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Abstract. In this paper we show that the basic external (i.e., not determined by
the equations) object in Maxwell vacuum equations is a complex structure. In the
three-dimensional standard form of Maxwell equations this complex structure I
participates implicitly in the equations and its presence is responsible for the so
called duality invariance. We give a new form of the equations showing explicitly
the participation of I. In the four-dimensional formulation the complex structure
is extracted directly from the equations, it appears as a linear map Φ in the space
of two-forms on R

4. It is shown also that Φ may appear through the equivariance
properties of the new formulation of the theory. Further we show how this complex
structure Φ combines with the Poincaré isomorphism P between the two-forms
and two-tensors to generate all well known and used in the theory (pseudo)metric
constructions on R

4, and to define the conformal symmetry properties. The equa-
tions of Extended Electrodynamics (EED) do not also need these pseudometrics
as beforehand necessary structures. A new formulation of the EED equations in
terms of a generalized Lie derivative is given.

1. Introduction

We begin with two examples, showing that meeting with implicitly participating
objects in some equations of mathematical physics is not an unknown phenom-
enon. Recall the wave D’Alembert equation (in standard form)

Utt − c2 (Uxx + Uyy + Uzz) = 0.

Except the constant c, no external objects participate (at first sight, explicitly) in
this equation. During the first half of 20th century a new understanding of this
equation was created, namely, that a new external object participates implicitly in
it and it is the pseudoeuclidean metric tensor gµν , −g11 = −g22 = −g33 = g44 =
1 on R

4, so that the true form of this equation should read

gµν ∂2U

∂xµ∂xν
= 0.
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This form of the equation, although written in canonical coordinates, may be con-
sidered as generally covariant, i.e., making use of corresponding connection co-
efficients we can pass to arbitrary coordinates. The symmetries of the equation,
coming from transformations of the base manifold R

4, as well as many other of
its important properties, seem to be determined by the isometries of gµν .

The posterior studies brought another view, saying that the Hodge ∗-operator, de-
fined by gµν , is the essential object, and the equation acquired any of the following
two coordinate free forms

d ∗ dU = 0, (δd + dδ)U ≡ �U = 0

where d is the exterior derivative, and δ = (−1)p ∗−1 d∗ is the coderivative
(δU ≡ 0).

If we continue this process of revealing the structures in defining the equation,
we would come to the conclusion that, in fact, the pseudometric tensor gµν is
not needed, and the necessary and sufficient external structure needed to give a
coordinate free form of the equation is a linear map f : Λ1(R4) → Λ3(R4) (in
fact, a linear isomorphism) from the space of one-forms on R

4 to the space of
three-forms on R

4 defined (in canonical coordinates) by

f(dx) = −dy ∧ dz ∧ dξ, f(dy) = dx ∧ dz ∧ dξ

f(dz) = −dx ∧ dy ∧ dξ, f(dξ) = −dx ∧ dy ∧ dz

where ξ = ct. Then the above wave equation will read (in canonical coordinates)

df(dU) = (−Uxx − Uyy − Uzz + Uξξ) dx ∧ dy ∧ dz ∧ dξ = 0.

That the linear map f can be defined by the pseudometric g through the Hodge ∗
is obvious, but it is also evident that f can be defined independently of g. Hence,
since the exterior derivative d is defined only by the differential structure on R

4,
the symmetries and the other properties of the D’Alembert wave equation are
determined entirely by f .

Another example comes from classical mechanics in its hamiltonian formulation.
If qi and pi are the classical coordinates and momentum components and H is the
hamiltonian, then we have the well known hamiltonian form of the basic equations
of classical mechanics

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
.

These equations, have been studied quite a long time (nearly a century) before to
become clear that there is an external object implicitly participating in these equa-
tions, namely the symplectic two-form ω = dqi ∧ dpi on the cotangent bundle
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of R
3. It became clear then that the so called canonical transformations coincide

with the symmetries of the symplectic two-form ω. This fact turned out to be of
great importance in mechanics and could hardly be overestimated. The tremen-
dous mathematical developments that followed this simple observation (symplec-
tic geometry, contact geometry) undoubtedly prove this and show the importance
of having a clear and full knowledge of every detail when studying an equation.
And the attention paid in this direction must correspond to the significance of the
equations being studied. The right understanding and interpretation of every sign,
of every participating constant, and even of the different “equivalent” forms of
an equation, reveals its hidden nature, and gives sometimes powerful tools to get
knowledge of its basic properties, and suggests various ways of using it and some
appropriate generalizations.

Maxwell equations of classical electrodynamics are of exclusive importance in all
theoretical and mathematical physics. Their deep study at the end of ninetieth
and the beginning of twentieth centuries gave birth to the relativistic view on the
physical world. Their duality properties generated the modern “dualities” in field
(superstring) theories. Their gauge interpretation, introduced in the remarkable
works of H. Weyl and A. Eddington [12], as well as the incorporation of E. Car-
tan’s algebraic and geometric ideas and results in the frame of principle and jet
bundle constructions, brought modern gauge theory, and the leading role of gauge
theory in today’s field theory is undeniable. Therefore, revealing the right exter-
nal mathematical structures these equations use, we consider as a meaningful and
important task.

In this paper, following the ideas previously stated in [3,4], we shall show that the
standard complex structure I in R

2 (here and further under complex structure we
mean a linear map Φ having the property Φ◦Φ = −id ) implicitly participates in
the three-dimensional formulation of Maxwell equations, making quite obvious
their duality properties. The new mathematical representation of the field through
the R

2 valued one-form ω = E ⊗ e1 + B ⊗ e2 on R
3 and through the above

mentioned complex structure I we consider as a more adequate one since it gives
an explicit respect to the mathematical structures involved. Some analogy with the
the symplectic mechanics development could be noticed: the symplectic two-form
in hamilton equations interprets appropriately the minus sign in the second group
equations and the canonical transformations; similarly, the complex structure I
will interpret appropriately the minus sign in one of the “curl” Maxwell equations
and the mentioned dual symmetry.

