, we get g(S AN, AN) = 0. Then the above equation reduces to

g(AS Y,N) = g(Y, Aξ)g(AφS AN,N).



Real Hypersurfaces with Killing Structure Jacobi Operator 23

So it follows that

S AN =g(AφS AN,N)Aξ

= − g(S AN, φAN)Aξ

= − g(S AN, Aξ)Aξ,

where we have used Aξ = φAN. Then this gives that g(S AN, Aξ) = 0, which implies

(6.6) S AN = 0 and SφAξ = 0.

Then (6.5) reduces to the following

0 =g(X, Aξ)g(AφS Y,N) − g(X, Aξ)g(S Y, Aξ)(6.7)

+ g(Y, Aξ)g(AφS X,N) − g(Y, Aξ)g(S X, Aξ).

By putting X = Aξ in (6.7) and using Aξ = φAN, it follows that

g(S Y, Aξ) + g(Y, Aξ)g(S Aξ, Aξ) = 0

for any vector field Y on M in Qm∗. This gives

S Aξ = −g(S Aξ, Aξ)Aξ.

Then by taking the inner product with Aξ, we know g(S Aξ, Aξ) = 0. From this, together
with the above equation, we have

(6.8) S Aξ = 0 and SφAN = 0.

Putting X = ξ into (6.4), and using (6.8) and the A-isotropic property g(Aξ, ξ) = 0, we have

0 =φS Y + {q(ξ)g(Aξ, Y) + αg(AN, Y)}Aξ(6.9)

+ g(Y, Aξ){q(ξ)Aξ + αAN − g(S ξ, Aξ)N}
+ {q(ξ)g(Y, AN) − αg(Y, Aξ)}AN + g(Y, AN){q(ξ)AN − αAξ}
+ (Yα)αξ + α(∇YS )ξ − (Yα2)ξ − α2φS Y

+ (ξα)S Y + α(∇ξS )Y − (ξα2)η(Y)ξ

=φS Y + 2q(ξ)g(Aξ, Y)Aξ + 2q(ξ)g(Y, AN)AN

− αSφS Y + (ξα)S Y − (ξα2)η(Y)ξ + α(∇ξS )Y.

On the other hand, S Aξ = 0 implies (∇ξS )Aξ + S∇ξ(Aξ) = 0. By the equation of Gauss,
the following holds

∇ξ(Aξ) =∇̄ξ(Aξ) − σ(ξ, Aξ)

=q(ξ)JAξ + g(S ξ, ξ)AN − g(S ξ, Aξ)N
=q(ξ)JAξ + αAN.

This gives S (∇ξ(Aξ)) = q(ξ)S JAξ + αS AN = 0 from (6.6). From this, together with the
above formula, we have

(6.10) (∇ξS )Aξ = 0.

By taking the inner product of (6.9) with Aξ and AN respectively, and using (6.6), (6.8)
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and (6.10), we know that

q(ξ)Aξ = 0 and q(ξ)AN = 0.

By virtue of these formulas, (6.9) reduces to the following

(6.11) 0 = φS Y − αSφS Y + (ξα)S Y − (ξα2)η(Y)ξ + α(∇ξS )Y.

On the other hand, by using the equation of Codazzi, we have

(∇ξS )Y =(∇YS )ξ − φY + g(AN, Y)Aξ + g(Y, Aξ)φAξ

=(Yα)ξ + αφS Y − SφS Y − φY
+ g(AN, Y)Aξ + g(Y, Aξ)φAξ.

Then by the properties of M being Hopf and with A-isotropic unit normal vector field, we
have

Yα = g((∇ξS )Y, ξ) = g((∇ξS )ξ, Y) = (ξα)η(Y).

From this, together with the assumption of ξα = 0 in section 6, it follows that the Reeb
function α is constant for a real hypersurface in Qm∗ with A-isotropic unit normal. Then the
derivative of the shape operator S along the Reeb direction ξ is given by

−α(∇ξS )Y = − α2φS Y + αSφS Y

+ αφY − αg(AN, Y)Aξ − αg(Y, Aξ)φAξ.

