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1. Introduction

Division and Clifford algebras were introduced in 19th century with an eye for
applications in geometry and physics (for a historical survey see the last chap-
ter of [24]). Pascual Jordan introduced and studied his algebras in the 1930’s in
order to describe observables in quantum mechanics (for a taste of Jordan alge-
bras see [25] along with the original paper [23]). Yet, the first serious applica-
tions of these somewhat exotic structures appeared (in mid-twentieth century) in
pure mathematics: in the theory of exceptional Lie groups and symmetric spaces
(cf. [17, 19]) as well as the later surveys [1, 5, 26] in topology [2]. Possible appli-
cations to particle physics were first advocated by Feza Gürsey and his students
in the 1970’s - see his lecture and his posthumous book (with C.-H.Tze) [21] and
references therein). They continue in various guises to attract attention until these
days, never becoming a mainstream activity. The present lectures are meant as a
background for the ongoing work [14, 30]. Although this proposal of an “excep-
tional quantum geometry” is still tentative, we feel that it is worth pursuing.1 In
any case, the mathematical background which is the main subject of these notes is
sound and beautiful - and deserves to be known by particle theorists.

2. Composition and Clifford Algebras

2.1. Normed Alternative Algebras

A composition (or Hurwitz) algebraA is a vector space over a field K = (R,C, . . . )
equipped with a bilinear (not necessarily associative) product xy with a unit 1
(1x = x1 = x) and a nondegenerate quadratic form N(x), the norm satisfying

N(xy) = N(x)N(y), N(λx) = λ2N(x) for x ∈ A, λ ∈ K. (1)

1For related attempts to provide an algebraic counterpart of the Standard Model of particle
physics see [8, 11–13, 18, 28] and references to earlier work cited therein.
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The norm allows to define by polarization a symmetric bilinear form 〈x, y〉 setting

2〈x, y〉 = N(x+ y)−N(x)−N(y) = 2〈y, x〉. (2)

Nondegeneracy of N means that if 〈x, y〉 = 0 for all y ∈ A then x = 0. By
repeated polarization of the identity 〈xy, xy〉 = 〈x, x〉〈y, y〉 one obtains

〈ab, ac〉 = N(a)〈b, c〉 = 〈ba, ca〉 (3)

〈ac, bd〉+ 〈ad, bc〉 = 2〈a, b〉〈c, d〉. (4)

Setting in (4) a = c = x, b = 1, d = y and using (3) we find

〈x2 +N(x)1− t(x)x, y〉 = 0

where t(x) := 2〈x, 1〉 is by definition the trace, or, using the non-degeneracy of
the form 〈· , ·〉

x2 − t(x)x+N(x)1 = 0, t(x) = 2〈x, 1〉. (5)

Thus every x ∈ A satisfies a quadratic relation with coefficients the trace t(x) and
the norm N(x) (a linear and a quadratic scalar functions) taking values in K.

The trace functional (5) allows to introduce Cayley conjugation

x→ x∗ = t(x)− x, t(x) = t(x)1 ∈ A (6)

an important tool in the study of composition algebras. It is an (orthogonal) reflec-
tion (〈x∗, y∗〉 = 〈x, y〉) that leaves the scalars K1 invariant (in fact, t(λ1) = 2λ
implying (λ1)∗ = λ1 for λ ∈ K). It is also an involution and an antihomomor-
physm

(x∗)∗ = x, (xy)∗ = y∗x∗. (7)

Furthermore equations (5) and (6 ) allow to express the trace and the norm as a
sum and a product of x and x∗

t(x) = x+ x∗, N(x) = xx∗ = x∗x = N(x∗).

The relation (4) allows to deduce

〈ax, y〉 = 〈x, a∗y〉, 〈xa, y〉 = 〈x, ya∗〉. (8)

From these identities it follows 〈ab, 1〉 = 〈a, b∗〉 = 〈ba, 1〉, hence, the trace is
commutative

t(ab) = 〈b, a∗〉 = 〈a, b∗〉 = t(ba). (9)
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Similarly, one proves that t is associative and symmetric under cyclic permutations

t
(
(ab)c

)
= t(a(bc)) =: t(abc) = t(cab) = t(bca). (10)

Moreover, using the quadratic relation (5) and the above properties of the trace one
proves the identities that define an alternative algebra

x2y = x(xy), yx2 = (yx)x (11)

(see [26, Section 1] for details). The conditions (11) guarantee that the associator[
x, y, z

]
=
(
xy
)
z − x

(
yz
)

(12)

changes sign under odd permutations (and is hence preserved by even, cyclic, per-
mutations). This implies, in particular, the flexibility conditions(

xy
)
x = x

(
yx
)
. (13)

An unitar alternative algebra with an involution x→ x∗ satisfying (7) is a compo-
sition algebra if the norm N and the trace t defined by (9) are scalars (i.e., belong
to K(= K1)) and the norm is non-degenerate.

