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FUNDAMENTAL PROBLEMS IN THE THEORY OF
INFINITE-DIMENSIONAL LIE GROUPS

HELGE GLÖCKNER

Communicated by Karl-Hermann Neeb
Abstract. In a preprint from 1982, John Milnor formulated various fundamental
questions concerning infinite-dimensional Lie groups. In this paper, we describe
some of the answers (and partial answers) obtained in the preceding years.

1. Introduction

While specific classes of infinite-dimensional Lie groups (like groups of operators,
gauge groups, and diffeomorphism groups) have been studied extensively and
are well understood, much less is known about general infinite-dimensional Lie
groups, and many fundamental problems are still unsolved. Typical problems
were recorded in John Milnor’s preprint [19], which preceded his well-known
survey article [20]. In this note, we recall Milnor’s questions and their background
and describe some of the answers (or partial answers) obtained so far.

2. Basic Definitions

To define infinite-dimensional Lie groups, Milnor uses the following notion of
smooth maps between locally convex spaces (known as “Keller C∞c -maps” [15]):

Definition 1. Let E and F be real locally convex spaces, U ⊆ E be open, and
f : U → F be a map. For x ∈ U and y ∈ E, let (Dyf)(x) := d

dt

∣

∣

t=0
f(x + ty)

be the directional derivative (if it exists). Given k ∈ N∪{∞}, the map f is called
Ck if it is continuous, the iterated directional derivatives

djf(x, y1, . . . , yj) := (Dyj
· · ·Dy1

f)(x)

exist for all j ∈ N such that j ≤ k, x ∈ U and y1, . . . , yj ∈ E, and all of the
maps djf : U × Ej → F are continuous. As usual, C∞-maps are also called
smooth.
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A smooth manifold modeled on a locally convex topological vector space E is a
Hausdorff topological space M , together with a set A of homeomorphisms from
open subsets of M onto open subsets of E, such that the domains cover M and
the transition maps are smooth. Smoothness of maps between manifolds is de-
fined as in the finite-dimensional case (it can be tested in local charts). Also
products of manifolds are defined as usual. A Lie group is a group, equipped
with a smooth manifold structure modelled on a locally convex space E such
that the group operations are smooth maps. Lie groups modelled on Banach
spaces are called Banach-Lie groups. As in finite dimensions, the tangent space
L(G) := T1(G) ∼= E at the identity element of a Lie group G can be made a
topological Lie algebra via the identification with the Lie algebra of left invariant
vector fields on G.

Milnor requires in [19] that the modelling space is complete, and relaxes the con-
dition to sequential completeness (convergence of Cauchy sequences) in [20]. We
follow his custom here (unless we explicitly state the contrary).

Occasionally, we shall also encounter analytic mappings and the corresponding
Lie groups. Given complex locally convex spaces E and F , a map f : U → F
on an open subset U ⊆ E is called complex analytic if it is continuous and for
each x ∈ U there exist a 0-neighbourhood Y ⊆ E and continuous homogeneous
polynomials βn : E → F of degree n such that x+ Y ⊆ U and

f(x+ y) =
∞

∑

n=0

βn(y) for all y ∈ Y

as a pointwise limit (see [1]). Given real locally convex spaces, following [20] a
map f : U → F on an open subset U ⊆ E is called real analytic if it extends
to a complex analytic map between open subsets of the complexifications EC

and FC. We remark that the above definition of Ck-maps also makes sense over
the complex field of scalars; it is known that mappings to sequentially complete
complex locally convex spaces are complex analytic if and only if they are C1

in the complex sense. Further information can be found in [11]. In particular,
complex analytic maps are real analytic, and real analytic maps are smooth.

3. Existence of an Exponential Map

Let G be a Lie group. Given X ∈ L(G), there is at most one smooth homomor-
phism γX : R → G with γ′X(0) = X . If γX always exists, G is said to have an
exponential map, and we define it via expG : L(G) → G, expG(X) := γX(1).
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Milnor asked [19, p. 1] whether every Lie group has a smooth exponential map.
This question is still wide open: neither is it known whether an exponential map
always exists, nor whether smoothness is automatic.