From this, by (6.11) and using the constancy of the Reeb function α, we know that

0 =φS Y − 2αSφS Y + α2φS Y(6.12)

− αφY + αg(AN,Y)Aξ + αg(Y, Aξ)φAξ.

Then for any Y∈ such that S Y = λY , where Y is orthogonal to the vector fields Aξ and AN,
(6.12) reduces to the following

(6.13) 2αλSφY = (λα2 − α + λ)φY.
Then (6.13) gives α�0.

In fact, if the Reeb function α = 0, from (6.13) it follows that λ = 0. From this, together
with (6.6) and (6.8), the shape operator S becomes identically vanishing. That is, M is
totally geodesic. Then by the equation of Codazzi in section 3, we have a contradiction.

Naturally we should have 2αλ�0. If the function λ = 0, then (6.13) also implies that the
Reeb function α vanishes. So also the contradiction appears. This fact gives

SφY =
αλ − 2
2λ − αφY =

α2λ − α + λ
2αλ

φY.

It can be written as follows:

(6.14) 2λ2 + α(1 − α2)λ + α2 = 0.

Then the discriminant of (6.14) is given by

D = α2(1 − α2)2 − 8α2 = α2{(α2 − 1)2 − 8}.
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Then the solution has two roots as follows:

λ =
−α(1 − α2)±α

√
(α2 − 1 − 2

√
2)(α2 − 1 + 2

√
2)

4
.

When α2 > 2
√

2 + 1, we have two distinct roots λ1 and λ2 of the equation (6.14).

Now let us consider the case that α2 = 2
√

2 + 1. Then we may put α =
√

2
√

2 + 1. In this
case we have

λ1 = λ2 =
−α(1 − α2)

4
= −
√√

2 +
1
2
.

Here let us put δ = −
√√

2 + 1
2 . Then the shape operator S has three distinct constant

principal curvatures such that

α =

√
2
√

2 + 1, β = γ = 0, and δ = −
√√

2 +
1
2
= −
√

2
√

2 + 1
2

.

The corresponding eigen spaces are given by ξ∈T0, Aξ, AN∈Tβ = ⊥ and Tδ =  with
multiplicities 1, 2 and 2m − 4 respectively.

On the other hand, on the distribution  let us introduce an important formula mentioned
in section 3 as follows:

(6.15) 2SφS Y − α(φS + Sφ)Y = −2φY

for any tangent vector field Y on M in Qm (see also [29] , pages 1350050-11). So if S Y = δY
in (6.15), then (2δ − α)SφY = (αδ − 2)φY , which gives

(6.16) SφY =
αδ − 2
2δ − αφY,

because if 2δ − α = 0, then αδ − 2 = 0. This implies α2 = 4, then α = 2 and δ = 1. In this
case M is locally congruent to a horosphere whose center at infinity is A-isotropic singular.

On the other hand, let us consider SφY = δφY for 2δ�α, because Tδ = . From this,
together with the above equation, we have

δ2 − αδ + 1 = 0.

Then δ2 + 1 =
√

2 + 3
2 . But δ2 + 1 = αδ = −

√
2
√

2 + 1
√

2
√

2+1
2 = −

√
2

2 − 2. This gives a
contradiction. So this case can not be happened.

Accordingly, the shape operator S can be expressed as
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S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 λ1 · · · 0 0 · · · 0
...
...
...
...
. . .

...
... · · · ...

0 0 0 0 · · · λ1 0 · · · 0
0 0 0 0 · · · 0 λ2 · · · 0
...
...
...
...
...
...
...
. . .

...

0 0 0 0 · · · 0 0 · · · λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the principal curvatures are constants and are given by

λ1 =
α(α2 − 1) + α

√
(α2 − 1 − 2

√
2)(α2 − 1 + 2

√
2)

4
and respectively

λ2 =
α(α2 − 1) − α

√
(α2 − 1 − 2

√
2)(α2 − 1 + 2

√
2)

4
.

