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Abstract
We classify isomorphism and similarity classes of pointed reflection spaces of residue ≤ 2.

This leads to the classification of reduced extended affine root systems whose involved pointed
reflection spaces have residue ≤ 2.

1. Introduction

1. Introduction
It is well known that root systems provide a powerful tool for the classification as well

as for questions arising in the structure and representation theory of Lie algebras. In the
last few decades, some extensions of affine root systems such as (locally) extended affine
root systems and affine reflection systems have been considered. These are root systems of
(locally) extended affine Lie algebras and invariant affine reflection algebras, respectively,
which have been intensively investigated in recent years, see for example [1], [11], [12] and
[13], and references therein.

For the description and classification of such root systems the concept of a pointed re-
flection space (PRS for short) arises naturally. It turns out that the classification of PRS up
to similarity is the key point in the classification of the root systems under consideration.
More precisely, the classification of (locally) extended affine root systems of reduced types
reduces to the classification of similarity classes of pairs of PRSs which interact in some
prescribed way, and this in turn reduces to the classification of similarity classes of PRSs
(see Section 2 for details).

For non-reduced types, the classification reduces to the classification of similarity classes
of triples of (pointed) reflection spaces which interact again in a prescribed way, see [1,
Chapter II]. However, in this case, the problem is more subtle, in the sense that it does not
reduce merely to the classification of similarity classes of PRSs. Anyhow, the classification
of extended affine root systems is known when the dimension of radical of the form is ≤ 3.

By definition, a PRS of rank n is a spanning subset, containing zero, of a vector space
of dimension n over field F2 of two elements. Two PRS S and S′ in the same vector space
are called similar if there exists a linear isomorphism ϕ of the ground vector space with
ϕ(S) = S′ + σ′ for some σ′ ∈ S′.

In general, from theoretical point of view, the classification of similarity classes of PRS
is not an easy task. Nevertheless, the answer for small rank, say ≤ 3, is easy and can be
achieved by a simple direct observation. For a PRS S of rank n, we define the residue of S
by
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resS := |S \ {0}| − n.

In this work similarity classes of PRSs with residue ≤ 2 are classified.
In Section 3, the basic definitions and some preliminary lemmas are presented. In Sec-

tion 4, the similarity classes of PRS of residue 1 are classified. Precisely, there are [n/2]
similarity classes of PRS of residue 1, and all are constructed from certain given circuits. In
Section 5, isomorphism classes of PRS with residue 2 are classified. Each class is associated
to either a pair or a triple of circuits, accordingly the classification is partitioned in 2 types.
The total number of isomorphism classes is equal to |N| + |M|, where

N := {(p, q) | 2 ≤ p ≤ q and p + q ≤ n}
and

M := {(s, p, q) | 1 ≤ s ≤ p + 1 ≤ q + 1 and p + s + q ≤ n}.
Finally in Section 6, the similarity classes of PRS of residue 2 are classified. Using new

notations {t, u}n and {s, t, u}n (see Definition 6.5), we determine a complete representative
system of PRSs of residue 2 in Fn

2 for even n and odd n separately (see Theorem 6.33 and
Theorem 6.34). Moreover, we give a formula for counting the number of similarity classes
in Theorem 6.44. This in particular gives a new sequence,

1, 2, 4, 6, 9, 12, 17, 21, 27, 33, 41, 48, . . . ,

which is not in the site OEIS. Although the next target would be residue ≥ 3, but from our
methods it looks extremely complicated.

As it was explained in the preceding paragraph, the concept of a “circuit” plays an essen-
tial role in the description and classification of PRSs. This concept is borrowed from “binary
matroid theory”, see [14], which is the matroid theory for a vector space over the field F2.
As we saw, our motivation comes from Lie theory, where we classify root systems and PRSs
through isomorphisms and similarities. The concept of “similarity” seems to be new in the
binary matroid theory.

To conclude, we should mention that in addition to their importance in classification
of (extended affine) root systems and algebras, PRSs play a very important role in related
objects such as Weyl groups and their presentations. A more recent attention to PRSs is
appeared in a characterization of reflectable bases which has been studied in [7] and [6].
For more details about the classification of root systems under consideration, we refer the
interested reader to [15], [1], [2], [3], [4], [5], [9], [10], [16] and [17].

2. From root systems to pointed reflection spaces

2. From root systems to pointed reflection spaces
In this section we sketch briefly how the classification of extended affine root systems of

reduced types reduces to the classification of similarity classes of pointed reflection spaces.
Let R be a reduced extend affine root system. By definition R is a spanning subset of a

real vector space  equipped with a positive semidefinite bilinear form satisfying axioms
(R1)-(R8) of [1, Definition II.2.1]. Let 0 be the radical of the form. It turns out that R
contains an irreducible finite root system Ṙ and two subsets S and L of 0 such that

(2.1) R = R(Ṙ, S, L) = (S + S) ∪ (Ṙsh + S) ∪ (Ṙlg + L),
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where Ṙsh and Ṙlg are the sets of short and long roots of Ṙ (if Ṙ is simply laced, then by
convention we assume that Ṙlg and L are empty sets). Moreover if F is one of S or L then F
satisfies

- F is a discrete subsets of 0,
- F spans 0,
- 0 ∈ F and F ± 2F ⊆ F.
Finally, if Ṙlg is not empty, then the pair (S, L) satisfies
- S + L ⊆ S and kS + L ⊆ L where k = 3 if Ṙ is of type G2 and k = 2 if Ṙ is of type B, C,

or F4.
We recall from [1] that the rank and the type of R refers to the rank and type of Ṙ respec-

tively. The nullity of R is by definition the dimension of 0.
In [1], the authors use the term a semilattice in 

0 for a subset F satisfying the above
conditions. It is known that the rank, type and nullity are isomorphism invariants of ex-
tended affine root systems. Moreover, two extended affine root systems R(Ṙ, S, L) and
R′ = (Ṙ, S′, L′) of the form (2.1) are isomorphic if and only if the pairs (S, L) and (S′, L′) are
similar in the following sense. Two semilattices F and F′ in 

0 are called similar, denoted
F ∼ F′, if there exists a linear automorphism ϕ of 0 such that ϕ(F) = F′ + σ′ for some
σ′ ∈ F′. Then two pairs (S, L) and (S′, L′) are called similar if they are simultaneously
similar, namely there exists a linear isomorphism ϕ of 0 such that ϕ(S) = S′ + σ′ for some
σ′ ∈ S′ and ϕ(L) = L′+λ′ for some λ′ ∈ L′. In this case we write (S, L) ∼ (S′, L′). Therefore
the classification of isomorphism classes of extended affine root systems of reduced types
reduces to the classification of similarity classes of pairs of the above form.

We now explain that in practice the classification of extended affine root systems of re-
duced types reduces to the classification of semilattices, up to similarity. In fact, one can
show that the pairs (S, L) and (S′, L′) of the above forms can be decomposed as S = S1 ⊕Λ2,
S′ = S′1 ⊕ Λ2, L = 2Λ1 + S2 and L′ = 2Λ1 + S′2, where Λ1 and Λ2 are lattices and S1, S′1,
S2 and S′2 are semilattices in some subspaces of 0 characterized by an isomorphism invari-
ant of the root system called the twist number. Now the main achievement ([1, Proposition
II.4.17]) is that

(S, L) ∼ (S′, L′)⇐⇒ S1 ∼ S′1 and S2 ∼ S′2.

This concludes the classification reduction from root systems to semilattices.
Finally, we explain how one reduces the similarity of semilattices to the similarity of

pointed reflection spaces over field F2. Let F be a semilattice in 
0 and Λ be its Z-span. Λ

is a lattice in 
0. Let Λ̃ := Λ/2Λ, considered as a vector space over F2. Let ˜ : Λ → Λ̃ be

the canonical map. Then F̃, the image of F under ˜, is a large set in Λ̃ in the sense that it
is a spanning subset of the vector space Λ̃ which contains zero. Conversely, the preimage
of any large subset of Λ̃ is a semilattice in 

0 whose Z-span is Λ. Two large sets F̃ and F̃′

in Λ̃ are called similar if ϕ(F̃) = F̃′ + σ′ for some σ′ ∈ F̃′. Now, as there exists a one to
one correspondence between similarity classes of semilattices in 

0 with Z-span Λ and the
similarity classes of large subsets of Λ̃, the classification of extended affine root systems of
reduces types, reduces to the classification of similarity classification of large sets in Λ̃.

We emphasize here that the concept of a large set coincides with the concept of a pointed
reflection space over field F2. In this work, we use the term a pointed reflection space instead
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of a large set, as it was originally defined under this name, in the study of symmetric spaces
[8].

3. Basic concepts

3. Basic concepts
We explained in Section 1 that the classification of extended affine root systems reduces

to the classification of pointed reflection spaces. We begin with some basic definitions and
concepts.

Definition 3.1. Let F2 = {0, 1} be the field of order 2 and V a vector space of dimension n
over F2. A subset S = (S,V) of V is called a pointed reflection space (PRS) of rank n if 0 ∈ S
and 〈S〉 = V . We use the notation S× := S \ {0}, and |S×| is called the index of S, denoted
indS, and |S×| − n is called the residue of S, denoted resS. Note that 0 ≤ resS < 2n − n.

Two PRS (S,V) and (S′,V ′) are called isomorphic, denoted S � S′, if there exists a linear
isomorphism f : V −→ V ′ such that f (S) = S′, and similar, denoted S ∼ S′, if there exists
some s ∈ S such that s + S � S′.

Remark 3.2. If S is a PRS, then s + S (s ∈ S) and S + S are also PRS. Also, if S ∼ S′,
then S + S � S′ + S′.

If resS = 0, there is only one isomorphism class. In fact, let B = {ε1, . . . , εn} be a basis of
V . Then S = {0, ε1, . . . , εn} is a representative.

The concept of a “circuit” from matroid theory plays a very important role in the sequel.
We record here its formal definition of vector space version from [14].