In the four-dimensional differential form formulation of Maxwell equations we
get the possibility to transform the presence of the complex structure I in the third
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form of the equations to a presence of a special complex structure Φ : Λ2(R4) →
Λ2(R4) in the space of differential two-forms on R

4. And this linear map Φ is, in
fact, the necessary and sufficient external object that is needed to build the whole
picture.

May be it deserves to note that establishing the symmetry properties of the equa-
tions considered is not our main purpose in this paper. Our aim is to extract
the precise external structures used by the equation(s) under consideration. All
further reinterpretations of these initial structures in terms of other objects and op-
erations, as well as all useful concequences (e.g. corresponding symmetry proper-
ties), we consider as a second step revealing the potential abilities of these struc-
tures. For example, we may define Maxwell equations on R

4 through the Hodge
∗-operator defined by the pseudometric g: dF = 0, d ∗ F = 0, but the impor-
tant moment is that the second equation d ∗ F = 0 does not make use of the
∗-operator, it uses only one of its properties, namely the property that it defines a
concrete complex structure in Λ2(R4) and nothing more, and this complex struc-
ture may be introduced without making use of the pseudometric g. So, if we start
from the equations, we have to try to build all needed structures in terms of those
already introduced by the very equations, and we should introduce new ones only
if it is impossible to define them through the available ones. This is the philosophy
we are going to follow in this paper.

2. The Complex Structure in the Standard Third Formulation of
Maxwell Equations

We consider the pure field Maxwell equations

curlE +
1

c

∂B

∂t
= 0, div B = 0 (1)

curlB −
1

c

∂E

∂t
= 0, div E = 0. (2)

First we note, that because of the linearity of these equations if (Ei,Bi), i =
1, 2, ... are a collection of solutions, then every couple of linear combinations of
the form

E = aiEi, B = aiBi (3)

(sum over the repeated i = 1, 2, ...) with arbitrary constants ai gives a new solu-
tion. This property will not be subject to our further considerations. Our attention
will be focussed on possible linear combinations of the kind

E
′ = aE + bB, B

′ = mE + nB, a, b, m, n = constant.
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The important observation made by Heaviside [6], and later considered by Larmor
[7], is that the substitution

E → −B, B → E (4)

transforms the first couple (1) of the pure field Maxwell equations into the second
couple (2), and vice versa, the second couple (2) is transformed into the first one
(1). This symmetry transformation (4) of the pure field Maxwell equations will
be called special duality transformation, or SD-transformation. It clearly shows
that the electric and magnetic components of the pure electromagnetic field are
interchangeable and the interchange (4) transforms solution into solution. This
feature of the pure electromagnetic field reveals its dual nature.

It is important to note that the SD-transformation (4) does not change the energy
density 8πw = E

2 +B
2, the Poynting vector 4πS = c(E×B) , and the (nonlin-

ear) Poynting relation
∂

∂t

E
2 + B

2

8π
= −div S.

Hence, from energy-momentum point of view two dual, in the sense of (4), solu-
tions are indistinguishable.

Note that the transformation (4) does NOT come from transformation of the co-
ordinates, it acts only in the space of solutions, and it may be written in a matrix
form as follows:

(E,B)

∥∥∥∥ 0 1
−1 0

∥∥∥∥ = (−B,E). (5)

The following question now arises naturally: do there exist constants (a, b, m, n),
such that the linear combinations

E
′ = aE + mB, B

′ = bE + nB (6)

or in a matrix form

(E′,B′) = (E,B)

∥∥∥∥ a b

m n

∥∥∥∥ = (aE + mB, bE + nB) (7)

form again a vacuum solution? Substituting E
′ and B

′ into Maxwell’s vacuum
equations we see that the answer to this question is affirmative iff m = −b, n = a,
i.e., iff the corresponding matrix S is of the form

S =

∥∥∥∥ a b

−b a

∥∥∥∥ . (8)
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The new solution will have now energy density w′ and momentum density S
′ as

follows

w′ =
1

8π

(
E

′2 + B
′2
)

=
1

8π
(a2 + b2)

(
E

2 + B
2

)
S
′ = (a2 + b2)

c

4π
E × B.

Obviously, the new and the old solutions will have the same energy and momen-
tum if a2 + b2 = 1, i.e., if the matrix S is unimodular. In this case we may put
a = cosα and b = sinα, where α = constant, so transformation (8) becomes

Ẽ = E cos α − B sinα, B̃ = E sinα + B cos α. (9)

Transformation (9) is known as electromagnetic duality transformation, or D-
transformation. It has been a subject of many detailed studies in various aspects
and contexts [2,6,10,11]. It also has greatly influenced some modern develop-
ments in non-Abelian Gauge theories [1], as well as some recent general views on
duality in field theory, especially in superstring and brane theories (classical and
quantum).

From physical point of view a basic feature of the D-transformation (9) is, that the
difference between the electric and magnetic fields becomes non-essential: we
may superpose the electric and the magnetic vectors, i.e., vector-components, of
a general electromagnetic field to obtain new solutions. From mathematical point
of view we see that Maxwell’s equations in vacuum, besides the usual linearity
(3) mentioned above, admit also “cross”-linearity, i.e., linear combinations of E

and B of a definite kind determine new solutions.

Any linear map φ : R
2 → R

2, having in the canonical basis of R
2 a matrix S

of the kind (8), is a symmetry of the canonical complex structure I of R
2. We

recall that if the canonical basis of R
2 is denoted by (ε1, ε2) then I is defined

by I(ε1) = ε2, I(ε2) = −ε1, so if S is given by (8) we have: S.I.S−1 = I.
Hence, the electromagnetic D-transformations (9) coincide with the unimodular
symmetries of the canonical complex structure I of R

2. This important in our view
remark clearly points out that the canonical complex structure I in R

2 should be
an essential element of classical electromagnetic theory, so we should in no way
neglect it. Moreover, in our opinion and recalling the above mentioned explicit
introducing of the symplectic structure in hamiltonian mechanics, we must find an
appropriate way to introduce I explicitly in the equations.