Given a finite dimensional composition algebra A Cayley and Dickson have pro-
posed a procedure to construct another composition algebra A′ with twice the di-
mension of A. Each element x of A′ is written in the form

x = a+ eb, a, b ∈ A (14)

where e is a new “imaginary unit” such that

e2 = −µ, µ ∈ {1,−1}. (15)

Thus A appears as a subalgebra of A′. The product of two elements x = a + eb,
y = c+ ed of A′ is defined as

xy = ac− µdb+ e(ad+ cb) (16)

where a → a is the Cayley conjugation in A. (The order of the factors becomes
important, when the product in A is noncommutative.) The Cayley conjugation
x→ x∗ and the norm N(x) in A′ are defined by

x∗ = (a+ eb)∗ = a+ be∗ = a− be = a− eb
(17)

N(x) = xx∗ = aa+ µbb = x∗x.

Let us illustrate the meaning of (16) and (17) in the first simplest cases.
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For A = R , a = a, (16) coincides with the definition of complex numbers for
µ = 1 (e = i) and defines the split complex numbers for µ = −1. Taking next
A = C and µ = 1 we can identify A′ with a 2× 2 matrix representations setting

a = a0 + e1a1 = a0 + iσ3a1 =

(
a 0
0 a

)
, a = a0 + ia1

(18)
x = a + eb, e =

(
0 −1
1 0

)
⇒ x =

(
a −b
b a

)
, b = b0 + e1b1.

Anticipating Baez Fano plane [3] notation for the octonion imaginary units (see
Application A) we shall set e = e4, e4e1 = e2 (= iσ1).

It is then easily checked that the multiplication law (16) reproduces the standard
matrix multiplication, the Cayley conjugation x→ x∗ coincides with the hermitian
conjugation of matrices, while the norm N(x) in A′ is given by the determinant

H = {x ∈ C[2] ; xx∗ = detx (≥ 0)}. (19)

Similarly, starting with the split complex numbers, we can write

as = a0 + ẽ1a1, ẽ1 = σ3 � as =

(
as 0
0 as

)
, as = a0 + a1, as = a0 − a1

and choosing the same e as above we can identify the split quaternions Hs with
real 2× 2 matrices

Hs = {x =

(
as −bs
bs as

)
∈ R[2] ; x∗ =

(
as bs
−bs as

)
, xx∗ = detx} (20)

its norm having signature (2, 2).

The next step in Cayley-Dickson construction gives the octonions, which have a
nonassociative (but alternative) multiplication and thus do not have matrix realiza-
tion.

2.2. Relation to Clifford Algebras and Classification

Given a composition algebra A we define subspace A0 ⊂ A of pure imaginary
elements with respect to the Cayley conjugation (6)

A0 = {y ∈ A ; y∗ = −y}. (21)

It is a subspace of co-dimension one, orthogonal to the unit 1 ofA. For any x ∈ A
we define its imaginary part as

x0 =
1

2
(x− x∗) = x− 〈x, 1〉 V 〈x0, 1〉 = 0. (22)
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Table 1. The types of algebra Cl(p, q) depend on p− q mod 8.

n Cliff(1−n) Irreducible spinor n Cliff(1−n) Irreducible spinor
1 R S1 = R 5 H[2] S5 = H2

2 C S2 = C 6 C[4] S6 = C4

3 H S3 = H 7 R[8] S7 = R8

4 H⊕H S+
4 = H, S−4 = H 8 R[8]⊕ R[8] S+

8 = R8, S−8 = R8

From the expression N(x) = xx∗ (8) and from the defining property (21) of imag-
inary elements it follows that

x0 ∈ A0 ⇒ x2
0 = −N(x0). (23)

In other words, if the composition algebra A is n-dimensional then its (n − 1)-
dimensional subalgebra A0 gives rise to a Clifford algebra. If the norm N is
positive definite then2 A0 = Cliff(0, n − 1) = Cliff(1−n). In the case of split
complex numbers, quaternions and octonions one encounters instead the algebras
Cliff1 ≡ Cliff(1, 0), Cliff(2, 1) and Cliff(4, 3), respectively.

It turns out that the classification of the Clifford algebras Cliff(1−n) implies the
classification of normed division rings of dimension n. So we recall it in the
following table: Here we use the notation A[n] for the algebra n × n matrices
with entries in the (associative) algebra A. As discovered by Elie Cartan in 1908
Cliff(−ν−8) = Cliff−ν ⊗ R[16] so that the above table suffices to reconstruct all
Clifford algebras of type Cliff−ν . We see that the (real) dimension of the irre-
ducible representation of Cliff(1−n) coincides with n for n = 1, 2, 4, 8 only thus
implying Hurwitz theorem (see [3, Theorem 1] and the subsequent discussion).