Definition 3.3. In general, a non-empty subset C � {0} of a vector space is called a circuit
if C is linearly dependent and C \ {c} is linearly independent for any c ∈ C. We call |C| the
length of C. Note that |C| ≥ 2.

For example,

(3.1) Ci := {ε1, . . . , εi, ε1 + · · · + εi}
is a circuit of V of length i + 1.

Lemma 3.4. Let W = {v1, . . . , vk} be a subset of V. Then, W is linearly independent if
and only if vi1 + · · · + vir � 0 for any non-empty subset {vi1 , . . . , vir } of W. (We are assuming
that all vi j are different!)

Proof. Clear. �

Lemma 3.5. Let C = {v1, . . . , vk} (k ≥ 2) be a subset of V. Then, C is a circuit if and only
if v1 + · · · + vk = 0 and vi1 + · · · + vir � 0 for any proper non-empty subset {vi1 , . . . , vir } of C.

Proof. Clear from Lemma 3.4. �

Lemma 3.6. Let D be a subset of V such that 0 � D and the total sum of the elements of
D is zero. Then, D is a union of some circuits.
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Proof. Let v1 ∈ D. Then there is a sequence v1, v2, . . ., vr in D such that v1 + · · · + vi � 0
for i < r and v1 + · · · + vr = 0. Then C = {v1, . . . , vr} is a circuit, by Lemma 3.5. If C � D,
then use induction on |D|. �

We shall clarify the isomorphism classes and the similarity classes of PRS of residue 1
and 2.

4. The case of resS = 1

4. The case of resS = 1Theorem 4.1. Let S be a PRS of V of resS = 1. Then S is isomorphic to

Si := {0} ∪Ci ∪ {εi+1, . . . , εn}
for some 2 ≤ i ≤ n, where Ci is the circuit defined in (3.1).

Moreover, the set of isomorphism classes is {S2, . . . , Sn}.
Proof. We may assume that S× contains B since S contains a basis of V . Then one can

make the matrix whose columns are the coordinates of S× relative to B. Namely, we identify
S× with the n × (n + 1) matrix (In, v), where In is the identity matrix of size n × n and
some v ∈ Fn

2. Elementary row operations and interchanging columns are allowed to get an
isomorphic PRS. Thus, at first, interchanging rows (if necessary), we get (In, v) → (Jn, w),
where Jn is some permutation matrix and tw = (1, . . . , 1, 0, . . . , 0). Then, interchanging
columns (if necessary), we obtain (Jn, w)→ (In, w), and hence S � Si.

(In, v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1
...
...

...
. . . 0 v

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ (Jn, w)→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1

0 1
...
...
...

...
. . . 0 1

0
...

0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (In, w).

Moreover, each Si contains only one circuit Ci of length i + 1. Thus, Si � S j if i � j. �

Corollary 4.2. Let S be a PRS of V, and resS = 1. Then s + S (s ∈ S) contains only one
circuit.

Proof. Since s + S is a PRS of residue 1, we have s + S � Si for some i, by Theorem 4.1.
Hence s + S contains only one circuit. �

Lemma 4.3. Let C = {v1, . . . , vk} (k ≥ 2) be a subset of V. Then, C is a circuit ⇐⇒
v1 + · · · + vk = 0 and vi1 + · · · + vir � 0 for any subset {vi1 , . . . , vir } of {v1, . . . , vk−1}.

Proof. (=⇒) Clear from Lemma 3.5.
(⇐=) From the first condition, C is linearly dependent. Thus, it is enough to show that

v j1 + · · · + v js � 0 for any proper subset {v j1 , . . . , v js} of C. From the second condition, we
only need to consider a subset {v j1 , . . . , v jt , vk} for 1 ≤ t < k−1. If v j1 + · · ·+ v jt + vk = 0, then
we get v j1 + · · ·+ v jt + v1+ · · ·+ vk−1 = 0 (from v1+ · · ·+ vk = 0). Since t < k−1, the left hand
side is the sum of subsets of {v1, . . . , vk−1}. This contradicts to the second condition. Hence,
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v j1 + · · · + v jt + vk � 0, and we finish the proof. �

Lemma 4.4.

(i) When i is odd, we have ε1 + · · · + εi + Si � Si−1 and

⎧⎪⎪⎨⎪⎪⎩
ε j + Si � Si−1 for j ≤ i,

ε j + Si � Si for j > i.

(ii) When i is even, we have ε1 + · · · + εi + Si � Si and

⎧⎪⎪⎨⎪⎪⎩
ε j + Si � Si for j ≤ i,

ε j + Si � Si+1 for j > i.

Proof. Let ε := ε1 + · · · + εi.
(i) We have S := ε + Si = {ε, ε + ε1, . . . , ε + εn, 0}, and C := {ε + ε1, ε + ε2, . . . , ε + εi}

is a subset of S with |C| = i satisfying
∑

x∈C x = 0 since each εk is added even times (since i
is odd). Moreover, any partial sum of C is never 0. In fact, if A := {ε + ε j1 , . . . , ε + ε jr } is a
proper subset of C. Then

∑
x∈A

x =
{
ε j1 + · · · + ε jr if r is even,
ε + ε j1 + · · · ε jr =

∑
{1,...,i}\{ j1,..., jr} εi if i is odd,

which shows that in both cases the sum is nonzero. Thus by Lemma 3.4, C is a circuit of
length i. Then, by Theorem 4.1, we obtain ε + Si � Si−1.

Suppose that j ≤ i, and then

ε j + Si = {ε j, ε1 + ε j, . . . , ε j−1 + ε j, 0, ε j+1 + ε j, . . . , εi + ε j, . . . , εn + ε j, ε + ε j}
(note εi + ε j = 0 if j = i). Consider the subset

C := {ε1 + ε j, . . . , ε j−1 + ε j, ε j+1 + ε j, . . . , εi + ε j, ε + ε j}
of ε j + Si with |C| = i. If 1 ≤ k � j ≤ i, then in the set C, εk appears twice, and ε j appears
i − 1 times (which is even times). Hence,

∑
x∈C x = 0. Also, any partial sum of the subset

C \ {ε + ε j} is never 0 since ε� for 1 ≤ � < i appears only once in the sum. Hence, by Lemma
4.3, C is a circuit, and so by Theorem 4.1, we get ε j + Si � Si−1.

Suppose that j > i, and then

ε j + Si = {ε j, ε1 + ε j, . . . , εi + ε j, . . . , ε j−1 + ε j, 0, ε j+1 + ε j, . . . , εn + ε j, ε + ε j}
(note εn + ε j = 0 if j = n). Consider the subset

C := {ε1 + ε j, . . . , εi + ε j, ε + ε j}
of ε j + Si with |C| = i + 1. If k � j, then εk appears twice, and ε j appears i + 1 times (which
is even times). Hence,

∑
x∈C x = 0. Also, note that the sum of any subset of C \ {ε + ε j} is

never 0. Thus C is a circuit by Lemma 4.3. Then, by Theorem 4.1, we obtain ε j + Si � Si.

(ii) We have S := ε + Si = {ε, ε + ε1, . . . , ε + εn, 0}, and C := {ε, ε + ε1, ε + ε2, . . . , ε + εi}
is a subset of S with |C| = i + 1 satisfying

∑
x∈C x = 0. We show that C is a circuit. Let

A := {p j1 , . . . , p jr } be a proper subset of C \ {ε}. Then, since r < i, there exists 1 ≤ k ≤ i such
that εk appears in all the terms p j1 , . . ., p jr . Hence, if p j1 + · · ·+ p jr = 0, then rεk = 0, and so
r is even. But then, we have 0 = p j1 + · · · + p jr = rε + ε j1 + · · · + ε jr = ε j1 + · · · + ε jr , which
is a contradiction since ε j1 + · · · + ε jr is linearly independent. Therefore, p j1 + · · · + p jr � 0,
and thus C is a circuit of length i + 1, by Lemma 4.3. Then, by Theorem 4.1, we obtain
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ε + Si � Si.
Suppose that j ≤ i, and Consider the subset

C := {ε j, ε1 + ε j, . . . , ε j−1 + ε j, ε j+1 + ε j, . . . , εi + ε j, ε + ε j}
of ε j + Si with |C| = i + 1. If k � j, then εk appears twice, and ε j appears i times (which is
even times). Hence,

∑
x∈C x = 0. Also, any partial sum of the subset C \ {ε + ε j} is never 0

since ε j appears i times and ε� for 1 ≤ � ≤ i with � � j appears only once in the sum. Hence,
by Lemma 4.3, C is a circuit, and so by Corollary 4.2, we get ε j + Si � Si.

Suppose that j > i, and consider the subset

C := {ε j, ε1 + ε j, . . . , εi + ε j, ε + ε j}
of ε j + Si with |C| = i + 2. If k � j, then εk appears twice, and ε j appears i + 2 times (which
is even times). Hence,

∑
x∈C x = 0. Also, note that the sum of any subset of C \ {ε + ε j} is

never 0. Thus C is a circuit by Lemma 4.3. Then, by Theorem 4.1, we obtain ε j + Si � Si+1.
�

Theorem 4.5. If resS = 1, then the similarity class of PRS consists of (n− 1)/2 elements,
i.e., S2, S4, . . ., Sn−1 when n is odd, and n/2 elements, i.e., S2, S4, . . ., Sn when n is even.

Proof. It follows from Theorem 4.1 and Lemma 4.4. �

Let i(n) and i(n) be the number of isomorphism classes and similarity classes of rank
n and residue i, respectively. Then we have 1(n) = n − 1 and 1(n) = [n/2].

n 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
1(n) 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
1(n) 1 1 2 2 3 3 4 4 5 5 6 6 · · ·

5. Isomorphism classes of case resS = 2

5. Isomorphism classes of case resS = 2Lemma 5.1. Let C1 and C2 be circuits of S with C1 ∩C2 � ∅ and let

C1 �C2 := (C1 ∪C2) \ (C1 ∩C2) = (C1 \C2) ∪ (C1 \C2)

be the symmetric difference. Then the total sum of the elements of C1 �C2 is zero.