In the absence of completeness properties of the modelling space of a Lie group
(which Milnor requires), an exponential map need not exist (see [4, §6])

Example 2. Consider the algebra R[X] of polynomial functions [0, 1] → R and
the algebra of fractions A := S−1

R[X] ⊆ C[0, 1], where S is the set of all
polynomial functions without zeros in [0, 1]. ThenA is a non-complete topological
algebra in the topology induced by the Banach algebra C[0, 1]. Since A× =
A ∩ C[0, 1]×, the unit group A× is open in A. Hence A× is a Lie group. It does
not have an exponential map since γf only exists for f ∈ R1 ⊆ A = L(A×).

Of course, a smooth exponential map does exist for all typical classes of Lie
groups. But the construction of expG (and its particular properties) strongly de-
pend on the type of Lie group:

Banach-Lie groups. As a consequence of the local existence and uniqueness of
solutions to ordinary differential equations in Banach spaces, every Banach-Lie
group G has a smooth exponential map (cf. also Section 5). Since T0(expG) =
id L(G), the inverse function theorem for smooth maps between Banach spaces
implies that expG is a local diffeomorphism at 0.

Linear Lie groups. Let A be a continuous inverse algebra, viz. a locally convex
topological algebra whose unit group A× is open and such that the inversion map
ι : A× → A, x 7→ x−1 is continuous. Then ι is analytic and thusA× is an analytic
Lie group. If A is sequentially complete, then the exponential series converges
and defines an analytic map exp: A → A×, exp(x) :=

∑∞
n=0

1
n!x

n which is
the exponential map of A× (see [4, Theorem 5.6]). After replacing A with AC if
necessary, this follows from the fact that

exp(x) =
1

2πi

∫

|ζ|=r

e ζ · (ζ − x)−1 dζ

for x ∈ A in terms of holomorphic functional calculus, where r is chosen so
large that the circle |ζ| = r surrounds the spectrum of x. Here exp is a local
diffeomorphism, with exp−1(x) = log(x) =

∑∞
n=1

(−1)n+1

n
(x−1)n for x near 1.

Mapping groups. Let M be a compact manifold, G a Lie group with a smooth
exponential map expG (e.g., a finite-dimensional Lie group). Then C∞(M,G) is
a group with pointwise group operations, and can be made a Lie group modelled
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on C∞(M,L(G)). The map C∞(M,L(G)) → C∞(M,G), γ 7→ expG ◦ γ is
smooth and is easily seen to be the exponential map of C∞(M,G) (cf. [20], [3]).
If G has a locally diffeomorphic exponential map, then also C∞(M,G).

Diffeomorphism groups. For each compact smooth manifold M , the group
G := Diff(M) of C∞-diffeomorphisms of M can be made a Lie group (with
composition as the group multiplication), modelled on the space V(M) of smooth
vector fields. It has a smooth exponential map given by

expG : V(M) → G , X 7→ ΦX(1, •)

where ΦX : R×M →M is the flow of vector fieldX (see [17] and [20]). Already
for M := S

1, expG is not a local diffeomorphism at 0 (see [20, p. 1017]).

Direct limit groups. Given an ascending sequence G1 ⊆ G2 ⊆ · · · of finite-
dimensional Lie groups such that the inclusion maps are smooth homomorphisms,
we consider L(Gn) as a Lie subalgebra of L(Gn+1). Then G :=

⋃

n∈N
Gn =

lim
→
Gn is a group in a natural way, which can be given a smooth manifold structure

modelled on the locally convex direct limit g := lim
→
L(Gn) making it Lie group

(see [10]; cf. [22] for an earlier, more restricted method). The map g → G,
x 7→ expGn

(x) if x ∈ L(Gn) is the exponential map of G; it is smooth.

4. Analyticity of Multiplication in Exponential Coordinates

As illustrated by the preceding examples, many (but not all) infinite-dimensional
Lie groups G are locally exponential in the sense that expG exists and is a local
C∞-diffeomorphism at 0. A locally exponential Lie group G is called a BCH-
Lie group if the group multiplication is analytic in exponential coordinates, i.e.,
if (x, y) 7→ x ∗ y := exp−1

G (expG(x) expG(y)) is analytic on some open 0-
neighbourhood in L(G) × L(G). Then x ∗ y is given by the Baker-Campbell-
Hausdorff (BCH-) series [12]. In our terminology, Milnor asked (cf. [19, p. 31]):

If a) G is locally exponential, or b) G is real or complex analytic, does it fol-
low that G is BCH ?