Proceeding to the split alternative composition algebras we note that the type of
Cliff(p, q) only depends on the signature p − q which is 1 (similar to −7) for
all above cases Cliff(1, 0) = R ⊕ R, Cliff(2, 1) = R[2] ⊕ R[2], Cliff(4, 3) =
R[8]⊕ R[8] and

Cliff(p, p− 1) ∼= R[2(p−1)]⊕ R[2(p−1)]. (24)

All these cases are summarized in Table 1. We note here the difference in the
treatment of the representations of Cliff(p,p − 1) in the cases p = 1, 2, in which
we are dealing with real associative composition algebras Cs and Hs, and p = 4 of
the split octonions. In the associative case we deal with the action of Cliff(p,p−1)

on the direct sum Rn ⊕ Rn, n = 2(p−1) (for p = 1, 2) while in the non-associative
case it acts on the irreducible subspace Rn (n = 8), thus again fitting the dimension
of the corresponding alternative algebra.

2We adopt the sign convention of [24], [21], [29]. The opposite sign convention, Cliff(n−1) for
the positive definite N(x), is used e.g. in [3].
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Remark 1. The spinors Sn are here understood as quantities transforming under
the lowest order faithful irreducible representation of the (compact) group Spin(n)
which consists of the norm one even elements of Cliff−n. In fact, the even part
Cliff0(p, q) of Cliff(p, q) is isomorphic, for q > 0 to Cliff(p, q − 1). Spin(n) is
the double cover of the rotation group SO(n). The group of all norm one elements
Cliff(1−n) is the double cover Pin(n − 1) of the full orthogonal group O(n − 1)
and its irreducible representations are called “pinors” - see [3, Section 2.3].

In summary, the alternative algebras are classified as follows ([26,Proposition 1.6])

Theorem 2. Let (A, N) be a composition algebra. For µ = ±1, denote by A(µ)
the algebra A(µ) = A⊕ eA with e2 = −µ and product (16). Then

• A(µ) is commutative iff A = K

• A(µ) is associative iff A is associative and commutative

• A(µ) is alternative iff A is associative.

Theorem 3 ([26], see also the relations (7)-(10)) . A composition algebra is, as a
vector space, 1, 2, 4 or 8 dimensional. There are four composition algebras Aj
over C of dimension 2j , j = 0, 1, 2, 3. There are seven composition algebras over

R: the division algebrasA+
j , (j = 0, 1, 2, 3) with N(x) ≥ 0 and x−1 =

x∗

N(x)
for

x 6= 0, and the split algebras Asj , j = 1, 2, 3 of signature (2j−1, 2j−1).

All above algebras are unique up to isomorphism. The multiplication rule (16)
varies in different expositions. Different conventions are related by algebra auto-
morphisms. (Our notation differs from Roos [26] only by the sign of µ, as we set
e2 = −µ.) The only nontrivial automorphism of the algebra of complex numbers
is the complex conjugation. The automorphism group of the (real) quaterions is
SO(3) realized by

x→ uxu∗, u ∈ SU(2), u∗ = u−1. (25)

Similarly, the automorphism group of the split quaternions is SO(2, 1)

H 3 x→ gxg−1, g ∈ SL(2,R). (26)

We shall survey the octonions and their automorphisms in the next section.



66 Ivan Todorov and Svetla Drenska

2.3. Historical Note

The simplest relation of type (1), the one applicable to the absolute value square of
a product of complex numbers

(xu− yv)2 + (xv + yu)2 = (x2 + y2)(u2 + v2)

(x, y, u, v ∈ R), was found by Diophantus of Alexandria around 250 BC. A more
general relation of this type

(xu+Dyv)2 −D(xv + yu)2 = (x2 −Dy2)(u2 −Dv2)

occurs for special values of D in Indian mathematics (cf. Brahmegupta 598 AD) -
see [6, Section 2]. For D positive it applies to the split complex numbers. The geo-
metric interpretation by Gauss comes much later. (The fact that complex numbers
are useful and should be taken seriously is sometimes attributed to Gerolamo Car-
dano (1501-1576), whose book Arts Magna (The Great Art) contains the solution
of the cubic equation. In fact, it was his contemporary, Bologna’s mathematician
Rafael Bombelli (1526-1572) who first thoroughly understood the complex num-
bers and described them in his L’Algebra, published in 1572.)

The multiplicativity of the norm of the quaternions was noted by Euler in 1748, a
century before Hamilton discovered the algebra of quaternions in 1843 (when “in
a famous act of a mathematical vandalism, he carved the equations i2 = j2 = k2 =
ijk = −1 into the stone of Brougham Bridge” [3, p. 145]). The corresponding rela-
tion for the octonions was discovered by the Danish mathematician Degen in 1818
- again before the discovery of the octonions (in late 1843 - in a letter to Hamil-
ton by his college friend J. Graves). The first publication about octonions appears
as an appendix to an otherwise erroneous paper of the English mathematician (at
the time, lawyer) Arthur Cayley (1821-1895) in 1845 (see Introduction of [3] and
references 17 and 18 therein )

The American algebraist and author of the three volumes History of the Theory
of Numbers, Leonard E. Dickson (1874-1954) contributed to the construction of
composition algebras in 1919 [10]. The theorem that the only normed division al-
gebras are R, C, H and O was proven by A. Hurwitz (1859 -1919) in 1898. The
extension of this result to alternative (including split) algebras belongs to M. Zorn
(1906-1993) in 1930 and 1933. The fact that the only division algebras (without
extra structure) have dimensions 1, 2, 4, 8 was established as late as in 1958 (inde-
pendently by R. Bott and J. Milnor and by M. Kervaire).
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3. Octonions. Isometries and Automorphisms