Proof. Let C1 = {v1, . . . , vi, w1, . . . , w j} and C2 = {v1, . . . , vi, x1, . . . , xk}, i.e., C1∩C2 =

{v1, . . . , vi}. Then we have v1 + · · ·+ vi +w1 + · · ·+w j = 0 and v1 + · · ·+ vi + x1 + · · ·+ xk = 0.
Thus we obain w1 + · · · + w j + x1 + · · · + xk = 0. �

Remark 5.2. In general, C1 �C2 is not necessarily a circuit. For example, C1 = {ε1, ε1 +
ε4, ε2 + ε4, ε2 + ε5, ε5} and C2 = {ε1, ε1 + ε3, ε2 + ε3, ε5 + ε6, ε6} are both circuits. But

C1 �C2 = {ε1 + ε4, ε2 + ε4, ε5, ε1 + ε3, ε2 + ε3, ε5 + ε6, ε6}
= {ε1 + ε4, ε2 + ε4, ε1 + ε3, ε2 + ε3} � {ε5, ε5 + ε6, ε6}

is a union of two circuits. In this case, S := {0} ∪C1 ∪C2 is a PRS of F6
2 with resS = 3. We

will show in Theorem 5.4 that if resS = 2, then C1 �C2 is always a circuit.
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Lemma 5.3. Let A and B be some finite sets with intersection. Let  = {A, B, A � B}.
Then  = {C,D,C � D} with |C ∩ D| ≤ |C \ D| ≤ |D \C|.

Proof. Without loss of generality, one can assume that |A| ≤ |B|, and so we have |A \ B| ≤
|B \ A|. Also, we note that A � (A � B) = B and B � (A � B) = A, and so  = {C,D,C � D}
for any choice of C and D from {A, B, A � B}. If |A ∩ B| ≤ |A \ B| ≤ |B \ A|, then put C := A
and D := B. Suppose that |A \ B| ≤ |A ∩ B| ≤ |B \ A|. Then putting C := A and D := A � B,
we have

|C ∩ D| = |A ∩ (A � B)| = |A \ B| ≤ |A ∩ B| = |C \ D| ≤ |B \ A| = |(A � B) \ A| = |D \C|.
Finally suppose that |A \ B| ≤ |B \ A| ≤ |A ∩ B|. Then putting C := A � B and D := A, we
have

|C ∩ D| = |(A � B) ∩ A| = |A \ B| ≤ |B \ A| = |(A � B) \ A| = |C \ D| ≤ |A ∩ B| = |D \C|.
Thus we finish the proof. �

Theorem 5.4. If resS = 2, then S is isomorphic to

Spq := {0, ε1, . . . , εn, v1, v2} or Sspq := {0, ε1, . . . , εn, w1, w2},
where

v1 := ε1 + · · · + εp,
v2 := εp+1 + · · · + εp+q,

w1 := ε1 + · · · + εp + εp+1 + · · · + εp+s,

w2 := εp+1 + · · · + εp+s + εp+s+1 · · · + εp+s+q

for p, s, q ∈ N satisfying

2 ≤ p ≤ q and p + q ≤ n for Spq

1 ≤ s ≤ p + 1 ≤ q + 1 and p + s + q ≤ n for Sspq.

In particular, Spq contains two disjoint circuits

C1 = {ε1, . . . , εp, v1} and C2 = {εp+1, . . . , εp+q, v2}
of length p + 1 and q + 1, respectively, and each element of

N := {(p, q) | 2 ≤ p ≤ q and p + q ≤ n} ⊂ N2

determines a different Spq. Also, Sspq contains three circuits

C1 = {ε1, . . . , εp+s, w1}, C2 = {εp+1, . . . , εp+s+q, w2} and

C1 �C2 = {ε1, . . . , εp, εp+s+1, . . . , εp+s+q, w1, w2}
of length s + p + 1, s + q + 1 and p + q + 2, respectively, and each element of

M := {(s, p, q) | 1 ≤ s ≤ p + 1 ≤ q + 1 and p + s + q ≤ n} ⊂ N3.

determines a different Sspq.
Hence, the number of isomorphism classes when resS = 2 is equal to |N| + |M|.
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Proof. We can assume that S contains the basis B = {ε1, . . . , εn}. For the matrix of S
relative to B, using elementary row operations and interchanging columns, we get

S � Si jk = {0, ε1, . . . , εn, ε1 + · · · + εi, ε j + ε j+1 + · · · + ε j+k}
for some i ≥ 2 and 1 ≤ j, k < n, that is,

S×i jk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
.
.
.
.
.
.

1 0
0 0
.
.
.
.
.
.

0 0
I 0 1

.

.

.
.
.
.

0 1
0 0
.
.
.
.
.
.

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
.
.
.
.
.
.
0

.

.

. 1

1
.
.
.

I 0
.
.
.
.
.
.
1
0

.

.

.
.
.
.

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the first case, i.e., if i < j, then interchanging rows and columns, we get Si jk � Spq =

{0, ε1, . . . , εn, v1, v2}, which only contains the disjoint circuits C1 = {ε1, . . . , εp, v1} of length
p + 1 and C2 = {εp+1, . . . , εp+q, v2} of length q + 1. Also, interchanging rows and columns
if necessary, we can assume that p ≤ q. Thus it is clear that the set N determines the
isomorphism classes since the number and lengths of circuits are isomorphic invariants.

We investigate the second case, i.e., i > j. Clearly there are two circuits C1 = {ε1, . . . , εi,
ε1 + · · · + εi} and C2 = {ε j, . . . , ε j+k, ε j + · · · + ε j+k}. Hence, by Lemma 5.1, the total sum of
the elements of C3 := C1 �C2 is zero. Moreover, one can see that the subset of C3 obtained
by excluding any element is linearly independent, and so C3 is a circuit. Also, it is easily
checked that these are the only circuits, and they have intersections. Thus, by Lemma 5.3,
we can also assume that S contains three circuits A, B and C such that for s := |A ∩ B| ≥ 1,
t := |A| − s and u := |B| − s,

1 ≤ s ≤ t ≤ u and m := s + t + u ≤ n + 2.

Note that |A| = s+ t ≤ |B| = s+ u ≤ |A � B| = t + u. Also, if t = 1, then s = 1 and so |A| = 2.
But a circuit cannot have length 2, and so t � 1.

Now we show that S is isomorphic to Sspq, as p = t − 1 and q = u − 1. Let A =
{z1, . . . , zs, x1, . . . , xt}, B = {z1, . . . , zs, y1, . . . , yu} and C := A � B = {x1, . . . , xt, y1, . . . , yu}.
Then, we claim that

D = {z1, . . . , zs, x1, . . . , xt−1, y1, . . . , yu−1}
is linearly independent. In fact, suppose that

∑s
i=1 aizi +

∑t−1
i=1 bixi +

∑u−1
i=1 ciyi = 0. If there

are nonzero coefficients among ai, bi, ci, then there are some a j � 0, bk � 0 and c� � 0
since A \ {xt}, B \ {yu} and C \ {xt, yu} are all linearly independent. But then, by Lemma 3.6,
{zi | ai � 0} ∪ {xi | bi � 0} ∪ {yi | ci � 0} is a union of some circuits, which are different
from A, B or C. This is a contradiction since S has only three circuits. Hence D is linearly
independent.

Note that span(D∪{xt, yu}) = spanD, and so S× \{xt, yu} is a basis of V . Thus, if m = n+2,
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then D is a basis, and otherwise, let

S× \ {xt, yu} = D � {g1, . . . , gn+2−m}
be a basis of V . Let f be the linear automorphism of V determined by

f (xi) = εi (1 ≤ i ≤ t − 1),

f (zi) = εi (1 ≤ i ≤ s),

f (yi) = εi (1 ≤ i ≤ u − 1),

f (gi) = εi (1 ≤ i ≤ n + 2 − m).

Then we have f (S) = Ss,t−1,u−1. In fact, it is enough to show that f (xt) = ε1 + · · · + εs+t−1

and f (yu) = εt+1 + · · · + εm−1. But since xt =
∑s

i=1 zi +
∑t−1

i=1 xi and yu =
∑s

i=1 zi +
∑u−1

i=1 yi, we
get f (xt) =

∑s
i=1 f (zi) +

∑t−1
i=1 f (xi) = ε1 + · · · + εs+t−1 and f (yu) =

∑s
i=1 f (zi) +

∑u−1
i=1 f (yi) =

εt+1 + · · · + εm−1. Therefore, we obtain S � Sspq with p = t − 1 and q = u − 1.
As the case of Spq above, it is clear that the set M determines the isomorphism classes

since the number and lengths of circuits are isomorphic invariants. �

Remark 5.5. From the proof of Theorem 5.4, we see that there are only two patterns, i.e.,
S contains two circuits or three circuits. More precisely, if S contains two circuits of length
t and u with 3 ≤ t ≤ u and t + u ≤ n + 2, then S � St−1,u−1. If S contains three circuits,
then there exist s, t, u such that the lengths of the circuits are s + t, s + u and t + u with
1 ≤ s ≤ t ≤ u ≤ n + 2 and t � 1, and S � Ss,t−1,u−1. In any case, a PRS is determined only by
the lengths of circuits. Thus we define the type of a PRS in terms of the lengths of circuits,
as the following definition.

Definition 5.6. If S contains two circuits of length t and u with 3 ≤ t ≤ u and t+u ≤ n+2,
then the type of S is (t, u). If S contains three circuits of lengths s + t, s + u and t + u with
1 ≤ s ≤ t ≤ u ≤ n + 2 and t � 1, then the type of S is (s, t, u).

Note that Spq has the type (p + 1, q + 1), and Sspq has the type (s, p + 1, q + 1).

S×pq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

p

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0
.
.
.
.
.
.

1 0

q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1
.
.
.
.
.
.

0 1
0 0
.
.
.
.
.
.