Finally we note that D-transformations change the two well known invariants:
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I1 = (B2 − E
2) and I2 = 2E.B in the following way

Ĩ1 = B̃
2 − Ẽ

2 = (B2 − E
2) cos 2α + 2E.B sin 2α = I1 cos 2α + I2 sin 2α

(10)
Ĩ2 = 2Ẽ.B̃ = (E2 − B

2) sin 2α + 2E.B cos 2α = −I1 sin 2α + I2 cos 2α.

It is seen that even the SD-transformation, where α = π/2, changes these two
invariants: I1 → −I1, I2 → −I2. This shows that if these two invariants define
which solutions should be called different, then by making an arbitrary dual trans-
formation we will always produce different solutions, no matter if these solutions
carry the same energy-momentum or not. In general we always have

Ĩ1
2
+ Ĩ2

2
= I2

1 + I2
2 (11)

i.e., the sum of the squared invariants is a D-invariant.

The suggestion coming from the above notices is that the electromagnetic field,
considered as one physical object, has two physically distinguishable and dy-
namically interrelated vector components, (E,B), so the adequate mathematical
model-object must have two vector components and must admit two-dimensional
linear transformations of its components, in particular, the two-dimensional rota-
tions should be closely related to the invariance properties of the energy-momentum
characteristics of the field. But every two-dimensional linear transformation re-
quires a “room where to act”, i.e., a two-dimensional real vector space has to be
explicitly pointed out and properly incorporated in theory. This two-dimensional
space has always been implicitly present inside the electromagnetic field theory,
but has not been given a corresponding respect. We introduce it as follows:

The electromagnetic field is mathematically represented on R
3 by

an R
2-valued differential one-form ω, such that in the canonical

basis (ε1, ε2) in R
2 the one-form ω looks as follows

ω = E ⊗ ε1 + B ⊗ ε2.

(12)

Remark 1. In (12), as well as later on, we identify the vector fields and one-forms
on R

3 through the euclidean metric and we write, e.g. ∗(E∧B) = E×B, where
∗ is the Hodge star with respect to the euclidean metric. Also, we identify (R2)∗

with R
2 through the euclidean metric.

Now we have to present equations (1) and (2) correspondingly, i.e., in terms of
R

2-valued objects.
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The above assumption (12) requires a general covariance with respect to transfor-
mations in R

2, so, the complex structure I has to be introduced explicitly in the
equations. In order to do this we recall that the linear map I : R

2 → R
2 induces

a map

I∗ : ω → I∗(ω) = E ⊗ I(ε1) + B ⊗ I(ε2) = −B ⊗ ε1 + E ⊗ ε2.

We recall also that every operator D in the set of differential forms is naturally
extended to vector-valued differential forms according to the rule D → D ×
id , and id is usually omitted. Having in mind the identification of vector fields
and one-forms through the euclidean metric we introduce now I in Maxwell’s
equations (1)-(2) through ω in the following way

∗dω −
1

c

∂

∂t
I∗(ω) = 0, δω = 0. (13)

Two other equivalent forms of (13) are given as follows

dω − ∗
1

c

∂

∂t
I∗(ω) = 0, δω = 0

∗dI∗(ω) +
1

c

∂

∂t
ω = 0, δω = 0.

In order to verify the equivalence of (13) to Maxwell equations (1) and (2) we
compute the marked operations. We obtain

∗dω −
1

c

∂

∂t
I∗(ω) =

(
curlE +

1

c

∂B

∂t

)
⊗ ε1 +

(
curlB −

1

c

∂E

∂t

)
⊗ ε2.

The second equation δω = 0 is, obviously, equivalent to

div E ⊗ ε1 + div B ⊗ ε2 = 0

since δ = −div. Hence, (13) coincides with (1) and (2).

We shall emphasize once again that according to our general assumption (12) the
field ω will have different representations in the different bases of R

2. Changing
the basis (ε1, ε2) to any other basis ε1′ = ϕ(ε1), ε2′ = ϕ(ε2), means, of course,
that in equations (13) the field ω changes to ϕ∗ω and the complex structure I
changes to ϕIϕ−1. In some sense this means that we have two fields now: ω and
I, but I is given beforehand and it is not determined by equations (13). So, in the
new basis the I-dependent equations of (13) will look like

∗dϕ∗ω −
1

c

∂

∂t
(ϕIϕ−1)∗(ϕ∗ω) = 0.



Complex Structures in Electrodynamics 21

If ϕ is a symmetry of I : ϕIϕ−1 = I (so, ϕ has a matrix representation as given
by (8)), then we transform just ω to ϕ∗ω.

In order to write down the Poynting energy-momentum balance relation we recall
the product of vector-valued differential forms. Let Φ = Φa⊗ea and Ψ = Ψb⊗kb

be two differential forms on some manifold with values in the vector spaces V1

and V2 with bases {ea}, a = 1, ..., n and {kb}, b = 1, ..., m, respectively. Let
f : V1×V2 → W be a bilinear map valued in a third vector space W . Then a new
differential form, denoted by f(Φ, Ψ), on the same manifold and valued in W is
defined by

f(Φ, Ψ) = Φa ∧ Ψb ⊗ f(ea, kb).

Clearly, if Φ and Ψ are of degree p and q respectively, then the product is a
(p + q)-form.

Assume now that V1 = V2 = R
2 and the bilinear map is the exterior product:

∧ : R
2 × R

2 → Λ2(R2).

Let us compute the expression ∧(ω, dω).