3.1. Eight Dimensional Alternative Algebras

The multiplication table of the imaginary octonions (see Application A) can be
introduced by first selecting a quaternion subalgebra

ejek = εjklel − δjk, j, k, l = 1, 2, 4, ε124 =1= ε412 = ε241 =1=−ε214. (27)

The somewhat exotic labeling of the units (jumping over 3) is justified by the fol-
lowing memorable multiplication rules mod7

eiej = ek ⇒ ei+1ej+1 = ek+1, e2ie2j = e2k ≡ e2k(mod7)
(28)

e7ej = e3j(mod7) for j = 1, 2, 4, e7e4 = e5.

A convenient complex isotropic basis for the vector representation of the isome-
try Lie algebra so(8) of O (which contains the automorphism algebra g2 of the
octonions) is given by

ρε =
1

2
(1 + iεe7), ζεj = ρεej =

1

2
(ej + iεe3j), j = 1, 2, 4, ε = ± (29)

(the imaginary unit i commutes with octonion units ea). The multiplication table
of the octonion units is summarized by the following relations

(ζεj )
2 = 0 = ρ+ρ−, (ρε)2 = ρε, ρ+ + ρ− = 1, ζεjζ

ε
k = εjklζ

−ε
l
(30)

ζεjζ
−ε
k = −ρ−εδjk ⇒ [ζ+

j , ζ
−
k ]+ = δjk, j, k, l = 1, 2, 4.

The idempotents ρ± (which go back to Gürsey) are also exploited in [12]. The last
equation (30) coincides with the canonical anticommutation relations for fermionic
creation and annihilation operators (cf. [8]).

The split octonions xs with units ẽa can be embedded in the algebra CO of com-
plexified octonions by setting ẽµ = eµ, µ = 0, 1, 2, 4, ẽ7 = ie7, ẽ3j = ie3j(mod7),
so that

xs =

7∑
a=0

xas ẽa ⇒ N(xs) = xsx
∗
s

(31)
=

∑
µ=0,1,2,4

(xµs )2 − (x7
s)

2 − (x3
s)

2 − (x6
s)

2 − (x5
s)

2.

The quark-lepton correspondence suggests the splitting of octonions into a direct
sum,

O = C⊕ C3, x = a+ z e = a+ z1e1 + z2e2 + z4e4, e1e2 = e4
(32)

a = x0 + x7e7, zj = xj + x3j(mod7)e7, x12 ≡ x5
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thus e7 playing the role of imaginary unit within the real octonions. The Cayley-
Dickson construction corresponds to the splitting of O into two quaternions

O = H⊕H, x = u+ e7v, u = x0 + xjej , v = x7 + x3jej . (33)

One may speculate that upon complexification u and v could be identified with the
“up-” and “down-”, leptons and quarks: u = (ν, uj , j = 1, 2, 4). v = (e−, dj)
j playing the role of a colour index. For xr = ur + e7vr, r = 1, 2 the Cayley-
Dickson formula (16) and its expression in terms of the complex variable ar, z

j
r

read

x1x2 = u1u2 − v2v
∗
1 + e7(u∗1v2 + u2v1)

= a1a2 − z1z + (a1z2 + a2z1 + z1 × z2)e (34)

where the star indicates quaternionic conjugation while the bar stands for a change
of the sign of e7 (z̄j = xj − e7x

3j). The two representations (34) display the
covariance of the product under the action of two subgroups of maximal rank of
the automorphism group of the octonions. If p and q are two unit quaternions

p = p0 + pjej , q = q0 + qjej
(35)

pp∗ = N(p) = (p0)2 + p2 = 1 = qq∗ ⇔ (p, q) ∈ SU(2)× SU(2).

It is easy to verify, using the first equation (34), that the transformation

x = u+ e7v → pup∗ + e7pvq
∗

(p, q) ∈ SU(2)× SU(2)

Zdiag
2

(36)

where Zdiag
2 = {(p, q) = (1, 1), (−1,−1)}, is an automorphism of the octonion

algebra. Similarly, if U ∈ SU(3) acts on x (32) as

x = a+ zjej → a+ U ijz
jei, U(x1)U(x2) = U(x1x2). (37)

The subgroups (36), (37) are the two closed connected subgroups of maximal rank
of the compact group G2 corresponding to the Borel-de Siebenthal theory [7] that
plays a central role in [30].