The answers to both questions are negative.

1) A counterexample for a) is mentioned in [29, p. 823]. Slightly simpler is

G := R
N×α R with α(t).(xn)n∈N := (entxn)n∈N.

Using the identity map onto the Fréchet space R
N × R as a global chart, G

becomes a real analytic Lie group. Its exponential map expG : R
N×R → G,
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expG((xn)n, t) =
((

ent−1
nt

xn

)

n
, t

)

is a C∞-diffeomorphism and real analytic
(whence G is locally exponential), but exp−1

G is not real analytic. It can be shown
that the map (x, y) 7→ x ∗ y is not real analytic on any 0-neighbourhood in
L(G) × L(G), and thus G is not a BCH-Lie group (cf. [12] for details).

2) The group G := C
(N)×α R with α(t).(xn)n∈N := (eintxn)n∈N is a real ana-

lytic Lie group with a global chart, the identity map onto C
(N) × R (equipped

with the finest locally convex vector topology). As shown in [7, Example 5.5],
the exponential map expG((xn)n, t) =

((

eint−1
int

xn

)

n
, t

)

is not injective on any
0-neighbourhood, and the exponential image is not an identity neighbourhood.
Hence G is not BCH (not even locally exponential). The corresponding semi-
direct product C

(N)×C provides a complex analytic counterexample.

The counterexample for (a) was stimulated by Neeb’s discussions of projective
limits of finite-dimensional Lie groups [12]. Our counterexamples show that
neither projective nor direct limits of finite-dimensional (and hence BCH-) Lie
groups need to be locally exponential. For further information on BCH-Lie groups
and locally exponential Lie groups, see [3], [4], [12], [19], [29] and [30].

5. Regularity Questions

Roughly speaking, a Lie group G is called regular if all ODEs of interest for Lie
theory can be solved in G, and the solutions depend smoothly on parameters.
Formally, a Lie group is regular if the following holds (see [20, Definition 7.6])

a) Every smooth curve γ : [0, 1] → L(G) arises as the left logarithmic deriv-
ative of a (necessarily unique) smooth curve η : [0, 1] → G, that is, γ(t) =
η(t)−1 · η′(t) for all t ∈ [0, 1] (taking the product in the Lie group TG);

b) The mapping C∞([0, 1], L(G)) → G taking γ to η(1) is smooth, where
C∞([0, 1], L(G)) is equipped with its usual locally convex topology.

Regularity is a useful property. For example, every regular Lie group has a smooth
exponential map. Also, every continuous homomorphism φ : L(G) → L(H),
where G is a simply connected Lie group and H regular, gives rise to a unique
smooth homomorphism ψ : G → H with T1ψ = φ (see [20, Theorem 8.1];
cf. [19, Theorem 5.4] for a precursor by Thurston for so-called “receptive” Lie
groups, which coincide with regular Lie groups by [20, Lemma 8.8]).

It is unknown whether every Lie group is regular, although all typical examples are
regular: Regularity of Banach-Lie groups follows from the smooth dependence of
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solutions to ODEs in Banach spaces on parameters; regularity of Diff(M) for
compact M was proved in [20] (see also [28], where an earlier, stronger notion
of regularity was used); and regularity of C∞(M,G) =

⋂

k∈N0
Ck(M,G) with

finite-dimensional G can be reduced to the Banach case.

Also the group Diffc(M) of compactly supported smooth diffeomorphisms of
a σ-compact finite-dimensional smooth manifold M can be made a Lie group,
and in fact in two ways: It can be modelled either on the LF-space Vc(M) =
lim
→ K

VK(M) of compactly supported smooth vector fields, equipped with the lo-
cally convex direct limit topology; or on the same vector space, but equipped with
the coarser topology making it the projective limit

Vc(M) =
⋂

k∈N0

Vk
c (M) = lim

← k∈N0

Vk
c (M)

of the LB-spaces of compactly supported Ck-vector fields. The first discussion
of Diffc(M) was given in [17] (even for paracompact manifolds). A different,
more elementary construction was described later in [5]. The regularity of both
Lie group structures on Diffc(M) was asserted in [19] (using other terminology)
and fully proved in [5].

Also every direct limit group (as described above) is regular, by [10, Theorem 8.1].
The unit groups of sequentially complete continuous inverse algebras are regular
as a consequence of results by Robart [30], who addressed the question whether
every BCH-Lie group is regular and achieved essential progress in this direction.