∧(ω, dω) = ∧(E ⊗ ε1 + B ⊗ ε2, dE ⊗ ε1 + dB ⊗ ε2)

= (E ∧ dB − B ∧ dE) ⊗ ε1 ∧ ε2

= −d(E ∧ B) ⊗ ε1 ∧ ε2 = −d(∗ ∗ (E ∧ B)) ⊗ ε1 ∧ ε2

= ∗δ(E × B) ⊗ ε1 ∧ ε2 = − ∗ div(E × B) ⊗ ε1 ∧ ε2

= −div(E × B)dx ∧ dy ∧ dz ⊗ ε1 ∧ ε2.

Following the same rules we obtain

∧

(
ω, ∗

1

c

∂

∂t
I∗ω

)
=

1

c

∂

∂t

E
2 + B

2

2
dx ∧ dy ∧ dz ⊗ ε1 ∧ ε2.

So, the Poynting energy-momentum balance relation is given by

∧

(
ω, dω − ∗

1

c

∂

∂t
I∗ω

)
= 0. (14)

Since the two-form ε1 ∧ ε2 is invariant with respect to rotations in R
2 we have the

D-invariance of the above energy-momentum quantities and relations.

Note the following simple forms of the energy density

1

8π
∗ ∧ (ω, ∗I∗ω) =

E
2 + B

2

8π
ε1 ∧ ε2
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and of the Poynting vector

c

8π
∗ ∧(ω, ω) =

c

4π
E × B ⊗ ε1 ∧ ε2

the D-invariance is obvious. As for the general R
2 covariance of the second equa-

tion of (13) it is obvious.

Resuming, we may say that pursuing the mathematical adequacy of the correspon-
dence: one physical object - one mathematical model-object, we came to the idea
to introduce the R

2-valued one-form ω as the mathematical model-field. This, in
turn, set the problem for general R

2 covariance of the equations and this problem
was solved through introducing explicitly the canonical complex structure I in the
dynamical equations (13) of the theory. This means that a linear transformation
ϕ : R

2 → R
2

E
′ = aE + mB, B

′ = bE + nB

will give again a solution if I participates in the equations appropriately and the
transformation ϕ is a symmetry of I.

3. Four-Dimensional Consideration

3.1. Classical Electrodynamics

We are going to reveal the complex structure in the four-dimensional formulation
of Maxwell equations in two ways. The first way is quite direct and consists in
the following.

In the four-dimensional formulation of Maxwell equations we consider the time
variable x4 = ξ = ct, where c is the velocity of light, as a coordinate and treat it
in the same way as the other three spatial coordinates (x1, x2, x3 = x, y, z). So,
the base manifold becomes four-dimensional, in fact, R

4. Since the vector fields
on R

4 form a four-dimensional module, E and B can not be considered as vector
fields on R

4. But the couple (E,B) has six components, therefore we consider
the space Λ2(R4) of two-forms, which is a six-dimensional module, as a natural
solution space. Moreover, as it is well known, in the basis

dx ∧ dy, dx ∧ dz, dy ∧ dz, dx ∧ dξ, dy ∧ dξ, dz ∧ dξ

of Λ2(R4) if we put for F ∈ Λ2(R4)

F12 = B3, F13 = −B2, F23 = B1, F14 = E1, F24 = E2, F34 = E3
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then the equation dF = 0 gives the first couple (1) of Maxwell equations. Simi-
larly, if we consider the two-form Φ(F ), given in this basis by

(ΦF )12 = E3, (ΦF )13 = −E2, (ΦF )23 = E1

(ΦF )14 = −B1, (ΦF )24 = −B2, (ΦF )34 = −B3

then the equation d(ΦF ) = 0 gives the second couple (2) of Maxwell equations.
Hence, Maxwell equations in vacuum become

dF = 0, d(ΦF ) = 0. (15)

We especially note that no pseudometric is needed to write down these equations.
We also note that if (F, Φ(F )) is a solution then the two linear combinations

F ′ = aF + b(ΦF ), G = mF + n(ΦF ) (16)

with arbitrary (a, b, m, n) define again two closed two-forms, but these two closed
two-forms will define a solution only if G = Φ(F ′).

The linear map Φ : Λ2(R4) → Λ2(R4), as defined above, has the property

Φ◦Φ = −id Λ2(R4)

hence it introduces complex structure in the space Λ2(R4).

The second way follows the considerations in the three-dimensional case and
makes use of the complex structure I of R

2, and of the space Λ2(R4, R2) of
R

2-valued differential two-forms on R
4. In general an R

2 valued two-form Ω on
R

4 looks as follows
Ω = F1 ⊗ ε1 + F2 ⊗ ε2.

Consider now the two linear maps

F : Λ2(R4) → Λ2(R4), ϕ : R
2 → R

2.

These maps induce a map (F , ϕ) : Λ2(R4, R2) → Λ2(R4, R2) by the rule:

(F , ϕ)(Ω) = (F , ϕ)(Fa ⊗ εa) = F(Fa) ⊗ ϕ(εa), summation over a=1,2.

It is natural to ask now is it possible the joint action of these two maps to keep Ω
unchanged, i.e., to have

(F , ϕ)(Ω) = Ω.

In such a case the form Ω is called (F , ϕ)-equivariant. If ϕ is a linear isomor-
phism and we identify F with (F , id R2) and ϕ with (id Λ2(R4), ϕ), we can equiv-
alently write

F(Ω) = ϕ−1(Ω).
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If we specialize now: ϕ = I we readily find that the (F , I)-equivariant forms Ω
must satisfy

(F , I)(Ω) = −F(F2) ⊗ ε1 + F(F1) ⊗ ε2 = F1 ⊗ ε1 + F2 ⊗ ε2 = Ω.

Hence, we must have F(F1) = F2 and F(F2) = −F1, i.e., F◦F = −id . In other
words, the property I◦I = −id R2 is carried over to F : F◦F = −id Λ2(R4).