3.2. Isometry Group of the (Split) Octonions. Triality

The norm N(x) =
∑7

0(xa)2 and the associated scalar product are preserved by
the orthogonal group O(8) in 8-dimensions. Similarly, the isometry group of the
norm of the split octonions x̃ ∈ Os

Ns(x̃) = (x̃0)2 + (x̃1)2 + (x̃2)2 + (x̃4)2 − (x̃7)2 − (x̃3)2 − (x̃6)2 − (x̃5)2 (38)
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is the noncompact pseudoorthogonal group O(4, 4). What is remarkable is that the
trilinear form t(xyz) (10) is invariant under the 2-fold cover Spin(8) (respectively,
Spin(4, 4)) of the connected group SO(8) (respectively, SO(4, 4)). More precisely,
there exist two involutive outer automorphisms3 κ and π of Spin(8) such that for
each element g ∈ Spin(8) the trilinear form

t8(x, y, z) =
1

2
t(xyz) = 〈xyz, 1〉 (39)

is invariant under the combined transformation x→ gx, y → κ(g)y, z → π(g)z

t8(gx, κ(g)y, π(g)z) = t8(x, y, z). (40)

The factor 1
2 in (39) follows from the definition of normed triality of [3] which

demands |t8(x, y, z)|2 5 N(x)N(y)N(z). We shall illustrate the meaning of κ
and π in the special case when g acts on x by left multiplication with a norm-
one octonion a: Lax = ax. Note that not all Spin(8) elements can be written in
this form. For instance, due to non-associativity, the product La1La2x = a1(a2x)
cannot, in general be written in the form Lax. As emphasized in the thesis [18],
the composition of maps La1La2 is associative while the product of octonions is
not. We define, in general, the map κ: Spin(8) → Spin(8) by κ(g)x := (gx∗)∗

(x ∈ O, g = Spin(8)). It ia easy to verify that

κLa = Ra, where Ray = ya∗, a, y ∈ O; aa∗ = 1. (41)

(Note that if the algebra A of elements a were associative then the group law
Ra1Ra2 = Ra1a2 would be only satisfied if one uses the conjugation for right
action as in (41).) Finally, setting

πLa = Ta, where Taz = aza∗, πRa = Ra, πTa = La (42)

we verify the invariance condition (40). The case of a general g can be deduced
from here by first proving that any element of g can be represented as a product of
a finite number of left multiplications (cf. [11, 32]).

3.3. Automorphism Group and Derivations of Octonions

As proven by Elie Cartan in 1914, the automorphism group of the octonions is the
exceptional Lie group

G2 = {g ∈ L(O,R) ; (gx)(gy) = g(xy), x, y ∈ O} (43)
3We adopt the notation of [32] where κ, π and ν = κπ are defined as Lie algebra automorphisms.

Baez ([3] Section 2.4), who works with the group action, denotes them α±.
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where L(O,R) is the group of non-singular linear transformations of the 8-dimen-
sional real vector space O. It follows from (38) that G2 preserves the octonion unit
and commutes with the Cayley conjugation, so that it preserves the norm N(x)

g1 = 1, (gx)∗ = g(x∗), N(gx) = N(x). (44)

Thus G2 is a subgroup of the isometry (orthogonal) group O(O) = O(8) of the
8-dimensional euclidean space of the octonions. In fact, it is a subgroup of the
connected orthogonal group SO(7) of the 7-dimensional space O0 of imaginary
octonions, the Lie algebra so(7) splitting as a vector space into a direct sum of the
Lie algebra g2 of G2 and its lowest order faithful 7-dimensional representation

so(7) u g2 ⊕ 7 ∼= g2 ⊕ R7. (45)

We see, in particular, that the dimension of G2 is 14.

The maximal subgroups of G2, whose action was defined by (36) and (37) (and
which correspond to the Borel-de Siebenthal theory) can be characterized as fol-
lows. The complex conjugation γ (in the notation of [32]): e7 → −e7 belongs to
the automorphism group G2 of O (corresponding, in fact, to the reflection of four
imaginary units e7, e7e1 = e3, e7e2 = e6 and e7e4 = e5) and has square one

γx = γ(u+ e7v) = u− e7v, γ2 = 1. (46)

The rank two (semisimple) subgroup (35), (36) of G2 can be characterized as the
commutant of γ in G2

Gγ
2 = {g ∈ G2; γg = gγ} ≡ SU(2)× SU(2)

Z2
· (47)

Denote, on the other hand, by ω the generator of the center of SU(3) acting on z
by (37)

ωx = a+ ω7z
jej , ω7 = −1

2
+

√
3

2
e7, ω3

7 = 1 = ω3. (48)

Then the subgroup (37) of G2 is characterized by

Gω
2 := {ω ∈ G2 ; ωg = gω} ≡ SU(3). (49)

It is convenient to embed the Lie algebra so(7) (and hence g2 ⊂ so(7)) into
the isometry algebra so(8) of the quadratic form N(x). Following Yokota [32]
we introduce two bases4 Gab(= Gba) and Fab in the 28-dimensional vector space

4We note that the convention e1e2 = e3 (rather then our e1e2 = e4) is used in [32] so that the
relations connecting G and F (Application B) are different.
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so(8)

Gabec = δbcea − δaceb, a, b, c = 0, 1, ˙..., 7, e0 = 1 (50)

Fabx =
1

2
ea(e

∗
bx) = −Fbax, Faa ≡ 0, e∗0 = e0

related by an involution π

(πG)ab = Fab, (πF )ab = Gab, π2 = 1. (51)

