
JGSP 6 (2006) 3–10
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Abstract. We review some recent results concerning the open BCS model of
superconductivity as originally proposed by Buffet and Martin. We also briefly
analyze some possible generalizations.

1. Introduction

In a recent paper, [2], we have analyzed the open BCS model as first proposed
in [6, 7] using the techniques of the stochastic limit (SL), [1]. Among the other
results, we have shown that the same values of the critical temperature and of the
order parameters can be found using the SL, in a significantly simpler way. This
procedure suggested us to use this approach in order to generalize the original
model in the attempt to obtain some control on the critical temperature Tc. This
has been done in [3], where we have discussed the role of a second reservoir in
the definition of the model and its consequences on the value of Tc.

In this paper we review the results of these two papers: in particular, we devote the
next section to summarize our results concerning the original model, [2], while in
Section 3 we introduce different models with more reservoirs, [3].

2. The Model

The model discussed in [2] consists of the system, which is described by means
of spin variables, and the reservoir, which is given in terms of bosonic operators.
It is contained in a box of volume V = L3, with N lattice sites. We define,
following [6, 7],

H
(sys)
N = ε̃

N
∑

j=1

σ0
j −

g

N

N
∑

i,j=1

σ+
i σ−

j . (1)
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The algebra of the Pauli matrices is given by [σ+
i , σ−

j ] = δijσ
0
i , [σ±

i , σ0
j ] =

∓2δijσ
±
i . Then, introducing the operators Sα

N = 1
N

∑N
i=1 σα

i and RN = S+
NS−

N =

R†
N , H

(sys)
N can be simply written as H

(sys)
N = N(ε̃S0

N − gRN ) and we have

[S0
N , RN ] = [H

(sys)
N , RN ] = [H

(sys)
N , S0

N ] = 0

for any given N > 0. These Sα
N are all bounded by one in the operator norm, and

the commutators [Sα
N , σβ

j ] go to zero in norm as 1
N when N → ∞, for all j, α and

β.

As for the reservoir, we introduce N bosonic modes a~p,j : j = 1, 2, ..., N , one for
each lattice site. ~p is the value of the momentum of the j-th boson which, if we
impose periodic boundary conditions on the wave functions, has necessarily the
form ~p = 2π

L ~n, where ~n = (n1, n2, n3) and nj ∈ Z. These operators satisfy the
following CCR

[a~p,i, a~q,j ] = [a†~p,i, a
†
~q,j ] = 0, [a~p,i, a

†
~q,j ] = δijδ~p ~q (2)

and their free dynamics is given by

H
(res)
N =

N
∑

j=1

∑

~p∈ΛN

ε~p a†~p,ja~p,j . (3)

Here ΛN = {~p = 2π
L ~n; ~n ∈ Z

3}. It may be useful to notice that the energy of the

different bosons is independent of the lattice site: ε~p = ~p2

2m =
4π2(n2

1
+n2

2
+n2

3
)

2mL2 ·

The interaction between reservoir and system is

H
(I)
N =

N
∑

j=1

(σ+
j aj(f) + h.c.) (4)

where aj(f) =
∑

~p∈ΛN
a~p,jf(~p), f being a given test function which will be

later asked to satisfy some regularity conditions. Notice that, in order to keep the
notation reasonably simple, we are not using the tensor product symbol here and
along this paper, whenever the meaning of the symbols is clear.

The finite volume open system is now described by the following hamiltonian

HN = H0
N + λH

(I)
N , where H0

N = H
(sys)
N + H

(res)
N (5)

and λ is the coupling constant.
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We have seen in [2] that the free evolution of the interaction hamiltonian, H (I)
N (t) =

eiH0
N tH

(I)
N e−iH0

N t, can be written as

H
(I)
N (t) =

N
∑

j=1

∑

α=0,±

(

ρj
αaj(feitνα) + h.c

)

(6)

where
ρj
0 = g2S+

ω2 (2S−σ+
j + S0σ0

j + 2S+σ−
j )

ρj
+ = gS+

ω2 (gS− ω−gS0

ω+gS0 σ+
j + ω−gS0

2 σ0
j − gS+σ−

j )