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and S×spq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

p

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0
.
.
.
.
.
.

1 0

s

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 1
.
.
.
.
.
.

1 1

q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1
.
.
.
.
.
.

0 1
0 0
.
.
.
.
.
.

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From now on, we will not use the notation Spq or Sspq, and use the types (t, u) and (s, t, u)
for the convenience of the following section.
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Example 5.7. Note that if n = 2, then |F2
2| = 4 and resS ≤ 1. We now set n ≥ 3 and

resS = 2. We count the number of isomorphism classes from n = 3 to n = 8.
(1) For n = 3, there is only one, i.e., (s, t, u) = (1, 2, 2).
(2) For n = 4, besides (1), there are (t, u) = (3, 3) and (s, t, u) = (1, 2, 3), (2, 2, 2). Thus

the total is 4.
(3) For n = 5, besides (2), there are (3, 4), (1, 2, 4), (1, 3, 3) and (2, 2, 3). Thus the total is

8.
(4) For n = 6, besides (3), there are (3, 5), (4, 4), (1, 2, 5), (1, 3, 4), (2, 2, 4) and (2, 3, 3).

The total is 14.
(5) For n = 7, besides (4), there are (3, 6), (4, 5), (1, 2, 6), (1, 3, 5), (1, 4, 4), (2, 2, 5),

(2, 3, 4) and (3, 3, 3). The total is 22.
(6) For n = 8, besides (5), there are (3, 7), (4, 6), (5, 5), (1, 2, 7), (1, 3, 6), (1, 4, 5), (2, 2, 6),

(2, 3, 5), (2, 4, 4) and (3, 3, 4). The total is 32.

Similarly, let f (n) be the number of isomorphism classes of type (t, u) satisfying t + u =
n + 2. Then we get the following.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
f (n) 0 1 1 2 2 3 3 4 4 5 5 6 6 · · ·

In general, one can see that

f (n) = [n/2] − 1.

Next, let g(n) be the number of isomorphism classes of type (s, t, u) satisfying s + t + u =
n + 2. Then we get the following.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
g(n) 1 2 3 4 6 7 9 11 13 15 18 20 23 · · ·

If we denote by p(n, 3), the number of partitions of n by three positive integers, then g(n) is
equal to p(n + 2, 3), excluding the case (1, 1, n). Thus we have

g(n) = p(n + 2, 3) − 1.

Therefore, we obtain

2(n) =
n∑

i=3

( f (i) + g(i)) =
n∑

i=3

([i/2] + p(i + 2, 3) − 2).

n 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
2(n) 1 4 8 14 22 32 44 59 76 96 119 144 · · ·

6. Similarity classes of the case resS = 2

6. Similarity classes of the case resS = 26.1.
6.1. In this subsection, we determine a complete representative of the similarity classes

of Fn
2 of residue 2. Note that n has to be bigger than 2.

For convenience, we define the following.

Definition 6.1. (1) For a subset C ⊂ Fn
2, we set C̃ := C ∪ {0}.

(2) A subset D ⊂ Fn
2 is called a zero-sum-set if

∑
v∈D v = 0 (Thus a circuit is a zero-sum-
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set).

At first, as a corollary of Lemma 4.4, we have the following.

Corollary 6.2. Let C be a zero-sum-set of length i.
(i) Suppose that i is odd. If v ∈ C, then (v+ C̃) \ {0} is a zero-sum-set of length i. If v � C,

then v + C̃ is a zero-sum-set of length i + 1.
(ii) Suppose that i is even. If v ∈ C, then (v + C̃) \ {0, v} is a zero-sum-set of length i − 1.

If v � C, then v + C̃ \ {v} is a zero-sum-set of length i.

Proof. Through isomorphisms, we can assume that C = {ε1, . . . , εi−1, ε1 + · · ·+ εi−1}. Then
the assertions follow from Lemma 4.4 and its proof. �

Remark 6.3. From Theorem 5.4 (see also Remark 5.5 and Definition 5.6), a PRS of type
(t, u) is isomorphic to any PRS containing exactly two circuits of lengths t and u, and a PRS
of type (s, t, u) is isomorphic to any PRS containing exactly three circuits of lengths s + t,
s+u and t+u. In other words, the lengths of two or three circuits determine an isomorphism
class. Thus, to investigate similarity relations for a PRS S, we only need to consider the type
of v + S for v ∈ S contained in a circuit in S or outside a circuit in S, using Corollary 6.2.

Example 6.4. To simplify the notation, we use the index i, instead of εi. For example, 2
for ε2, 123 for ε1 + ε2 + ε3, etc., and 0 is a zero vector .

(1) From Example 5.7, if n = 4, then the types of isomorphism classes are (3, 3), (1, 2, 2),
(1, 2, 3) and (2, 2, 2). Let S1 = {0, 1, 2, 3, 4, 12, 234} be a representative of type (1, 2, 3) and
S2 = {0, 1, 2, 3, 4, 123, 234} a representative of type (2, 2, 2) in F4

2. Then we have

2 + S1 = {2, 12, 0, 23, 24, 1, 34} = {0} � {1, 2, 12} � {23, 24, 34},
which has type (3, 3). Also, we have

2 + S2 = {2, 12, 0, 23, 24, 13, 34} = {0} � {12, 23, 13} ∪ {23, 24, 34} � {2},
which has type (1, 2, 2).

S1 has type (1, 2, 3) 2 + S1 has type (3, 3)

S2 has type (2, 2, 2) 2 + S2 has type (1, 2, 2)

Each circle forms a circuit.
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Hence, the similarity classes are at most the types (3, 3) and (1, 2, 2). But by Corollary
6.2(i), the type (3, 3) can only be similar to (1, 2, 3) (which has circuits of length 3, 4 and 5),
and never similar to (1, 2, 2) (which has circuits of length 3, 3 and 4). Therefore, for n = 4,
we have

1© (1, 2, 3) ∼ (3, 3)

2© (2, 2, 2) ∼ (1, 2, 2)

and so the total number of similarity classes is just 2.

(2) From Example 5.7, if n = 5, then the types of isomorphism classes are (3, 3), (3, 4),
(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 3), (2, 2, 2) and (2, 2, 3). By the observation in (1), we only
need to consider the old ones (1, 2, 3) and (2, 2, 2), and the new ones, (3, 4), (1, 2, 4), (1, 3, 3)
and (2, 2, 3).

For the old ones, let S1 = {0, 1, 2, 3, 4, 5, 12, 234} be a representative of type (1, 2, 3) in
F5

2. Since 5 is outside of the three circuits of S1, we should check 5 + S1:

5 + S1 = {0, 5, 15, 25, 35, 45, 125, 2345} = {0} � {5, 15, 25, 125} ∪ {25, 35, 45, 2345},
which has type (1, 3, 3). Hence, (1, 2, 3) and (2, 2, 2) are still not similar in F5

2.

S1 has type (1, 2, 3) 5 + S1 has type (1, 3, 3)

Thus it is enough to consider the types, (3, 4), (1, 2, 4), and (2, 2, 3). First, by Corollary
6.2(i), type (3, 4) is not similar to anyone. Let S3 = {0, 1, 2, 3, 4, 5, 123, 2345} be a represen-
tative of type (2, 2, 3). Then we have

3 + S3 = {3, 13, 23, 0, 34, 35, 12, 245} = {0} � {12, 13, 23} ∪ {34, 35, 245, 3, 23},
which is similar to type (1, 2, 4).

S3 has type (2, 2, 3) 3 + S1 has type (1, 2, 4)

Finally, by Corollary 6.2(i), type (1, 2, 4) is not similar to any of (3, 3), (3, 4) and (1, 2, 2).
Therefore, for n = 5, we have

1© (1, 2, 2) ∼ (2, 2, 2)

2© (3, 3) ∼ (1, 2, 3) ∼ (1, 3, 3)

3© (3, 4)
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4© (2, 2, 3) ∼ (1, 2, 4)

and so the total number of similarity classes is 4.

As we observed in the examples above, the lengths of circuits are not unique for a simi-
larity class. To classify similarity classes, we define new notations for convenience.

Definition 6.5. (1) A PRS of Fn
2 containing exactly two circuits of length t and u is de-

noted by {t, u}n, where t, u ≥ 3 and t + u ≤ n + 2. Thus we have {t, u}n � {u, t}n, and if t ≤ u,
then {t, u}n has type (t, u) (the type defined in Definition 5.6).

(2) A PRS of Fn
2 containing exactly three circuits of lengths s+ t, s+u and t+u is denoted

{s, t, u}n, where s, t, u ≥ 1, s + t + u ≤ n + 2, and two of s, t, u cannot be 1 (since the
length of a circuit is more than 2). Thus we have {s, t, u}n = {s, u, t}n = · · · = {u, t, s}n (any
permutation of s, t, u), and if s ≤ t ≤ u, then {s, t, u}n has type (s, t, u) (the type defined in
Definition 5.6). Also, if a PRS S has three circuits of length x, y and z, then S is isomorphic
to { x+y−z

2 ,
x−y+z

2 ,
−x+y+z

2 }n.

Remark 6.6. (1) {t, u}n is isomorphic to the PRS{
ε1, ε2, . . . , εn,

∑
1≤i≤t−1

εi,
∑

t≤ j≤t+u−2

ε j

}
,

containing two disjoint circuits

C1 =

{
ε1, ε2, . . . , εt−1,

∑
1≤i≤t−1

εi

}
,

C2 =

{
εt, εt+1, . . . , εt+u−2,

∑
t≤ j≤t+u−2

ε j

}
.

We denote the Venn diagram of circuits for {t, u}n by the following picture:

(2) {s, t, u}n is isomorphic to the PRS{
ε1, ε2, . . . , εn,

∑
1≤i≤s+t−1

εi,
∑

s≤ j≤s+t+u−2

ε j

}
,

containing three circuits

C1 =

{
ε1, ε2, . . . , εs+t−1,

∑
1≤i≤s+t−1

εi

}
,

C2 =

{
εs, εs+1, . . . , εs+t+u−2,

∑
s≤ j≤s+t+u−2

ε j

}
,
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C3 =

{
ε1, . . . , εs−1, εs+t, . . . , εs+t+u−2,

∑
1≤i≤s+t−1

εi,
∑

s≤ j≤s+t+u−2

ε j

}
.