We shall demonstrate in Application B that the involution π splits into seven four-
dimensional involutive transformations. Here, we display one of them which in-
volves our choice of the Cartan subalgebra of so(8)

F7 = X7G7, G7 =


G07

G13

G26

G45

, F7 =


F07

F13

F26

F45

, X1 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 (52)

a straightforward calculation gives X2
7 = 11, detX7 = −1. The generators Gab

obey the following commutation relations[
Gab, Gcd

]
= 2
(
δbcGad − δacGbd + δadGbc − δbdGac

)
. (53)

In order to work with real Cartan matrices we shall first display the isometry alge-
bra so(4, 4) and the derivations of the split octonions defined by (31). The algebra
so(4, 4) has 12 compact and 16 noncompact generators. The maximal compact
subalgebra so(4)× so(4) of 5 D4(4) = so(4, 4) is spanned by the generators Gµν ,
µ, ν = 0, 1, 2, 4, (µ〈ν); G3j,7, G3j,3k, j, k = 1, 2, 4, j〈k while the 16 noncompact
generators are given by

G̃µ,3ρ =
1

i
Gµ,3ρ = G̃3ρ,µ, µ = 0, 1, 2, 4, 3ρ = 3, 6, 5, 7

(54)
3ρ = 3ρ (mod7), so that 3× 4 = 5, 3× 7 = 7.

3.4. Roots and Weights of g2(2) ⊂ so(4, 4)

The Lie algebra so(8) being simply laced, the roots αj coincide with coroots
α∨j = 2αj/α

2
j . The four-dimensional root space is spanned by the orthogonal

weight basis {λµ}

λ0 ↔ H0 = G̃07, λ1 ↔ H1 = G̃13, λ2 ↔ H2 = G̃26, λ4 ↔ H4 = G̃45. (55)
5The notation Lr(s) for a rank r Lie algebra Lr means that its signature, the difference between

the number of + and − signs of its Cartan Killing form, is s.
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In the isotropic basis (29)Hµ are 8×8 diagonal matrices with two non-zero eigen-
values

Hµζ
ε
ν = εδµνζ

ε
ν , ε = ±, µ, ν = 0, 1, 2, 4 (56)

so that we have

〈λµ, λν〉 =
1

2
trHµHν = δµν , ζε0 = ρε. (57)

The simple roots αν and the fundamental weights λµ of so(4, 4) are

α0 = λ0 − λ1 ↔ H01 = H0 −H1, α1 = λ1 − λ2 ↔ H12 = H1 −H2

α−2 = λ2 − λ3 ↔ H2 −H3 α
+
2 = λ2 + λ3 ↔ H2 +H3 (58)

Λ0 = λ0, Λ1 = λ0 + λ1, Λ∓2 =
1

2
(λ0 + λ1 + λ2 ∓ λ3)

〈Λεµ, αε
′
ν 〉 = δµνδ

εε′ , ε = ±, µ, ν = 0, 1, 2. (59)

The rank three- Lie subalgebra so(7) ⊂ so(8) is spanned by the 21 generators Gkl
with k, l > 0. The simple (co)roots and the fundamental weights of the noncom-
pact real form so(4, 3) and the corresponding Cartan matrix of so(7,C) are

α1 = λ1 − λ2, α−2 = λ2 − λ3, α3 = λ3 ⇒ α∨3 = 2α3 (60)
Λ
so(7)
1 = λ1, Λ

so(7)
2 = λ1 + λ2, Λ

so(7)
3 =

1

2
(λ1 + λ2 + λ3)

〈Λso(7)
j , α∨k 〉 = δjk, (cjk) = (〈α∨j , αk〉) =

 2 −1 0
−1 2 −1

0 −2 2

 . (61)

Finally, the derivation algebra g2(⊂ so(7) of the octonions is spanned by

λG24 + µG37 + νG56, λG14 − µG35 + νG76

λG17 + µG25 − νG46, −λG12 + µG36 + νG75 (62)

λG16 − µG23 + νG47, −λG15 + µG27 + νG43

λG13 + µG26 + νG45, λ+ µ+ ν = 0.

For instance, the last line of (63) is a symmetric way of saying that the Cartan sub-
algebra of g2 is spanned by G13 −G26, G26 −G45. Thus g2 is 7× 2 = 14 dimen-
sional. Its simple (co-)roots are expressed conveniently in terms of the barycentric
weights

λj := λj −
1

3
(λ1 + λ2 + λ4), j = 1, 2, 4,

∑
j

λj = 0 (63)
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as follows

α1 = λ1 − λ2 (= λ1 − λ2) ←→ H12 = G̃13 − G̃26
(64)

α2 = λ2 ⇒ α∨2 = 3α2

yielding the g2 Cartan matrix

(〈α∨i , αj〉) =

(
2 −1
−3 2

)
.