ρj
− = gS+

ω2 (gS− ω+gS0

ω−gS0 σ+
j − ω+gS0

2 σ0
j − gS+σ−

j )

(7)

with
ω = g

√

(S0)2 + 4S+S−, ν = 2ε̃ + gS0 (8)

and
να(~p) = ν − ε~p + αω. (9)

Here α takes the values 0, + and − and Sα = F − strong limN→∞ Sα
N . F-strong

indicates the strong topology restricted to a certain family F of relevant states,
see [4] and references therein for the details. The introduction of F is needed
because the sequence Sα

N does not converge in the uniform, strong or even in the
weak topology, [4]. As it is widely discussed in, e.g., [1] or [2], the stochastic
limit procedure is strongly linked to the result of the following limit, [1],

I(t) = lim
λ→0

Iλ(t) = lim
λ→0

(

−
i

λ

)2
t

∫

0

dt1

t1
∫

0

dt2 ωtot

(

H
(I)
N (

t1
λ2

)H
(I)
N (

t2
λ2

)

)

which turns out to be, [2]

I(t) = −t

N
∑

j=1

∑

α=0,±

{

ωsys(ρ
j
αρj

α
†
)Γ(a)

α + ωsys(ρ
j
α
†
ρj

α)Γ(b)
α

}

. (10)

Here ωtot = ωsys ⊗ ωβ , where ωsys is a generic state of the system while ωβ is
a KMS-state of the reservoir, corresponding to an inverse temperature β. Notice
that we have introduced two complex quantities

Γ(a)
α =

0
∫

−∞

dτ
∑

~p∈ΛN

|fm(~p)|2e−iτνα(~p), Γ(b)
α =

0
∫

−∞

dτ
∑

~p∈ΛN

|fn(~p)|2eiτνα(~p)

(11)
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fm(~p) =
√

m(~p)f(~p), fn(~p) =
√

n(~p)f(~p), where m(~p) and n(~p) are the fol-
lowing two points functions: m(~p) = ωβ(a~p,ja

†
~p,j) and n(~p) = ωβ(a†~p,ja~p,j).

Both Γ
(a)
α and Γ

(b)
α exist because of the standard regularity assumption on f under

which the stochastic limit makes sense, [1, 2]. The analytic expression for I(t) in
(10) suggests the introduction of the following stochastic limit hamiltonian, [2]

H
(sl)
N (t) =

N
∑

j=1

∑

α=0,±

{

ρj
α

(

c
(a)
αj (t) + c

(b)
αj

†
(t)

)

+ h.c

}

(12)

where the operators c
(γ)
αj (t) are assumed to satisfy the commutation rules

[c
(γ)
αj (t), c

(µ)
βk

†
(t′)] = δjk δαβ δγµδ(t − t′)Γ(γ)

α , for t > t′. (13)

The reason for this is that, using the hamiltonian (12) in the computation of

(−i)2
t

∫

0

dt1

t1
∫

0

dt2 Ωtot(H
(sl)
N (t1)H

(sl)
N (t2))

where Ωtot = ωsys ⊗ Ωβ , and Ωβ is a KMS-like state related to the operators
{c

(γ)
αj (t)}, we recover the same I(t) as in (10), at least if the commutation rules in

(13) are satisfied. We refer to [2] and [1] for further details concerning this proce-
dure, and to [5] for a recent review on applications to many-body systems. After
few algebraic computations, making use of the so-called time consecutive princi-
ple introduced in [1], finally it is possible to associate to this hamiltonian a one
parameter group of automorphisms of the observables of the system, representing
its time evolution, whose generator L, when acting on the intensive operators S0

and S+S−, looks like

L(S0) := F − strong lim
N→∞

L(S0
N ) = −

8g4S0(S+S−)2

ω3
h(S0, S+S−) (14)

and

L(S+S−) := F − strong lim
N→∞

L(S+
NS−

N ) = −
16g4(S+S−)3

ω3
h(S0, S+S−)