See [16] for a counterpart of regularity in the convenient setting of analysis. As
in the case of convenient regularity [18], an abelian Lie group G modelled on a
Mackey complete locally convex space E is regular if and only if G ∼= E/Γ for a
discrete subgroup Γ ⊆ E (see [26, Proposition V.1.9] or [12]). Neeb also showed
that every solvable Lie group with smooth exponential map is regular [12].

Criteria for convenient regularity were given in [31] and applied to the “strong
ILB-Lie groups” of Omori and collaborators (as in [27]).

Related to regularity is another question by Milnor [19, p. 1]: If two simply
connected Lie groups G and H have isomorphic Lie algebras, does it follow that
G ∼= H ? The theorem by Thurston and Milnor just described implies that the
answer is positive if both G and H are regular [20, Corollary 8.2]. The general
case remains open.
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6. Properties of a Lie Group Compared to those of its Lie Algebra

Lie theory derives its strength from the interplay between properties of a Lie group
and properties of its Lie algebra. In the infinite-dimensional case, the study of
links between G and L(G) has just begun. It was shown that a connected Lie
group G is abelian if and only if L(G) is abelian (see [6, Proposition 22.15], [26,
Proposition IV.1.10] or [12]). Milnor knew this for regular G. But for general G
with L(G) abelian, Milnor stated he could not prove that G is commutative [19,
p. 36]. Neeb achieved essential further progress: A connected Lie group G is
solvable (respectively, nilpotent) if and only if L(G) is solvable (respectively,
nilpotent) [12].

7. Smoothness of Continuous Homomorphisms

Milnor asked [19, p. 1]: Is a continuous homomorphism between Lie groups nec-
essarily smooth ? For special types of Lie groups, this is known

• Banach-Lie groups (classical)

• Locally exponential Lie groups [19, Lemma 4.3]

• Countable direct limits of finite-dimensional Lie groups [10, Proposition
4.6 (c)].

Also continuous homomorphisms from finite-dimensional Lie groups to Diff(M)
are smooth (handwritten notes in [19], also [5]; cf. [21, p. 212]). Although
Milnor’s question remains open, a positive answer is available under stronger hy-
potheses: If a homomorphism φ : G → H is Hölder continuous at 1, then φ is
smooth [8, Theorem 3.2]. See [8, Definition 1.7] for Hölder continuity. A similar
result holds for the Lie groups of convenient calculus [9, Theorem 9.1].

8. Kernels, Lie Subgroups, Quotients and Homogeneous Spaces

Milnor asked whether the kernel of a homomorphism necessarily is a Lie subgroup
[19, p. 1], and proved this for homomorphisms between locally exponential Lie
groups (they are “embedded” Lie subgroups in the terminology described below).
It is also known that kernels of smooth homomorphisms from direct limit groups
to Lie groups are Lie subgroups, like all closed subgroups of such groups [10,
Proposition 7.5]. But the general answer to Milnor’s question remains open.
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We remark that a wide range of possible concepts of Lie subgroups is available in
the theory of infinite-dimensional Lie groups, each of which can be preferable in
certain situations. To describe the most basic concept, letM be a smooth manifold
modelled on a locally convex space E. A subset N ⊆ M is called a submanifold
if there is a sequentially closed vector subspace F ⊆ E such that each x ∈ N
is contained in the domain of some chart φ : U → V ⊆ E of M which takes
U ∩ N onto V ∩ F . Then the restrictions φ|N∩U : U ∩ N → V ∩ F define a
smooth atlas for N . Note that we do not require that F is complemented in E as a
topological vector space (beyond Banach manifolds, this property loses much of
its usefulness). Given a Lie group G, a Lie subgroup is a subgroup H ⊆ G which
also is a submanifold.

Also weaker concepts are needed, analogous to the “analytic subgroups” in finite-
dimensional Lie theory. In the terminology of [12], an initial Lie subgroup is
a subgroup H ⊆ G which can be given a Lie group structure which makes the
inclusion map i : H → G a smooth homomorphism with injective differential
T1(i), and such that mappings to H are smooth if and only if they are smooth
as mappings to G. Unfortunately, not even analytic subgroups of (non-separable)
Banach-Lie groups need to be initial (cf. [14, p. 157]). As a substitute, one still has
the concept of an integral subgroup, referring to an injective smooth homomor-
phism i : H → G from a (connected) Lie group to G such that T1(i) is injective.
Milnor used the notion of an immersed Lie subgroup: this is an injective smooth
homomorphism of Lie groups i : H → G taking some open identity neighbour-
hood in H onto a submanifold of G (cf. [19, p. 22]).