The remaining four positive roots of g2 (including the fundamental weights Λg2
i )

are given by

α1 + α2 = λ1, α1 + 2α2 = λ1 + λ2 = −λ4 = Λg2
2

α1 + 3α2 = λ2λ4 = λ2 − λ4 ←→ H24 = G̃26 − G̃45

θ : = 2α1 + 3α2 = λ1 − λ4

= λ1 − λ4 = Λg2
1 ←→ H14 = G̃13 − G̃45.

The su(3) subalgebra of g2 becomes sl3 = sl(3,R) in g2(2). Its Cartan matrices are
H12, H24 while the raising (and the lowering) generators Eα (and Fα) are labeled
by the long roots α = α1, α1 + 3α2, θ. The maximal compact subalgebra so(3) of
sl3 is spanned by

L12 := G12 +G36, L24 = G24 +G56, L14 = G14 +G35
(65)[

L12, L24

]
= L14,

[
L12, L14

]
= −L24 = L42

the non-diagonal non-compact generators accompanying (64) are

G̃16 + G̃23, G̃15 + G̃13, G̃14 + G̃35.

4. Jordan Algebras and Related Groups

4.1. Classification of Finite Dimensional Jordan Algebras

Pascual Jordan (1902-1980) the “unsung hero among the creators of quantum the-
ory” (in the words of Schweber, 1994) asked himself in 1932 a question you would
expect of an idle mathematician: Can one construct an algebra of (hermitian) ob-
servables without introducing an auxiliary associative product? He arrived, after
some experimenting with the special Jordan product

A ◦B =
1

2
(AB +BA) = B ◦A (66)
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at two axioms (Jordan, 1933)

i) A ◦B = B ◦A, ii) A2 ◦ (B ◦A) = (A2 ◦B) ◦A (67)

where A2 := (A ◦A). They imply, in particular, power associativity and

Am ◦An = Am+n, m, n = 0, 1, 2, ..., A0 = 1. (68)

Being interested in extracting the properties of the algebra of hermitian matrices
(or self-adjoint operators) for which A2 ≥ 0, Jordan adopted Artin’s formal reality
condition

A2
1 + · · ·+A2

n = 0 =⇒ A1 = 0 = · · · = An. (69)

In a fundamental paper of 1934 Jordan, von Neumann and Wigner [23] classified
all finite dimensional formally real Jordan algebras (i.e., algebras over the field
of real numbers satisfying (67). They split into a direct sum of simple algebras,
which belong to four infinite families

Hn(R), Hn(C), Hn(H), JSpin(n) (70)

and a single exceptional one

J(= J8
3) = H3(O). (71)

HereHn(A) stands for the set of n×n hermitian matrices with entry in the division
ring A(= R,C,H,O), equipped with the commutative product (66). (One uses the
same notation when A is replaced by one of the alternative split composition rings ,
Cs,Hs or Os albeit the resulting algebra is not formally real in that case.) JSpin(n)
is an algebra of elements (ξ, x ; ξ ∈ R, x ∈ Rn) where Rn is equipped with the
(real) euclidean scalar product 〈x, y〉 and the product in JSpin(n) is given by

(ξ, x)(η, y) = (ξη + 〈x, y〉, ξy + ηx). (72)

The first three algebras Hn(A) (70) are equipped with the special Jordan product
(66) where AB stands for the (associative) matrix product. The algebra JSpin(n)
is special as a Jordan subalgebra of the 2n dimensional (associative) Clifford alge-
bra Cliff(n).

Remark 4. The Jordan algebras H2(A) for A = R, C, H, O are isomorphic to
JSpin(n) for n = 2, 3, 5, 9 respectively. Indeed in all four cases the elements of A
split into a multiple of the unit matrix and a traceless part of scalar square

X =

(
ξ1 x
x∗ ξ2

)
= ξ011 +X0ξ0 =

ξ1 + ξ2

2
, X0 =

(
ξ x
x∗ −ξ

)
(73)

ξ =
ξ1 − ξ2

2
, X2

0 = (ξ2 + xx∗)11, xx∗ = x∗x ∈ R+.
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We note that in each case the determinant of X has a Minkovski space signature

detX = ξ2
0 − ξ2 − xx∗ = ξ1ξ2 − xx∗ (74)

and is thus invariant under the Lorentz group in 3, 4, 6 and 10 dimensions, respec-
tively.

On the other hand, the algebrasHn(O) for n > 3 are not Jordan since they violate
condition ii) of (67). The exceptional Jordan algebra J = H3(O) did not seem to
be special but the authors of [23] assigned the proof that the product A ◦B of two
elements of J cannot be represented in the form (66) with an associative product.
The PhD student of L. Dickson Abraham Albert (1905-1972) proved this.