Hence, recalling the linear map Φ, introduced above, and working with (Φ, I)-
equivariant two-forms on R

4, we can replace the action of I with the action of
Φ. And that’s why in the four-dimensional formulation of electrodynamics we
have general R

2 covariance if we work with forms Ω of the kind Ω = F ⊗ ε1 +
ΦF ⊗ ε2. In the three-dimensional formulation this is not possible to be done
since we work there on R

3 and no map Φ : Λ1(R3) → Λ1(R3) with the property
Φ◦Φ = −id Λ1(R3) exists since Λ1(R3) is a three-dimensional space and the re-
lation Φ◦Φ = −id requires even-dimensional space, so we have to introduce the
complex structure through R

2 only.

Having in view these considerations our basic assumption for the algebraic nature
of the mathematical-model object must read:

The electromagnetic field is mathematically represented on R
4

by a (Φ, I)-equivariant R
2 valued two-form Ω such that in the

canonical basis (ε1, ε2) in R
2 the one-form Ω looks as follows

Ω = F ⊗ ε1 + (ΦF ) ⊗ ε2.

(17)

The pure field Maxwell equations, expressed through the (Φ, I)-equivariant two-
form Ω have, obviously, general R

2 covariance and are equivalent to

dΩ = 0. (18)

Now we are going to show how the well known from standard relativistic elec-
trodynamics on Minkowski space-time pseudometric structures can be introduced
by means of the complex structure Φ, which is the only external mathematical
structure on R

4 introduced by Maxwell equations.

We begin with giving the matrix of Φ in the above given coordinate basis dxµ ∧
dxν , µ < ν, where x4 = ξ = ct, of the space Λ2(R4) considered as a six-
dimensional module over the algebra C∞(R4) of all smooth real valued functions
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on R
4

Φ
(αβ)
(µν) =

∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥
(19)

where α < β, µ < ν, (αβ) numbers the rows and (µν) numbers the columns.
Hence,

Φ(dx ∧ dy)=−dz ∧ dξ, Φ(dx ∧ dz)=dy ∧ dξ, Φ(dy ∧ dz)=−dx ∧ dξ

Φ(dx ∧ dξ)=dy ∧ dz, Φ(dy ∧ dξ)=−dx ∧ dz, Φ(dz ∧ dξ)=dx ∧ dy.

Remark 2. If we introduce the notation dx ∧ dy = e1, . . . , dz ∧ dξ = e6, and
∂
∂x

∧ ∂
∂y

= e1, . . . ,
∂
∂z

∧ ∂
∂ξ

= e6, so that {ei} and {ej} are dual bases, then Φ
may be considered as (2, 2) tensor and represented by

Φ =
∑

1≤i≤6

(−1)iei ⊗ e7−i.

In order to build all additional structures needed and used in Electrodynamics we
are going to make use of the Poincaré isomorphism P, which is algebraically built
as follows [5]. Let Λp(V ) be the space of antisymmetric contravariant p-tensors,
or p-vectors for short, and Λ(n−p)(V ∗) be the space of (n−p)-forms over the pair
of dual n-dimensional real vector spaces (V, V ∗), and p = 1, . . . , n. If {ei} and
{εi} are two dual bases we have the n-vector ω = e1 ∧ · · · ∧ en and the n-form
ω∗ = ε1 ∧ · · · ∧ εn. The duality requires 〈εi, ej〉 = δi

j and 〈ω∗, ω〉 = 1. If
x ∈ V and α ∈ Λp(V ∗) then by means of the insertion operator i(x) we obtain
the (p − 1)-form i(x)α. If α is decomposable: α = α1 ∧ α2 ∧ · · · ∧ αp, where
α1, . . . , αp are one-forms, then

i(x)α =〈α1, x〉α2 ∧ · · · ∧ αp − 〈α2, x〉α1 ∧ α3 ∧ · · · ∧ αp

+ . . . (−1)p−1〈αp, x〉α1 ∧ · · · ∧ αp−1.

Now let x1 ∧ x2 ∧ · · · ∧ xp ∈ Λp(V ). The Poincaré isomorphism P : Λp(V ) →
Λn−p(V ∗) acts as follows

Pp(x1 ∧ x2 ∧ · · · ∧ xp) = i(xp)◦i(xp−1)◦ . . .◦ i(x1)ω
∗. (20)

In the same way, for the opposite isomorphism Pp we have

Pp(α1 ∧ · · · ∧ αp) = i(αp)◦ . . .◦ i(α1)ω. (21)
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For nondecomposable tensors P is extended by linearity. We note also the rela-
tions:

Pn−pP
p = (−1)p(n−p)id , Pn−pPp = (−1)p(n−p)id

〈Pp(α1 ∧ · · · ∧ αp), Pp(x1 ∧ · · · ∧ xp)〉 = 〈α1 ∧ · · · ∧ αp, x1 ∧ · · · ∧ xp〉.

On an arbitrary basis element P acts in the following way:

Pp(εi1 ∧ · · · ∧ εip) = (−1)

p�

k=1

(ik−k)
eip−1

∧ · · · ∧ ein (22)

where i1 < · · · < ip and ip+1 < · · · < in are complementary p− and (n − p)−
tuples.

On the manifold R
4 we have the dual bases {dxi} and

{
∂

∂xi

}
of the two modules

of one-forms and vector fields. The corresponding ω and ω∗ are

ω =
∂

∂x
∧

∂

∂y
∧

∂

∂z
∧

∂

∂ξ
, ω∗ = dx ∧ dy ∧ dz ∧ dξ.

Now we define the nondegenerate operator D : Λ2(T ∗
R

4) → Λ2(TR
4) as follows

D = −P◦Φ (23)

where Φ is defined in (19). On the basis elements D acts in the following way:

D(dx∧ dy) =
∂

∂x
∧

∂

∂y
, D(dx∧ dz) =

∂

∂x
∧

∂

∂z
, D(dy ∧ dz) =

∂

∂y
∧

∂

∂z

D(dx∧dξ) = −
∂

∂x
∧

∂

∂ξ
, D(dy∧dξ) = −

∂

∂y
∧

∂

∂ξ
, D(dz∧dξ) = −

∂

∂z
∧

∂

∂ξ
.