By virtue of Remark below, we note that the horosphere whose center at infinity is A-
isotropic singular can not be appeared. Then we give a complete proof of our Main Theorem
3.

Remark 6.1. Let us check that a tube around the totally geodesic CHk ⊂ Q2k∗ or a horo-
sphere whose center at infinity is A-isotropic singular. Then by Theorem A in the intro-
duction, the tube has a commuting shape operator, that is, Sφ = φS and the unit normal
N is A-isotropic and the Reeb curvature α = g(S ξ, ξ) is constant (see Suh [34]). By the
A-isotropic unit normal, the properties g(Aξ, ξ) = 0 and g(AN,N) = 0 hold on M. Moreover
from the expression of this tube we know that S Aξ = 0 and S AN = 0, by differentiating we
also confirm that (∇ξS )Aξ = 0 and (∇ξS )AN = 0.

Now we assume that the tube admits a Killing structure Jacobi operator. Then by the
same process as in the proof of our Main Theorem 2, the principal curvature of the tube
should satisfies (6.14), that is,

2λ2 + α(1 − α2)λ + α2 = 0.

Then two roots coth r and tanh r of the tube should satisfy 1 = λμ = coth r· tanh r = α
2

2 . Then
2 = α2 = coth2r + tanh2r + 2 implies coth2r + tanh2r = 0. This makes a contradiction. So
the tube does not admit a Killing structure Jacobi operator. Then naturally the tube around
the totally geodesic CHk ⊂ Q2k∗ or the horosphere does not have a parallel structure Jacobi
operator, which is more strong condition than Killing structure Jacobi operator.
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[20] J.D. Pérez, I. Jeong and Y.J. Suh: Real hypersurfaces in complex two-plane Grassmannian with parallel
structure Jacobi operator, Acta. Math. Hungar. 22 (2009), 173–186.

[21] J.D. Pérez, F.G. Santos and Y.J. Suh: Real hypersurfaces in complex projective space whose structure
Jacobi operator is -parallel, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459–469.

[22] H. Reckziegel: On the geometry of the complex quadric; in Geometry and Topology of Submanifolds VIII
(Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, 302–315.

[23] B. Smyth: Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246–266.
[24] B. Smyth: Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20 (1968), 643–647.
[25] K. Nomizu: On the rank and curvature of non-singular complex hypersurfaces in complex projective space,

J. Math. Soc. Japan 21 (1967), 266–269.
[26] Y.J. Suh: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy.

Soc. Edinburgh Sect. A 142 (2012), 1309–1324.
[27] Y.J. Suh: Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math.

Pures Appl. 100 (2013), 16–33.
[28] Y.J. Suh: Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv.

in Appl. Math. 50 (2013), 645–659.



28 Y.J. Suh

[29] Y.J. Suh: Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math.
25 (2014), 1450059, 17pp.

[30] Y.J. Suh: Real hypersurfaces in the complex quadric with Reeb invariant shape operator, Differential
Geom. Appl. 38 (2015), 10–21.

[31] Y.J. Suh: Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015),
886–905.

[32] Y.J. Suh: Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. 106
(2016), 393–410.

[33] Y.J. Suh: Real hypersurfaces in the complex quadric with parallel normal Jacobi operator, Math. Nachr.
290 (2017), 442–451.

[34] Y.J. Suh: Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun.
Contemp. Math. 20 (2018), 1750031, 20pp.

[35] Y.J. Suh: Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator,
Mediterr. J. Math. 15 (2018), no. 159, 14pp.

[36] Y.J. Suh and D.H. Hwang: Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape
operator, Ann. Mat. Pura Appl. 196 (2017), 1307–1326.

[37] Y.J. Suh and C. Woo: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel
Ricci tensor, Math. Nachr. 287 (2014), 1524–1529.

[38] Y.J. Suh, G. Kim and C. Woo: Pseudo anti-commuting Ricci tensor and Ricci soliton real hypersurfaces in
complex hyperbolic two-plane Grassmannians, Math. Nachr. 291 (2018), 1574–1594.
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