Note that C1 = C2 � C3, C2 = C3 � C1 and C3 = C1 � C2, and the Venn diagram of circuits
for {s, t, u}n can be any of the following pictures:

Definition 6.7. If one of s, t, u is zero, then {s, t, u}n can be considered as the case having
disjoint circuits. Thus, we set {0, s, t}n := {s, t}n.

We will use the following lemma which is now clear.

Lemma 6.8. Let S be a PRS of Fn
2 of residue 2. Then, S has exactly three zero-sum-sets,

say C1, C2 and C3. Moreover:
(1) If S has two disjoint zero-sum-sets, say C1 ∩ C2 = φ, then S is isomorphic to

{|C1|, |C2|}n, and C3 = C1 ∪C2.
(2) If any two of the zero-sum-sets are not disjoint, then S is isomorphic to{ |C1| + |C2| − |C3|

2
,
|C1| − |C2| + |C3|

2
,
−|C1| + |C2| + |C3|

2

}
n

.

We also define the following term.

Definition 6.9. A PRS {t, u}n (resp. {s, t, u}n) is called full if it satisfies t+u = n+2 (resp.
s + t + u = n + 2).

We can now show many similarity relations.

Lemma 6.10. Let t and u be odd. If {t, u}n is full, then {t, u}n ∼ {1, t−1, u}n ∼ {1, t, u−1}n,
and if {t, u}n is not full, then we have an extra relation {t, u}n ∼ {1, t, u}n. Moreover, no more
similarity relation exists in this case.

For odd t and odd u,

∼ ∼

and similar to if it is full.
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Proof. Let S = {t, u}n having only two circuits C1 and C2 with C1 ∩ C2= ∅, |C1| = t and
|C2| = u. If S is full, it is enough to check the type of the PRS v + S, where v ∈ C1 or v ∈ C2.
If v ∈ C1, then v + S contains zero-sum-sets (v + C̃1) \ {0} of length t and (v + C̃2) of length
u + 1 with intersection {v} from Corollary 6.2, and hence by Lemma 6.8, S � {1, t − 1, u}n.
Similarly, by taking v ∈ C2, we get that v + S � {1, t, u − 1}n.

If S is not full, we can take v ∈ (C1 ∪C2)c (the complement of C1 ∪C2) and v+ S has two
zero-sum-sets, i.e., (v + C̃1) of length t + 1 and (v + C̃2) of length u + 1 with intersection {v}
by Corollary 6.2, and hence by Lemma 6.8, S � {1, t, u}n.

Finally, the last statement is clear since we have checked all possibilities of similarity
relations. �

Lemma 6.11. Let t be odd and u even. If {t, u}n is full, then {t, u}n ∼ {t + 1, u − 1}n, and
if {t, u}n is not full, then we have an extra relation {t, u}n ∼ {t + 1, u}n. Moreover, no more
similarity relation exists in this case.

Proof. We can show this in the same way as in Lemma 6.10. This time each of the two
cases, v ∈ C2 and v ∈ (C1 ∪C2)c, gives us a new relation, but the case, v ∈ C1, does not. �

Lemma 6.12. Let t and u be even. Then {t, u}n ∼ {t − 1, u}n ∼ {t, u − 1}n. Moreover, no
more similarity relation exists in this case.

Proof. Again, we can show this in the same way as in Lemma 6.10. This time each of the
two cases, v ∈ C1 and v ∈ C2, gives us a new relation, but the case, v ∈ (C1 ∪C2)c, does not.

�

Lemma 6.13. Let s+t and s+u be odd. If {s, t, u}n is full, then {s, t, u}n ∼ {s+1, t−1, u}n ∼
{s+1, t, u−1}n, and if {s, t, u}n is not full, then we have an extra relation {s, t, u}n ∼ {s+1, t, u}n.
Moreover, no more similarity relation exists in this case.

Proof. Let S = {s, t, u}n having three circuits C1,C2 and C3 such that |C1| = s + t and
|C2| = s + u are odd. Note that |C3| = t + u is even since 2s + t + u is even.

If S is full, then it is enough to check the type of v + S for v ∈ C1 ∩ C2, v ∈ C1 \ C2 or
v ∈ C2 \ C1. First, if v ∈ C1 ∩ C2, then v + S has the zero-sum-sets, (v + C̃1) \ {0} of length
s+ t, (v+ C̃2)\ {0} of length s+u and (v+ C̃3)\ {v} of length t+u by Corollary 6.2. Moreover,
we have

[(v + C̃1) \ {0}] ∩ [(v + C̃2) \ {0}] = v + ˜C1 ∩C2 \ {0},
[(v + C̃1) \ {0}] ∩ [(v + C̃3) \ {v}] = v + ˜C1 ∩C3 \ {v},
[(v + C̃2) \ {0}] ∩ [(v + C̃3) \ {v}] = v + ˜C1 ∩C3 \ {v},

and they are all nonempty. Hence, by Lemma 6.8, these three zero-sum-sets are all circuits,
and S has type {s, t, u}n.

Next, let v ∈ C1 \C2. Suppose that t = 1, i.e., C1 \C2 = C1 ∩C3 = {v}. Then, v+ S has the
zero-sum-sets (v + C̃1) \ {0} of length s + 1, (v + C̃2) of length s + u + 1 and (v + C̃3) \ {0, v}
of length u, by Corollary 6.2. Moreover, we have [(v + C̃1) \ {0}]∩ [(v+ C̃3) \ {0, v}]= ∅, and
by Lemma 6.8, S � {s + 1, u}n = {s + 1, 0, u}n = {s + 1, t − 1, u}n (see Definition 6.7). Note
that v + C̃2 is the disjoint union of (v + C̃1) \ {0} and (v + C̃3) \ {0, v}.
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Suppose that t ≥ 2. Then v + S has the zero-sum-sets, (v + C̃1) \ {0} of length s + t, v + C̃2

of length s + u + 1 and (v + C̃3) \ {0, v} of length t + u − 1, by Corollary 6.2. Moreover, we
have

[(v + C̃1) \ {0}] ∩ [v + C̃2] = (v + ˜C1 ∩C2),

[(v + C̃1) \ {0}] ∩ [(v + C̃3) \ {0, v} = (v + ˜C1 ∩C3) \ {0, v},
[v + C̃2] ∩ [(v + C̃3) \ {0, v}] = (v + ˜C2 ∩C3) \ {v},

and they are all nonempty. Hence, by Lemma 6.8, these three zero-sum-sets are all circuits,
and S � {s + 1, t − 1, u}n.

Let v ∈ C2\C1. As above, suppose u = 1, and so C2\C1 = C2∩C3 = {v}. Then, v+{s, t, 1}n
has the zero-sum-sets, v+C̃1 of length s+ t+1, (v+C̃2)\{0} of length s+1 and (v+C̃3)\{0, v}
of length t, by Corollary 6.2. Moreover, we have [(v + C̃2) \ {0}] ∩ [(v + C̃3) \ {0, v}]= ∅, and
so by Lemma 6.8, S � {s + 1, t}n = {s + 1, t, 0}n = {s + 1, t, u − 1}n (see Definition 6.7). Note
that v + C̃1 is the disjoint union of (v + C̃2) \ {0} and (v + C̃3) \ {0, v}.

Suppose that u ≥ 2, then v + {s, t, u}n has the zero-sum-sets, v + C̃1 of length s + t + 1,
(v+C̃2)\{0} of length s+u and (v+C̃3)\{0, v} of length t+u−1, by Corollary 6.2. Moreover,
we have

(v + C̃1) ∩ [(v + C̃2) \ {0}] = (v + ˜C1 ∩C2),

(v + C̃1) ∩ [(v + C̃3) \ {0, v} = (v + ˜C1 ∩C3) \ {v},
[(v + C̃2) \ {0}] ∩ [(v + C̃3) \ {0, v}] = (v + ˜C2 ∩C3) \ {0, v},

and they are all nonempty. Hence, by Lemma 6.8, these three zero-sum-sets are all circuits,
and S � {s + 1, t, u − 1}n.

If S is not full, we can take v ∈ (C1∪C2)c. Then, v+ {s, t, u}n has the zero-sum-sets, v+ C̃1

of length s + t + 1, v + C̃2 of length s + u + 1 and (v + C̃3) \ {v} of length t + u, by Corollary
6.2. Moreover, we have

[v + C̃1] ∩ [v + C̃2] = v + ˜C1 ∩C2,

[v + C̃1] ∩ [(v + C̃3) \ {v}] = v + ˜C1 ∩C3 \ {v},
[v + C̃2] ∩ [(v + C̃3) \ {v}] = v + ˜C1 ∩C3 \ {v},

and they are all nonempty. Hence, by Lemma 6.8, these three zero-sum-sets are all circuits,
and S � {s + 1, t, u}n. Thus the proof is complete. �

Lemma 6.14. Let s + t be even and s + u odd. If {s, t, u}n is full, then {s, t, u}n ∼ {s −
1, t, u + 1}n ∼ {s, t − 1, u + 1}n, and if {s, t, u}n is not full, then we have an extra relation
{s, t, u}n ∼ {s, t, u + 1}n. Moreover, no other similarity relation exists in this case.

Proof. We can show this in the same way as in Lemma 6.13. This time each of the three
cases, v ∈ C1 ∩ C2, v ∈ C1 \ C2 and v ∈ (C1 ∪ C2)c, gives us a new relation, but the case,
v ∈ C2 \C1, does not. �

Lemma 6.15. Let s + t and s + u be even. Then, {s, t, u} ∼ {s − 1, t, u}n ∼ {s, t − 1, u}n ∼
{s, t, u − 1}n. Moreover, no other similarity relation exists in this case.
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Proof. Again we can show this in the same way as in Lemma 6.13. This time each of the
three cases, v ∈ C1 ∩ C2, v ∈ C1 \ C2 and v ∈ C2 \ C1, gives us a new relation, but the case,
v ∈ (C1 ∪C2)c, does not. �

The following proposition summarizes all the similarity relations in the previous lemmas.