Note that
D(dx ∧ dy) ∧ D(dz ∧ dξ) = −ω.

The isomorphism D defines a bilinear form h2 : Λ2(T ∗
R

4) × Λ2(T ∗
R

4) → R

according to the rule: h2(α, β) = 〈D(α), β〉. In our coordinate basis h2 has
components as follows

h2(12,12) = h2(13,13) = h2(23,23) = −h2(14,14) = −h2(24,24) = −h2(34,34) = 1

and all other components are equal to zero. On the other hand the complex struc-
ture Φ defines a bilinear form h̃2 : Λ2(T ∗

R
4) × Λ2(T ∗

R
4) → R according to the

rule
α ∧ (Φβ) = −h̃2(α, β)ω∗.
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It is easy to show that these two bilinear forms coincide: h2 = h̃2.

We are going to extend the complex structure Φ to a map �: Λp(T ∗
R

4) →
Λ4−p(T ∗

R
4), p = 1, . . . , 4. To this end we first find that there exists unique (up to

a sign) linear isomorphism ϕ : T ∗(R4) → T (R4) satisfying the two conditions:

1. ϕ is represented by a diagonal matrix in the bases {dxi}, { ∂
∂xi }

2. ∧2ϕ = D.

Actually, these two conditions imply

ϕ(dxµ) = λµ ∂

∂xµ
, no summation over µ

(∧2ϕ)µν,αβ = ϕµαϕνβ − ϕµβϕνα, µ < ν, α < β

and lead to

−λ1 = −λ2 = −λ3 = λ4 = 1, or λ1 = λ2 = λ3 = −λ4 = 1.

We are going to work further with the first of these two solutions.

Thus we have ϕ and ∧2ϕ. Computing Λ3ϕ in the bases

dxα ∧ dxβ ∧ dxµ,
∂

∂xα
∧

∂

∂xβ
∧

∂

∂xµ
, α < β < µ

we find that ∧3ϕ has only diagonal components equal to (−1, 1, 1, 1). Finally,
∧4ϕ has only one component (∧4ϕ)1234 = −1, so that ∧4ϕ(ω∗) = −ω.

In the well known way the linear isomorphisms ∧pϕ, p = 1, . . . , 4, define bilinear
forms hp in Λp(T ∗

R
4) by the rule hp(α, β) = 〈∧pϕ(α), β〉, and all these four

bilinear forms are nondegenerate.

Now we extend Φ to � by the rule

αp ∧ �βp = −hp(αp, βp)ω∗. (24)

The above algebraic considerations show that:

1. The bilinear forms hp define pseudoeuclidean metric structures in the spaces
Λp(T ∗

R
4), p = 1, . . . , 4, and in fact, in all tensor bundles over the mani-

fold R
4.

2. The following relation holds:

�p = −P◦ ∧
p ϕ. (25)
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3.2. Symmetries of Maxwell Equations Generated by Φ

In order to find the symmetries of Maxwell equations, generated by vector fields
X on the base manifold R

4 we have to solve the equation LXΦ = 0, where LX is
the Lie derivative along X . We shall solve this problem as a particular case of the
more general problem to find the symmetries of the operator �, i.e., to find those
X along which we have

[LX , �] = (LX)◦ � − �◦ (LX) = 0.

First we note

LX (α ∧ �β) = (LXα) ∧ �β + α ∧ LX (�β)

= (LXα) ∧ �β + α ∧ [LX , �] β + α ∧ �LXβ.

On the other hand, making use of relation (24), we obtain (α, β ∈ Λp(T ∗
R

4))

LX(α ∧ �β)

= −(LXhp)(α, β)ω∗ − hp(LXα, β)ω∗ − hp(α, LXβ)ω∗ − hp(α, β)LXω∗

= −(LXhp)(α, β)ω∗ + (LXα) ∧ �β + α ∧ �LXβ − hp(α, β)divX.ω∗

= −(LXhp)(α, β)ω∗ + LX (α ∧ �β) − α ∧ [LX , �] β − hp(α, β)divX.ω∗.

Since α and β are arbitrary p-forms from this relation it follows that [LX , �] = 0
if

LXhp = −divX.hp, p = 1, 2, 3, 4. (26)

Therefore, for the case we are interesting in we obtain

LXΦ = 0 ⇐⇒ LXh2 = −divX.h2. (27)

From this relation we obtain the following (independent) equations for the com-
ponents of any local symmetry X of Φ.

2

(
∂X1

∂x
+

∂X2

∂y

)
= divX, 2

(
∂X1

∂x
+

∂X1

∂ξ

)
= divX

2

(
∂X1

∂x
+

∂X3

∂z

)
= divX, 2

(
∂X2

∂y
+

∂X4

∂ξ

)
= divX

2

(
∂X2

∂y
+

∂X3

∂z

)
= divX, 2

(
∂X3

∂z
+

∂X4

∂ξ

)
= divX



Complex Structures in Electrodynamics 29

(
∂X2

∂x
+

∂X1

∂y

)
= 0,

(
∂X4

∂x
−

∂X1

∂ξ

)
= 0(

∂X3

∂x
+

∂X1

∂z

)
= 0,

(
∂X4

∂y
−

∂X2

∂ξ

)
= 0(

∂X3

∂y
+

∂X2

∂z

)
= 0,

(
∂X4

∂z
−

∂X3

∂ξ

)
= 0.