Also stronger notions of Lie subgroups are needed. A Lie subgroup H ⊆ G
is called a split if G/H can be given a smooth manifold structure making the
canonical map q : G → G/H a smooth H-principal bundle (i.e., q is smooth
and admits smooth local sections). For G locally exponential, the concept of an
embedded Lie subgroup H is particularly useful. This is a sequentially closed
subgroup such that H ∩ expG(U) = expG(U ∩ h) for a 0-neighbourhood U ⊆
L(G) on which expG is injective, where h := {X ∈ L(G) ; expG(RX) ⊆ H}.

For example, it can be shown that the topological quotient group G/N of a BCH-
Lie group G modulo a closed normal subgroup N of G is a BCH-Lie group if
and only if N is an embedded Lie subgroup of G ( [3, Corollary 2.21]; cf. [11] for
Banach-Lie groups). This result was extended to locally exponential Lie groupsG
by Neeb [12]. In this case, G/N is a locally exponential Lie group if and only if
N is an embedded Lie subgroup whose Lie algebra L(N) is “locally exponential.”
Neeb also showed that every locally compact subgroup of a locally exponential
Lie group is an embedded Lie subgroup [12], as in the case of Banach-Lie groups
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(discussed first by Birkhoff).

It would be very useful to find tangible criteria ensuring that a homogenous space
G/H can be made a smooth manifold with reasonable properties,∗ for a closed
subgroup H of a locally exponential Lie group (which does not happen to be
normal or a split Lie subgroup). Such criteria are not even known in the case of
Banach-Lie groups, and any progress in this direction would be most valuable.

Also, it would be desirable to clarify the precise relations between the various
concepts of Lie subgroups, and to find examples which clearly distinguish the
concepts. For instance, it is well known that embedded Lie subgroups and or-
dinary Lie subgroups of Banach-Lie groups coincide. But it is unclear whether
these concepts still agree in the case of BCH- (or locally exponential) Lie groups.

9. Integrability Questions

Milnor [19, p. 1] asked whether every closed subalgebra of L(G) corresponds to
some immersed Lie subgroup of G. In [20, Warning 8.5], he described a coun-
terexample (due to Omori). The integrability question of Lie subalgebras was
analyzed further in [29] and [12], notably for locally exponential Lie groups.

It is a classical result by van Est and Korthagen that a Banach-Lie algebra g need
not be “integrable” (or “enlargible”) – there need not be a (Banach-) Lie group G
with L(G) ∼= g. As they showed, g is integrable if and only if a certain subgroup
Π(g) ≤ z(g) of the center of g (the period group) is discrete [2]. Related to this
work is a question by Milnor [19, pp. 31-32], which can be re-phrased as follows:
If G is a BCH-Lie group, does it follow that L(G)C is integrable to a Lie group?
The answer is negative, even for Banach-Lie groups (see [11, Example VI.4]).

Milnor remarks that it would be interesting to know which topological Lie alge-
bras g correspond to BCH-Lie groups. A necessary condition is that the BCH-
series converges on a 0-neighbourhood of g × g to an analytic function (see [30]
for characterizations of this property). A full solution to Milnor’s question was
given by Neeb, even for the wider class of “locally exponential” Lie algebras.
Any such Lie algebra g can be associated a certain period group Π(g) ≤ z(g); it
is integrable to a locally exponential Lie group if and only if Π(g) is discrete [13].

Integrability questions have also been studied for other types of Lie algebras. It
was shown that every locally finite Lie algebra of countable dimension is inte-

∗A minimal requirement is that the smooth manifold structure on G/H is final with respect to
the quotient map q : G → G/H . In addition to this, one would certainly like to require that T1(q)
is a quotient homomorphism with kernel T1(H).
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grable [10, Theorem 5.1]. In [23], Neeb described the obstructions to integrate a
central extension of topological Lie algebras to a Lie group extension. Later, he
extended his methods to abelian [24] and non-abelian extensions [25].
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