(15)
where

h(S0, S+S−) =<Γ
(a)
+

ω − g

(ω + gS0)2
+ <Γ

(a)
−

ω + g

(ω − gS0)2

+ <Γ
(b)
+

ω + g

(ω + gS0)2
+ <Γ

(b)
−

ω − g

(ω − gS0)2
·

(16)
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The phase structure of the model is given by the right-hand sides of equations (14)
and (15). In particular, it is obtained from the zeros of the functions

f1(x, y) = −
8g4xy2

ω3
h(x, y), f2(x, y) = −

16g4y3

ω3
h(x, y) (17)

where we have introduced, to simplify the notation, x = S0 and y = S+S−. With
this definitions we also have ω = g

√

x2 + 4y and ν = 2ε̃ + gx. In particular,
see [6], the existence of a super-conducting phase corresponds to the existence of
a non trivial zero of f1 and f2, that is, in our scheme, to a non trivial zero of the
function h: h(xo, yo) = 0. Following Buffet and Martin’s original idea, we look
for solutions corresponding to ν = 0. We will discuss in the next section that this
is not the only possibility. This means that, because of (8), the value of x = S0 is
fixed: x = −2ε̃/g. This also implies, see [2], that <Γ

(γ)
− = 0, γ = a, b, while

<Γ
(a)
+ = π

eβω

eβω − 1

∑

~p∈EN

|f(~p)|2, <Γ
(b)
+ = π

1

eβω − 1

∑

~p∈EN

|f(~p)|2. (18)

Therefore equation h(xo, yo) = 0 becomes

π
eβω

eβω − 1

∑

~p∈EN

|f(~p)|2
ω − g

(ω + gx)2
+ π

1

eβω − 1

∑

~p∈EN

|f(~p)|2
ω + g

(ω + gx)2
= 0

which produces

eβω =
g + ω

g − ω
or equivalently g tanh

(

βω

2

)

= ω (19)

which is exactly the equation found in [6]. The value of the critical temperature,
under which superconductivity takes place, is therefore exactly the same as in [6],
Tc := g

2k . It is worth mentioning that also the values of the order parameters
coincide with the ones in [6].

The procedure discussed above is technically much simpler than the one used in
the original paper, [6]. Among the other simplifications, for instance, a single
equation h(x, y) = 0 must be solved instead of the system f1(x, y) = f2(x, y) =
0, which is the highly transcendental system appearing in [6].

3. Generalized Models: More Reservoirs

In a second paper we have introduced some possible generalizations of the model
discussed above which may let Tc to increase, [3]. This, we believe, is important in
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concrete applications, of course, since it would suggest some possible mechanism
giving rise to superconductivity at a reasonably high temperature.

The driving idea is very simple and is well put in evidence by the SL approach:
suppose that the free evolution of the annihilation operator of the reservoir, a~p,i(t) =
a~p,ie

−iε~pt, is replaced, for some reason, by a~p,i(t) = a~p,ie
−iγε~pt, γ being some

positive constant less than one, γ < 1. As a consequence, the function να(~p) in
(9) will be replaced by να(~p) = ν − γε~p + αω. All the other formulas are left
unchanged, at least formally; h(x, y) is the same as in (16), <Γ

(ρ)
− = 0, ρ = a, b,

while <Γ
(a)
+ = π eβω/γ

eβω/γ−1

∑

~p∈EN
|f(~p)|2 and <Γ

(b)
+ = π 1

eβω/γ−1

∑

~p∈EN
|f(~p)|2,

where, again, EN = {~p ∈ ΛN ; ε~p = ω}. It is easy to check now that equation
h(x, y) = 0 produces, taking ν = 0 as before, the following equation

eβω/γ =
g + ω

g − ω

which admits a non trivial solution in ]0, g[ if gβ/γ − 2 > 0, that is under a new
critical temperature T

(γ)
c = g

2kγ = Tc
γ , which is larger than Tc since γ < 1. This

very easy procedure makes the value of the critical temperature to increase leaving
unchanged all the physical parameters, in particular g. It is worth stressing that a
similar mechanism was by no means evident in [6, 7].

The main point, therefore, is to find a mechanism which changes the free evolution
of the boson operators as shown above. However, since bosons and fermions
produce the same free time evolution, a different result could only follow from
a reservoir made of quons, see [8] for instance. However this attempt has many
technical difficulties and seems not to be the right one.