Proposition 6.16. We list all similarity relations as follows.

(1) {2k+1, 2l+1}n ∼ {1, 2k, 2l+1}n ∼ {1, 2k+1, 2l}n for full type, and ∼ {1, 2k+1, 2l+1}n
for non-full type.

(2) {2k + 1, 2l}n ∼ {2k + 2, 2l − 1}n for full type, and ∼ {2k + 2, 2l}n for non-full type.
(3) {2k, 2l}n ∼ {2k − 1, 2l}n ∼ {2k, 2l − 1}n.
(4) {s, t, u}n ∼ {s + 1, t − 1, u}n ∼ {s + 1, t, u − 1}n for full type, where s + t and s + u are

odd, and ∼ {s + 1, t, u}n for non-full type.
(5) {s, t, u}n ∼ {s − 1, t, u + 1}n ∼ {s, t − 1, u + 1}n for full type, where s + t is even and

s + u is odd, and ∼ {s, t, u + 1}n for non-full type.
(6) {s, t, u}n ∼ {s− 1, t, u}n ∼ {s, t− 1, u}n ∼ {s, t, u− 1}n, where s+ t and s+ u are even.

6.2. Toward classification.
6.2. Toward classification.

Definition 6.17. A PRS S is called of type A if S � {t, u}n, and of type B if S � {s, t, u}n.

Lemma 6.18. For a, b, c ∈ N, {a, b, c}n has type A if and only if a = 1 and (b, c) ≡
(0, 1), (1, 0), (1, 1) mod 2.

Proof. For “if” part, by Proposition 6.16 (1), (2) and (3), for p, q ≥ 1 with 1 + (2p +
1) + (2q + 1) ≤ n + 2, we see {1, 2p + 1, 2q + 1}n ∼ {2p + 1, 2q + 1}n and for r, s ≥ 1 with
1 + (2r + 1) + 2s ≤ n + 2, we have {1, 2r + 1, 2s}n ∼ {2r + 1, 2s + 1}n.

For “only if” part, if {a, b, c}n ∼ {x, y, z}n, then, without loss of generality, we can assume
that x ∈ {a, a ± 1}, y ∈ {b, b ± 1} and z ∈ {c, c ± 1}. Hence, if x, y, z ≥ 2, then {x, y, z}n is not
similar to a PRS of type A. Also, {1, 2t, 2u}n cannot have type A from Proposition 6.16 (1),
(2) and (3). This completes the proof. �

Thus the similarity classes decompose into three parts.

Lemma 6.19. The similarity classes in Fn
2 are the disjoint union of similarity classes of

{x, y}n, similarity classes of {1, 2x, 2y}n and similarity classes of {s, t, u}n for s, t, u ≥ 2.

Proof. By Lemma 6.18, {1, 2x + 1, 2y}n and {1, 2x + 1, 2y + 1}n are similar to a PRS of
type A, and moreover, {s, t, u}n for s, t, u ≥ 2 is never similar to a PRS of type A. Hence the
assertion is shown. �

6.3. Classification of type A.
6.3. Classification of type A. In this subsection we determine the similarity classes of

{t, u}n. Note that n ≥ 4 and t, u ≥ 3.
Let

U = {{2p + 1, 2q + 1}n | p, q ≥ 1, 2p + 2q + 2 ≤ n + 2},
V = {{2p, 2q + 1}n | p ≥ 2, q ≥ 1, 2p + 2q + 1 ≤ n + 2}.

Then we have the following:
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Lemma 6.20. The similarity classes of {t, u}n are the disjoint union of similarity classes
containing U and similarity classes containing V.

Proof. From Proposition 6.16 (3), we see {2k, 2l}n ∼ {2k − 1, 2l}n. From Proposition 6.16
(1), {2p + 1, 2q + 1}n is not similar to {2x, 2y + 1}n, and hence the proof is finished. �

Lemma 6.21. The set U is a complete representative system of the similarity classes
containing U.

Proof. By Proposition 6.16 (1), {2p+1, 2q+1}n is the only similarity class of type A, and
so the assertion is shown. �

Let

V1 = {{4p, 4q + 1}n | p, q ≥ 1, 4p + 4q + 1 ≤ n + 2},
V2 = {{4p, 4q + 3}n | p ≥ 1, q ≥ 0, 4p + 4q + 3 ≤ n + 2},
V3 = {{4p + 2, 4q + 1}n | p, q ≥ 1, 4p + 4q + 3 ≤ n + 2},
V4 = {{4p + 2, 4q + 3}n | p ≥ 1, q ≥ 0, 4p + 4q + 5 ≤ n + 2}.

Then we have the following:

Lemma 6.22. The similarity classes of V are the disjoint union of similarity classes
containing V1, similarity classes containing V2 and similarity classes containing V3.

Proof. The similarity classes of V are the union of similarity classes of V1, V2, V3 and V4.
But V4 can be eliminated because, for any x ∈ V4, there exists y ∈ V1 such that x ∼ y by
Proposition 6.16 (2). Moreover, any two elements in V1, V2, and V3 are not similar to each
other by Proposition 6.16 (2). Hence we obtain the assertion. �

Let

V ′2 = {{4p, 4q + 3}n ∈ V2 | p ≤ q + 1} ⊂ V2,

V ′3 = {{4p + 2, 4q + 1}n ∈ V3 | p ≤ q} ⊂ V3.

Then we have the following:

Lemma 6.23. (i) The set V1 is a complete representative system of the similarity classes
containing V1.

(ii) The subset V ′2 of V2 is a complete representative system of the similarity classes
containing V2.

(iii) The subset V ′3 of V3 is a complete representative system of the similarity classes
containing V3.

Proof. All statements follow from Proposition 6.16 (2). In fact, we only have the relation
{2k + 1, 2l}n ∼ {2k + 2, 2l − 1}n for these cases.

For (i), we have {4p, 4q + 1}n ∼ {4p − 1, 4q + 2}n, and we have already eliminated the
similarity classes of {4p − 1, 4q + 2}n in Lemma 6.22.

For (ii), we have the relation {4p, 4q + 3}n ∼ {4p − 1, 4q + 4}n. Now, if p > q + 1, then
letting x := q+ 1 and y := p− 1 for convenience, we have {4p, 4q+ 3}n ∼ {4x, 4y + 3}n with
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x < y + 1. Thus the similarity classes of V2 consist of the similarity classes of V ′2. Next if
{4p, 4q + 3}n ∼ {4x, 4y + 3}n for p ≤ q + 1 and x ≤ y + 1, then 1© p = x and q = y, or 2©
4q+ 4 = 4x and 4p− 1 = 4y+ 3, i.e., x = q and p = y+ 1. We are done if 2© cannot happen.

Now, 2© implies q ≤ p since q = x ≤ y + 1 = p. Moreover, since p ≤ q + 1, we
have p = q or p = q + 1. If p = q, then we have x = p (and y = p − 1), and so
{4p, 4p + 3}n ∼ {4p, 4(p − 1) + 3}n = {4p, 4p − 1}n, which is impossible by Propositon
6.16 (2). If p = q + 1, then we have x = p − 1 (and y = p − 1), and so {4p, 4p + 3}n ∼
{4(p − 1), 4(p − 1) + 3}n = {4p − 4, 4p − 1}n, which is impossible by Proposition 6.16 (2).
Thus we have shown that 2© cannot happen.

For (iii), we have the relation {4p + 2, 4q + 1}n ∼ {4p + 1, 4q + 2}n. Now, if p > q, then
letting x := q and y := p for convenience, we have {4p + 2, 4q + 1}n ∼ {4x + 2, 4y + 1}n
with x < y. Thus the similarity classes of V3 consist of the similarity classes of V ′3. Next if
{4p + 2, 4q + 1}n ∼ {4x + 2, 4y + 1}n for p ≤ q and x ≤ y, then 1© p = x and q = y, or 2©
4q + 2 = 4x + 2 and 4p + 1 = 4y + 1, i.e., x = q and p = y. But 2© implies q ≤ p since
q = x ≤ y = p. Moreover, since p ≤ q, we have p = q. Thus 2© implies 1©. So we are done.

�

The following proposition summarizes the above results.

Proposition 6.24. A complete representative system of the similarity classes of type {t, u}n
is the disjoint union of U, V1, V ′2 and V ′3.

6.4. Classification of type B.
6.4. Classification of type B. Let S = S1 �S2, where

S1 = {{1, 2x, 2y}n| x, y ≥ 1, 1 + 2x + 2y ≤ n + 2} (n ≥ 3),

S2 = {{s, t, u}n| s, t, u ≥ 2, s + t + u ≤ n + 2}.
We need to determine a complete representative system of S (see Lemma 6.19).

Lemma 6.25. Suppose that {s, t, u}n and {s′, t′, u′}n satisfy |(s+ t + u)− (s′ + t′ + u′)| ≥ 2.
Then {s, t, u}n is not similar to {s′, t′, u′}n.

Proof. It follows from Proposition 6.16. �

Lemma 6.26. For {s, t, u}n, there exists a PRS {x, y, z}n with x + y + z ≡ n mod 2 such
that {s, t, u}n ∼ {x, y, z}n.

Proof. Suppose that n ∈ 2Z. If s + t + u ∈ 2Z, then we can set {x, y, z}n = {s, t, u}n. If
s + t + u ∈ 2Z + 1, then {s, t, u} is not of full type. Thus we can proceed to show this on a
case by case basis for the parities of s, t and u.