These equations have the following solutions:

1. Translations:

X =
∂

∂x
, X =

∂

∂y
, X =

∂

∂z
, X =

∂

∂ξ

as well as any linear combination with constant coefficients of these four vector
fields;

2. Spatial rotations:

X = y
∂

∂x
− x

∂

∂y
, X = z

∂

∂y
− y

∂

∂z
, X = x

∂

∂z
− z

∂

∂x

3. Space-time rotations:

X = x
∂

∂ξ
+ ξ

∂

∂x
, X = y

∂

∂ξ
+ ξ

∂

∂y
, X = z

∂

∂ξ
+ ξ

∂

∂z

4. Dilatations:

X = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ ξ

∂

∂ξ
, or X = xµ ∂

∂xµ

5. Conformal (with respect to the bilinear form h1) vector fields:

Xµ =
(
h1

αβxαxβ
) ∂

∂xµ
− 2h1

µνxν

(
xσ ∂

∂xσ

)
, µ = 1, . . . , 4.

Let us consider the flows generated by the above vector fields.

1. The translation vector fields generate flows as follows:

xµ′

= xµ + aµ, aµ are four constants.

2. The spatial rotations generate “rotational” flows inside the three planes (x, y),
(x, z) and (y, z) as follows

x′=x cos s+y sin s, x′=x cos s+z sin s, y′=y cos s+z sin s

y′=−x sin s+y cos s, z′=−x sin s+z cos s, z′=−y sin s+z cos s.
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3. The space-time rotations generate the following flows

x′ = x chs + ξ shs, y′ = y chs + ξ shs, z′ = z chs + ξ shs

ξ′ = x shs + ξ chs, ξ′ = y shs + ξ chs, ξ′ = z shs + ξ chs.

We will concentrate for a while on the flow in the plane (x, ξ). It is obtained by
solving the equations

dx

ds
= ξ,

dξ

ds
= x.

Let xs=0 = x◦, ξs=0 = ξ◦. Then the solution is

x = x◦chs + ξ◦shs =
x◦ + thsξ◦√

1 − th2s
=

x◦ + βct◦√
1 − β2

ξ = x◦shs + ξ◦chs =
x◦ths + ct◦√

1 − th2s
=

x◦β + ct◦√
1 − β2

,

where β2 = th2s ≤ 1, and s is fixed. The standard physical interpretation of
these relations is that the frame (x◦, ξ◦) moves with respect to the frame (x, ξ)
along the common axis x ≡ x◦ with the velocity v = βc, and since |β| ≤ 1 then
|v| ≤ c. It is important to have in mind that this interpretation requires that c has
the same value in all such frames. This special invariance property of Maxwell
equations, i.e., of the complex structure Φ, brought to life the Poincaré-Einstein
relativity principle.

4. The dilatation vector field generates the flow

xµ′

= axµ, a = exp(s) = constant.

5. The conformal (with respect to the bilinear form h1) vector fields generate the
nonlinear flows

x′ =
x + 〈x, x〉d1

1 + 2〈x, d〉 + 〈x, x〉〈d, d〉
(28)

y′ =
y + 〈x, x〉d2

1 + 2〈x, d〉 + 〈x, x〉〈d, d〉
(29)

z′ =
z + 〈x, x〉d3

1 + 2〈x, d〉 + 〈x, x〉〈d, d〉
(30)

ξ′ =
ξ + 〈x, x〉d4

1 + 2〈x, d〉 + 〈x, x〉〈d, d〉
(31)

where d = (d1, . . . , d4) are the four constants-parameters of the special confor-
mal transformations and 〈x, d〉 = −xd1 − yd2 − zd3 + ξd4. Note that these
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transformations may be considered as coordinate transformations only if the cor-
responding denominators are different from zero.

The above four relations may be written together in the following way

xµ′

=
xµ + (h1

αβxαxβ)dµ

1 + 2h1
αβdαxβ + (h1

αβxαxβ)(h1
µνdµdν)

.

These symmetry considerations show undoubtedly the above mentioned analogy
with the symplectic mechanics: the canonical (q, p)-transformations defined as
symmetries of the symplectic two-form on T ∗(R3) determine symmetries of the
hamilton equations; in the same way, the transformations of R

4, defined as (or
generated by) symmetries of the complex structure Φ, determine symmetries of
Maxwell equations.

3.3. Extended Electrodynamics

Extended Electrodynamics (EED) [5] was brought to life in pursue of a theoret-
ical ability to describe mathematically time-stable finite field configurations hav-
ing the basic features of finite photon-like field objects, i.e., to have a consistent
translational-rotational propagation, to carry finite energy-momentum and spin-
momentum, the translational component of propagation to follow straight line
and to have velocity of light, to have polarization properties, etc. From formal
point of view EED extends Maxwell vacuum equations dF = 0, d ∗ F = 0 to
nonlinear vacuum equations. In standard Minkowski space terms this extension
looks as follows

F ∧ ∗dF = 0, (∗F ) ∧ ∗d ∗ F = 0, F ∧ ∗d ∗ F + (∗F ) ∧ ∗dF = 0 (32)

or in terms of the coderivative δ

δF ∧ ∗F = 0, (δ ∗ F ) ∧ F = 0, δF ∧ F − (δ ∗ F ) ∧ (∗F ) = 0.

In order to make use of the introduced through Φ in the previous subsection op-
erators we first recall [10] that the insertion operator i(x) may be extended to an
insertion operator i(t) : α → i(t)α, where t is a q-vector, α is a p-form, i(t)α is a
(p − q)-form, and q ≤ p. For the decomposable case t = x1 ∧ x2 ∧ · · · ∧ xq this
extension is defined by

i(t)α = i(xp)◦ . . .◦ i(x1)α
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and in the nondecomposable case it is extended by linearity. In components we
obtain

(i(t)α)i1...ip−q
= tk1...kqαk1...kqi1...ip−q

, k1 < k2 < · · · < kp, i1 < · · · < ip−q

where summation over k1, . . . , kq is understood.

In components equations (28) are given by

Fµν(dF )µνσ = 0, (∗F )µν(d ∗ F )µνσ = 0

Fµν(d ∗ F )µνσ + (∗F )µν(dF )µνσ = 0, µ < ν

or in terms of the coderivative

(δ ∗ F )µ(∗F )µν = 0, (δF )µFµν = 0, (δ ∗ F )µFµν + (δF )µ(∗F )µν = 0.