Another possibility to get a different time evolution for a~p,i(t) consists in switch-
ing on an interaction between the boson reservoir in [2], which we will call R1

and another reservoir, R2, which only interacts with R1 and not with the sys-
tem S . Within this general scheme we have considered in [3] different choices of
the second reservoir, with simple forms of interactions. These choices all share
a common output, that is the formal expression of I(t), see equation (10). In
particular we have considered the following proposals:

A bosonic second reservoir: The hamiltonian is defined as

HN = H
(sys)
N + H

(res)
N + λH

(I)
N = H0

N + λH
(I)
N (20)

where H
(sys)
N is given in (1), H

(I)
N in (4) and

H
(res)
N = H

(R1)
N + H

(R2)
N + µH

(R1,R2)
N . (21)
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We take H
(R1)
N as in (3), H

(R1)
N =

∑N
j=1

∑

~p∈ΛN
ε~p a†~p,ja~p,j , and

H
(R2)
N =

N
∑

j=1

∑

~p∈ΛN

ε~p b†~p,jb~p,j , H
(R1,R2)
N =

N
∑

j=1

∑

~p∈ΛN

(a†~p,jb~p,j + a~p,jb
†
~p,j).

(22)
Here both the reservoirs satisfy a bosonic statistic and they are independent:

[a~p,i, a
†
~q,j ] = [b~p,i, b

†
~q,j ] = δijδ~p ~q, [a]

~p,i, b
]
~q,j ] = 0. (23)

A fermionic second reservoir: Here we consider a different reservoir R2 and a
different interaction between R1 and R2. In particular we assume that H

(R2)
N =

∑N
j=1

∑

p∈ΛN
η~p b†~p,jb~p,j , where the operators b~p,j satisfy the following CAR,

{b~p,j , b
†
~q,i} = δijδ~p,~q, {b~p,j , b~q,i} = {b†~p,j , b

†
~q,i} = 0, and commute with the a~p,j’s,

and

H
(R1,R2)
N =

N
∑

j=1

∑

~p∈ΛN

a†~p,ja~p,jb
†
~p,jb~p,j . (24)

The physical difference between this operator and the hamiltonian H
(R1,R2)
N in

(22), where if a boson a is created then a boson b is annihiled, is clear: here,
in fact, H

(R1,R2)
N only counts the number of bosons a and fermions b. A conse-

quence of this different definition is that, while in the previous model the total
number operator N̂ = N̂a + N̂b =

∑

j,~p∈ΛN
a†~p,ja~p,j +

∑

j,~p∈ΛN
b†~p,jb~p,j com-

mutes with H
(res)
N even if [H

(res)
N , N̂a] 6= 0 and [H

(res)
N , N̂b] 6= 0, here we have

[H
(res)
N , N̂a] = [H

(res)
N , N̂b] = [H

(res)
N , N̂ ] = 0.

A spin-like second reservoir: We end this brief excursus considering another
model whose structure is close to that of the previous models. The only differ-
ences wrt our previous definitions are again in H

(R2)
N and H

(R1,R2)
N . We put

H
(R2)
N = η

N
∑

j=1

∑

p∈ΛN

τ0
~p,j , H

(R1,R2)
N =

N
∑

j=1

∑

~p∈ΛN

a†~p,ja~p,jτ
0
~p,j (25)

where the operators τ k
~p,j , k = 0,±, satisfy the same algebra of the Pauli matrices

[τ+
~p,i, τ

−
~q,j ] = δijδ~p~qτ

0
~p,j , [τ±

~p,i, τ
0
~q,j ] = ∓2δijδ~p~qτ

±
~p,j and commute with the a~p,j’s.

The interpretation is not very different from that of the previous model: H
(R1,R2)
N

is again a sort of number operator which counts the excitations of both R1 and
R2, without creating or annihilating any of them. The major difference between
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these two last models is in the computation of the mean values of the relevant
operators of the models on the related KMS states.

The analysis of these models suggested the existence of different solutions of the
equation h(x, y) = 0, corresponding to other values of the critical temperature,
and therefore suggesting the existence of superconducting phases at high temper-
ature, at least under very special assumptions on the constants which define the
physical models. Further studies along this direction are in progress.
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