Let (s, t, u) ≡ (1, 0, 0), (0, 1, 0), (0, 0, 1) mod 2. Then from Proposition 6.16, we have
{s, t, u} ∼ {s + 1, t, u}n when (s, t, u) ≡ (1, 0, 0) mod 2, {s, t, u} ∼ {s, t + 1, u} when (s, t, u) ≡
(0, 1, 0) mod 2, and {s, t, u} ∼ {s, t, u+1}n when (s, t, u) ≡ (0, 0, 1) mod 2, and therefore we
can set {x, y, z}n = {s+1, t, u}n, {s, t+1, u}n and {s, t, u+1}n respectively. If (s, t, u) ≡ (1, 1, 1)
mod 2, then {s, t, u}n ∼ {s − 1, t, u}n from Proposition 6.16, and we can set {x, y, z}n = {s −
1, t, u}n.

Suppose that n ∈ 2Z + 1. If s + t + u ∈ 2Z + 1, then we can set {x, y, z}n = {s, t, u}n.
If s + t + u ∈ 2Z, then {s, t, u} is not full. Thus we show this on a case by case basis. Let
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(s, t, u) ≡ (1, 1, 0), (1, 0, 1), (0, 1, 1) mod 2. Then from Proposition 6.16, we have {s, t, u} ∼
{s, t, u + 1}n when (s, t, u) ≡ (1, 1, 0) mod 2, {s, t, u} ∼ {s, t + 1, u} when (s, t, u) ≡ (1, 0, 1)
mod 2, and {s, t, u} ∼ {s + 1, t, u}n when (s, t, u) ≡ (0, 1, 1) mod 2, and therefore we can set
{x, y, z}n = {s, t, u+1}n, {s, t+1, u}n and {s+1, t, u}n respectively. If (s, t, u) ≡ (0, 0, 0) mod 2,
then {s, t, u}n ∼ {s − 1, t, u}n from Proposition 6.16, and we can set {x, y, z}n = {s − 1, t, u}n.
This completes the proof. �

6.4.1. The case of n ∈ 2Z + 1.
6.4.1. The case of n ∈ 2Z+ 1. In this subsection we determine a complete representative

system of S for n ∈ 2Z + 1. From Lemma 6.26, any PRS in S with n ∈ 2Z + 1 is similar to
a PRS in T = T1 � T2, where

T1 = {{2p, 2q, 2r − 1}n | p, q, r ≥ 1},
T2 = {{2p + 1, 2q + 1, 2r + 1}n | p, q, r ≥ 1}.

Note that T1 contains {{1, 2x, 2y}n | x, y ≥ 1}.
Let

T′1 = {{2x, 2x, 2z − 1}n ∈ T1 | 2x, 2y > 2r − 1} ⊂ T1.

Lemma 6.27. The set T′1 is a complete representative system of the similarity classes
containing T1.

Proof. From Proposition 6.16 (5), we see {2p, 2q, 2r − 1}n ∼ {2p, 2q − 1, 2r}n ∼ {2p −
1, 2q, 2r}n for p, q, r ≥ 1 with 2p + 2q + 2r − 1 ≤ n + 2. So we can take the odd part as a
minimum entry.

Suppose {2a, 2b, 2c − 1}n ∼ {2x, 2y, 2z − 1} with 2a, 2b > 2c − 1 and 2x, 2y > 2z − 1. We
see 2a+2b+(2c−1) = 2x+2y+(2z−1) from Lemma 6.25. Then, Proposition 6.16 (5) yields
that {2a, 2b, 2c − 1} = {2x, 2y, 2z − 1} as sets, and hence {2a, 2b, 2c − 1}n = {2x, 2y, 2z − 1}n.

�

Lemma 6.28. The set T2 is a complete representative system of the similarity classes
containing T2.

Proof. From Lemma 6.25, Proposition 6.16 (6) and a similar argument as in the proof of
Lemma 6.27, we obtain the assertion. �

We summarize the above lemmas as a proposition.

Proposition 6.29. A complete representative system of the similarity classes containing
T is the disjoint union of the sets T′1 and T2.

6.4.2. The case of n ∈ 2Z.
6.4.2. The case of n ∈ 2Z. In this subsection we determine a complete representative

system of S for n ∈ 2Z. From Lemma 6.26, any PRS in S with n ∈ 2Z is similar to a PRS
in U = U1 � U2, where

U1 = {{2x, 2y, 2z}n | x, y, z ≥ 1},
U2 = {{2p + 1, 2q + 1, 2r}n | p, q, r ≥ 1}.

Let
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U′1 = {{2p + 1, 2q + 1, 2r}n ∈ U1 | 2p + 1, 2q + 1 > 2r} ⊂ U1.

Lemma 6.30. The set U′1 is a complete representative system of the similarity classes
containing U1.

Proof. From Proposition 6.16 (5), we see {2p + 1, 2q + 1, 2r}n ∼ {2p + 1, 2q, 2r + 1}n ∼
{2p, 2q + 1, 2r + 1}n for p, q, r ≥ 1 with (2p + 1) + (2q + 1) + 2r ≤ n + 2. So we can set the
even part as a minimum entry.

Suppose {2a+1, 2b+1, 2c}n ∼ {2x+1, 2y+1, 2z}with 2a+1, 2b+1 > 2c and 2x+1, 2y+1 >
2z with a, b, c, x, y, z ≥ 1. From Lemma 6.25, we see (2a+1)+(2b+1)+2c = (2x+1)+(2y+
1)+2z. From Proposition 6.16 (5), we can conclude that {2a+1, 2b+1, 2c} = {2x+1, 2y+1, 2z}
as sets, and hence {2a+ 1, 2b+ 1, 2c}n = {2x+ 1, 2y+ 1, 2z}n. Hence we obtain the assertion.

�

Lemma 6.31. The set U2 is a complete representative system of the similarity classes
containing U2.

Proof. From Lemma 6.25, Proposition 6.16 (6) and a similar argument as in the proof of
Lemma 6.30, we obtain the assertion. �

The following proposition summarizes lemmas above.

Proposition 6.32. A complete representative system of the similarity classes containing
U is the disjoint union of the sets U′1 and U2.

6.4.3. A complete representative system.
6.4.3. A complete representative system. We summarize the results from Lemma 6.19,

Proposition 6.24, Proposition 6.29 and Proposition 6.32 in the following two theorems.

Theorem 6.33. Let n ∈ 2Z with n ≥ 4. The following sets form a complete representative
system of the similarity classes of residue 2 in Fn

2.

(1) {{2p + 1, 2q + 1}n | 2p + 2q + 2 ≤ n + 2};
(2) {{4p, 4q + 1}n | 4p + 4q + 1 ≤ n + 2};
(3) {{4p, 4q + 3}n| | p ≤ q + 1 and 4p + 4q + 3 ≤ n + 2};
(4) {{4p + 2, 4q + 1}n | p ≤ q and 4p + 4q + 3 ≤ n + 2};
(5) {{2p + 1, 2q + 1, 2r}n | 2r < 2p + 1, 2q + 1 and 2p + 2q + 2r + 2 ≤ n + 2};
(6) {{2p, 2q, 2r}n | 2p + 2q + 2r ≤ n + 2}, where p, q, r ∈ N.

Theorem 6.34. Let n ∈ 2Z + 1 with n ≥ 3. The following sets form a complete represen-
tative system of the similarity classes of residue 2 in Fn

2.

(1) {2p + 1, 2q + 1}n | 2p + 2q + 2 ≤ n + 2};
(2) {{4p, 4q + 1}n | 4p + 4q + 1 ≤ n + 2};
(3) {{4p, 4q + 3}n | p ≤ q + 1 and 4p + 4q + 3 ≤ n + 2};
(4) {{4p + 2, 4q + 1}n | p ≤ q and 4p + 4q + 3 ≤ n + 2};
(5) {{2p, 2q, 2r − 1}n | 2z − 1 < 2x, 2y and 2x + 2y + 2z − 1 ≤ n + 2};
(6) {{2p + 1, 2q + 1, 2r + 1}n | 2p + 2q + 2r + 3 ≤ n + 2}, where p, q, r ∈ N.

Example 6.35. (1) In Example 6.4(1), the total number of similarity classes in F4
2 is 2,

and we box a complete representative system following Theorem 6.34:



Classification of Pointed Reflection Spaces 585

1© (1, 2, 3) ∼ (3,3) 2© (2,2,2) ∼ (1, 2, 2)

(2) In Example 6.4(2), the total number of similarity classes in F5
2 is 4, and we box a

complete representative system following Theorem 6.33:

1© (1,2,2) ∼ (2, 2, 2) 2© (3,3) ∼ (1, 2, 3) ∼ (1, 3, 3)

3© (3,4) 4© (2, 2, 3) ∼ (1,2,4)

(3) We did the same observation for n = 6:

1© (1, 2, 2) ∼ (2,2,2) 2© (3,3) ∼ (1, 2, 3) ∼ (1, 3, 3) 3© (3,4) ∼ (4, 4)

4© (1, 2, 4) ∼ (2, 2, 3) ∼ (2,2,4) 5© (3,5) ∼ (1, 2, 5) ∼ (1, 3, 4)

6© (2,3,3)

and the total number of similarity classes in F6
2 is 6.

(4) We did the same observation for n = 7:

1© (1,2,2) ∼ (2, 2, 2) 2© (3,3) ∼ (1, 2, 3) ∼ (1, 3, 3) 3© (3,4) ∼ (4, 4)

4© (1,2,4) ∼ (2, 2, 3) ∼ (2, 2, 4) 5© (3,5) ∼ (1, 2, 5) ∼ (1, 3, 4) ∼ (1, 3, 5)

6© (2, 3, 3) ∼ (3,3,3) 7© (4,5) ∼ (3, 6) 8© (1,2,6) ∼ (2, 2, 5)

9© (1,4,4) ∼ (2, 3, 4)

and the total number of similarity classes in F7
2 is 9.