Hence, we can make use of the operator D to get DF and DΦF = −P◦Φ◦ΦF =
PF , and then we form the corresponding products. So, the EED vacuum equa-
tions (28) look as follows in these terms

i(DF )dF = 0, i(PF )d(ΦF ) = 0, i(DF )d(ΦF ) + i(PF )dF = 0. (33)

Hence, EED vacuum equations also do not need and do not use pseudoeuclidean
metric.

We are going to give one more formulation of the EED vacuum equations, and to
this end we first extend the Lie derivative operator. Usually the Lie derivative is
defined with respect to a given (but arbitrary) vector field and, considered in the
frame of differential forms, it is given by LXα = i(X)dα + di(X)α, where X is
a vector field and α is a p-form. Thus, LXα describes how α changes along the
trajectories of X . A natural question arises: is it possible to define a “generalized
Lie derivative”, which more or less would describe the simultaneous change of α

along several vector fields? In order to answer (although in some extent) positively
to this question we make the following construction.

Let X1, X2, . . . , Xq be vector fields on an n-manifold M , Then we have the q-
vector T = X1 ∧ X2 ∧ · · · ∧ Xq. Let α be a p-form on M and q ≤ p. Then the
generalized Lie derivative LT α of α along the q-vector T is defined by

LT α = i(T )dα + di(T )α. (34)

As in the usual case we always have commutation with d

LT d = dLT .
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Of course, the above definition may be immediately extended by linearity and
used for any two q-vector and p-form if q ≤ p, and, if q > p, it seems naturally
to put LT α ≡ 0. If the vector fields X1, . . . , Xq define an integrable distribution,
and the Pfaff one-forms α1, α2, . . . , αp define the corresponding integrable co-
distribution, 〈αi, Xj〉 = 0, q + p = n, then

LT (α1 ∧ α2 ∧ · · · ∧ αp) = 0.

Now the EED vacuum equations (28) are given by

LDF F = 0, LPF ΦF = 0, LDF ΦF + LPF F = 0

i(DF )F = 0, i(DF )ΦF = 0

where the last two equations require zero values of the two well known invariants
I1 and I2.

4. Conclusion

Here we are going to mention those points of the paper which from our point of
view seem most important.

The duality properties of the solutions to Maxwell equations reveal the internal
structure of the field as having two vector components, which are differentially
interrelated (through the equations), but algebraically distinguished.

From the point of view advocated in this paper, an adequate understanding of
these duality properties of the solutions to Maxwell equations requires explicitly
introduced complex structure in the equations. This brought us to make use of
R

2-valued differential forms, ω and Ω, as mathematical model objects of the elec-
tromagnetic field. This is the first important step towards further analysis.

In the traditional three-dimensional formulation of the theory it is important to
introduce the canonical complex structure I of R

2 in the equations in order to
be able to represent any solution in any basis of R

2, the presence of I makes it
possible. Having this at hand we showed that the unimodular symmetries of I,
i.e., the two-dimensional rotations, are in a close connection with the conservative
properties of the energy-momentum.

Much more interesting and fruitful turned out to be the four-dimensional formu-
lation. Combining the first couple (1) of Maxwell equations into one relation
through the appropriately constructed two-form F , dF = 0, made somewhere
in the beginning of twentieth century, we consider as a great achievement in
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field theory, because no new or extra objects are needed to formulate this cou-
ple of equations. The exterior derivative d commutes with every transformation
f : R

4 → R
4, so, any such f -symmetry of the whole Maxwell system of equa-

tions shall be determined by the second couple (2) of equations. The particular
symmetry (E,B) → (−B,E) interchanges the two couples of equations, so, the
second couple (2) of equations should also be possible to be cast into the form
of dF ′ = 0. The explicit form of F ′ is determined entirely by the equations:
they require and make use of the linear map Φ, as given in the coordinate basis of
Λ2(T ∗

R
4) by the matrix (19), and satisfying the condition Φ◦Φ = −id Λ2(T ∗R4),

which is the defining condition for a linear map to be a complex structure. Hence,
the only external structure used by Maxwell equations in their four-dimensional
formulation, is the complex structure Φ, no pseudoeuclidean metric is needed.
Therefore, all symmetries of these equations coming from transformations f of
the base manifold R

4 have to be symmetries of Φ. These symmetries f of Φ
include translations, spatial rotations, space-time (Lorentz) rotations, dilatations,
and (nonlinear space-time) special conformal transformations. The physical in-
terpretation of a Lorentz rotation as a “change of frame” requires the same value
of the constant c in the time coordinate ξ = ct with respect to the various inertial
frames.

We showed further that, combining appropriately Φ with the naturally existing
Poincaré isomorphism P, makes possible to produce all pseudometric structures
hp needed in the theory. Hence, all these pseudometric structures are secondary
objects. Therefore, in our view, they should not be preliminary introduced and
considered as necessary (as it is usually done in many textbooks). The Poincaré-
Einstein relativity principle privileges only a part of the known symmetries of Φ
and says nothing about the rest part of the symmetries of Φ.

It was further shown that the equations of Extended Electrodynamics also do not
need pseudoeuclidean metric structures, although their nonlinear character. More-
over, EED suggested a natural generalization of the Lie derivative, describing ex-
plicitly how a p-form changes along a given q-tensor , q ≤ p. This generalization
was used to give a new form if the EED vacuum equations, and this last form
recalls very much “symmetry conditions”.

Finally we note that, having at hand the bilinear forms hp, the four-dimensional
formulation of CED and EED in presence of external fields (charges, currents,
media) is straightforward, no special efforts are needed.

In conclusion we shall state once again our view, based on the above considera-
tions:
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The only external structure required by CED and EED in their four-dimensional
formulations on R

4 is the complex structure Φ. All pseudometric structures arise
as secondary objects and may be used when needed, but they should not be con-
sidered as beforehand necessary structures in electrodynamics.
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