6.5. Enumeration for the similarity classes.
6.5. Enumeration for the similarity classes.

In this subsection, we give some enumerative results for the similarity classes of residue
2 in Fn

2.
For n ≥ 3, let αn be the number of similarity classes listed in Theorem 6.33 (1), (2), (3)

and (4) for n ∈ 2Z and Theorem 6.34 (1), (2), (3) and (4) for n ∈ 2Z + 1. Also, for n ≥ 3,
let βn be the number of similarity classes listed in Theorem 6.33 (5) and (6) for n ∈ 2Z and
Theorem 6.34 (5) and (6) for n ∈ 2Z + 1. Thus 2(n) = αn + βn for n ≥ 3 is the number
of the similarity classes of residue 2 in Fn

2. We can easily see that α3 = 0, α4 = 1, α5 = 2,
α6 = 3, α7 = 4, α8 = 6, α9 = 8, α10 = 10, . . ., and β3 = 1, β4 = 1, β5 = 2, β6 = 3, β7 = 5,
β8 = 6, β9 = 9, β10 = 11, . . ., and hence {2(n)}n≥3 = 1, 2, 4, 6, 9, 12, 17, 21, . . ..

6.5.1. The formula for αn.
6.5.1. The formula for αn.

Lemma 6.36. We have
(1) α8k − α8k−1 = 2k for k ≥ 1;
(2) α8k+1 − α8k = 2k for k ≥ 1;
(3) α8k+2 − α8k+1 = 2k for k ≥ 1;
(4) α8k+3 − α8k+2 = 2k for k ≥ 1;
(5) α8k+4 − α8k+3 = 2k + 1 for k ≥ 0;
(6) α8k+5 − α8k+4 = 2k + 1 for k ≥ 0;
(7) α8k+6 − α8k+5 = 2k + 1 for k ≥ 0;
(8) α8k+7 − α8k+6 = 2k + 1 for k ≥ 0.
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Proof. We only prove (1), and the other cases can be proved similarly. From (1), (2), (3)
and (4) of Theorem 6.33, we have α8k − α8k−1

= 
{{2p + 1, 2q + 1}n | 2p + 2q + 2 = 8k + 2}
+
{{4p, 4q + 1}n | 4p + 4q + 1 = 8k + 2}
+
{{4p, 4q + 3}n | p ≤ q + 1, 4p + 4q + 3 = 8k + 2}
+
{{4p+ 2, 4q+ 1}n | p ≤ q, 4p+ 4q+ 3 = 8k + 2}, but the last three terms are zero. Thus

we get

α8k − α8k−1 = 
{{2p + 1, 2q + 1}n | 2p + 2q = 8k}
= 
{{3, 8k − 1}n, {5, 8k − 3}n, . . . , {4k − 1, 4k + 3}n, {4k + 1, 4k + 1}n}
= 2k.

�

Lemma 6.37. We have
(a) α4k − α4k−1 = k for k ≥ 1;
(b) α4k+1 − α4k = k for k ≥ 1;
(c) α4k+2 − α4k+1 = k for k ≥ 1;
(d) α4k+3 − α4k+2 = k for k ≥ 1.

Proof. (a) follows from (1) and (5) in Lemma 6.36, (b) follows from (2) and (6) in Lemma
6.36, (c) follows from (3) and (7) in Lemma 6.36, and (d) follows from (4) and (8) in Lemma
6.36. �

Lemma 6.38. We have
(i) α4k = k(2k − 1) for k ≥ 1;
(ii) α4k+1 = 2k2 for k ≥ 1;
(iii) α4k+2 = k(2k + 1) for k ≥ 1;
(iv) α4k+3 = 2k(k + 1) for k ≥ 0.

Proof. We show (iv) by induction on k. It is true for k = 0 since we know α3 = 0. Assume
that α4k−1 = 2k(k−1). By Lemma 6.37(a), we have α4k = k+α4k−1 = k(2k−1), which is (i).
Then, by Lemma 6.37(b), we have α4k+1 = k + α4k = 2k2, which is (ii). Then, by Lemma
6.37(c), we have α4k+2 = k + α4k+1 = k(2k + 1), which is (iii). Finally, by Lemma 6.37(d),
we have α4k+3 = k + α4k+2 = 2k(k + 1), and hence (iv) is true by induction. Thus (i), (ii) and
(iii) also hold, by Lemma 6.37. �

Using Lemma 6.38, we get the following formulas.

Proposition 6.39. We have:
(1) α2n+1 = 2� n

2�� n+1
2 � for n ≥ 1;

(2) α2n =
n(n−1)

2 for n ≥ 2.

Proof. For (1), we have α2(2k−2)+1 = α4k−3 = 2(k − 1)2 by Lemma 6.38(ii), and
2� 2k−2

2 �� 2k−2+1
2 � = 2(k − 1)2. Also, we have α2(2k−1)+1 = α4k−1 = 2k(k − 1) by Lemma

6.38(iv), and 2� 2k−1
2 �� 2k−1+1

2 � = 2k(k − 1).
For (2), we have α2·2k = α4k = k(2k−1) by Lemma 6.38(i), and 2k(2k−1)

2 = k(2k−1). Also,
we have α2(2k+1) = α4k+2 = k(2k + 1) by Lemma 6.38(iii), and (2k+1)(2k+1−1)

2 = k(2k + 1). �
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6.5.2. The formula for β2n.
6.5.2. The formula for β2n. We set

X2n = {{2p + 1, 2q + 1, 2r}2n | 2r < 2p + 1, 2q + 1, p + q + r = n},
Y2n = {{2p, 2q, 2r}2n | p + q + r = n + 1},

where p, q, r ∈ N. Then we have β2n − β2n−2 = 
X2n + 
Y2n. We recall that p(n, 3) denotes
the number of partitions of n by three positive integers.

Lemma 6.40. We have 
X2n = p(n, 3) and 
Y2n = p(n + 1, 3).

Proof. Let X′ = {{a, b, c} | a, b, c ≥ 1, a + b + c = n} be the set of partitions of n by three
positive integers. We define a map Φ : X2n −→ X′ as follows. For {x, y, z}2n ∈ X2n with z =
min{x, y, z}, we define Φ({x, y, z}2n) = { x−1

2 ,
y−1

2 ,
z
2 }. Also, we define a map Ψ : X′ −→ X2n as

follows. For {a, b, c} ∈ X′ with a, b ≥ c, we define Ψ({a, b, c}) = {2a + 1, 2b + 1, 2c}2n. Then
Ψ is the inverse of Φ. Hence we get 
X2n = p(n, 3).

Let Y ′ = {{a, b, c} | a, b, c ≥ 1, a + b + c = n + 1} be the set of partitions of n + 1 by three
positive integers. We define a map f : Y2n −→ Y ′ by f ({2x, 2y, 2z}2n) = {x, y, z}. Also, we
define a map g : Y ′ −→ Y2n by g({a, b, c}) = {2a, 2b, 2c}2n. Then g is the inverse of f . Hence
we get 
Y2n = p(n + 1, 3). �

Proposition 6.41. We have β2n = 2
∑

3≤k≤n p(k, 3) + p(n + 1, 3).

Proof. We have

β4 = 1 = p(3, 3);

β6 − β4 = p(3, 3) + p(4, 3),

β8 − β6 = p(4, 3) + p(5, 3),
...

β2n − β2n−2 = p(n, 3) + p(n + 1, 3),

and hence we see β2n = 2
∑

3≤k≤n p(k, 3) + p(n + 1, 3). �

6.5.3. The formula for β2n+1.
6.5.3. The formula for β2n+1. We set

Z2n+1 = {{2p, 2q, 2r − 1}2n+1 | 2r − 1 < 2p, 2q, p + q + r = n + 2},
W2n+1 = {{2p + 1, 2q + 1, 2r + 1}2n+1 | p + q + r = n},

where p, q, r ∈ N. Then we have β2n+1 − β2n−1 = 
Z2n+1 + 
W2n+1, and similar methods as in
Lemma 6.40 yield the following.

Lemma 6.42. We have 
Z2n+1 = p(n + 2, 3) and 
W2n+1 = p(n, 3).

Moreover:

Proposition 6.43. We have β2n+1 = 2
∑

3≤k≤n p(n, 3) + p(n + 1, 3) + p(n + 2, 3).

Proof. We have

β3 = 1 = p(3, 3);

β5 − β3 = p(4, 3) + p(2, 3) = p(4, 3),
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β7 − β5 = p(5, 3) + p(3, 3),

β9 − β7 = p(6, 3) + p(4, 3)
...

β2n+1 − β2n−1 = p(n + 2, 3) + p(n + 1, 3),

and hence we obtain the result. �

6.5.4. Enumeration for the similarity classes.
6.5.4. Enumeration for the similarity classes. Combining Proposition 6.39, Proposi-

tion 6.41 and Proposition 6.43, we obtain the following results.

Theorem 6.44. (1) For n ≥ 2, the number of similarity classes of residue 2 in F2n
2 is

2(2n) =
n(n − 1)

2
+ 2
∑

3≤k≤n

p(k, 3) + p(n + 1, 3).

(2) For n ≥ 1, the number of similarity classes of residue 2 in F2n+1
2 is

2(2n + 1) = 2�n
2
��n + 1

2
� + 2

∑
3≤k≤n

p(k, 3) + p(n + 1, 3) + p(n + 2, 3).

Thus we have the sequence 2(n) by this Theorem:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·
2(n) 1 2 4 6 9 12 17 21 27 33 41 48 58 67 79 90 · · ·

We note that this sequence is not in the site OEIS.

[Open Problem] Classify isomorphism classes and similarity classes of residue ≥ 3 in Fn
2,

and find the numbers i(n) and i(n) for i ≥ 3.

Remark 6.45. As it was explained in Section 2, our results concerning the classification
of PRS up to similarity, leads to the classification of extended affine root systems of reduced
types whose involved pointed reflection spaces (semilattices) have residue ≤ 2, plus some
subclasses of non-reduced types. This includes a large class of extended affine root systems
of nullity n. The results also provide important invariants for extended affine Lie algebras
whose root systems are of the types mentioned above.
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