We introduce the one-dimensional projectors Ei and the hermitian octonionic ma-
trices Fi(xi) writing down a general element ofH3(O) as

X=

ξ1 x3 x
∗
2

x∗3 ξ2 x1

x2 x
∗
1 ξ3

=ξ1E1 + ξ2E2 + ξ3E3 + F1(x1) + F2(x2) + F3(x3). (75)

We can then write the Jordan multiplication X ◦ Y setting

Ei ◦ Ej = δijEj , Ei ◦ Fj(x) =

{
0, if i = j
1
2Fj(x), if i 6= j

Fi(x) ◦ Fi(y) = 〈x, y〉(Ei+1 + Ei+2), Fi(x)Fi+1(y) =
1

2
Fi+2(y∗x∗) (76)

where the indices are counted mod3: E4 ≡ E1, F5 ≡ F2, . . . . We define the trace,
a symmetric bilinear inner product and a trilinear scalar product in J by

trX = ξ1 + ξ2 + ξ3, 〈X,Y 〉 = tr(X ◦ Y ), tr(X,Y, Z) = 〈X,Y ◦ Z〉. (77)

The Jordan algebra J also admits a (symmetric) Freudenthal product

X × Y =
1

2

[
2X ◦ Y −XtrY − Y trX + (trXtrY − 〈X,Y 〉E)

]
(78)

where E is the 3 × 3 unit matrix, E = E1 + E2 + E3. Finally, we define a
three-linear form (X,Y, Z) and the determinant detX by

(X,Y, Z) = 〈X,Y × Z〉 = 〈X × Y,Z〉, detX =
1

3
(X,X,X)

(79)
= ξ1ξ2ξ3 + 2Re(x1x2x3)− ξ1x1x

∗
1 − ξ2x2x

∗
2 − ξ3x3x

∗
3.

The following identities hold

X ×X ◦X = (detX)E, (X ×X)× (X ×X) = (detX)X. (80)
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4.2. Automorphism Groups of the Exceptional Jordan AlgebrasH3(O(s)) and
their Maximal Subgroups

Classical Lie groups appear as symmetries of classical symmetric spaces. For
quite some time there was no such interpretation for the exceptional Lie groups.
The situation only changed with the discovery of the exceptional Jordan algebra
H3(O) and its split octonions’ cousinH3(Os).

The automorphism group of the H3(O) algebra is the rank four compact simple
Lie group6 F4. It clearly leaves the unit element E invariant and is proven to
preserve the trace (77) (see Lemma 2.2.1 in [32]). The stabilizer of E1 in F4 is the
double covering Spin(9) of the rotation group in nine dimensions (which preserves
X2

0 (73)). Moreover, we have

F4/Spin(9) ' OP2 =⇒ dim F4 = dim Spin(9) + dimO2 = 36 + 16 = 52. (81)

Building upon our treatment of g2(2) (Section 2.2) we shall first construct the Lie
algebra f4(4) of derivations (infinitesimal automorphisms) of H3(Os) which ad-
mits a real Cartan subalgebra spanned by the orthonormal basis λ0, λ1, λ2, λ4 (55)
(normalized by (57)). The simple roots of f4(4) (and the associated Cartan matrices
in the basis ζεµ (29)) are:

α1 = λ1 − λ2 ←−−−→ H12 = ε


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


α2 = λ2 − λ4 ←−−−→ H24 = H2 −H4

α4 = λ4 ←−−−−−−−−→ H4 = ε


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (82)

α0 =
1

2
(λ0 − λ1 − λ2 − λ4)

←→ 1

2
(H01 −H2 −H4) =

ε

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

6This was proven by Claude Chevalley and Richard Schafer in 1950. The result was prepared by
Ruth Moufang’s study in 1933 of the octonionic projective plane, then Jordan’s construction in 1949
of OP2 in terms of one-dimensional projections in H3(O) and Armand Borel’s observation that F4

is the isometry group of OP2. For a review and references - see [3, Section 4.2]. Octonionic quantum
mechanics in the Moufang plane was considered in [20].
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The corresponding coroots and Cartan matrix for f4 are

α∨1 = α1, α∨2 = α2, α∨4 = 2α4, α∨0 = 2α0

(cij = 〈α∨i , αj〉) =


2 −1 0 0
−1 2 −1 0

0 −2 2 −1
0 0 −1 2

 . (83)

The Lie algebra f4(4) has 24 positive roots: the 12 long roots coincide with the
positive roots {λ0±λj , j = 1, 2, 4, λj±λk, 1 5 j〈k 5 4} of so(4, 4); the 4 short
roots λµ, µ = 0, 1, 2, 4 coincide with the short positive roots of so(5, 4); finally,
f4(4) has 8 additional short roots of the form 1

2(λ0 ± λ1,±λ2 ± λ4); the highest
root θ of f4(4) coincide with that of its rank four simple subalgebras so(5, 4) and
so(4, 4)

θ = λ0 + λ1 = 2α1 + 3α2 + 4α4 + 2α0. (84)

The elements D of so(8) act on X of J (75) through their action on the octonions.

DX = F1(Dx1) + F2(κ(D)x2) + F3(π(D)x3) (85)

where D =: D1, κ(D) =: D2, π(D) =: D3, obey the principle of infinitesimal
triality

(D1x)y + x(D2y) = (D3((xy)∗))∗. (86)

For D ∈ G2 we have D1 = D2 = D3 = D.

The remaining 24 generators of f4 (outside so(8)) can be identified with the skew-
hermitian matrices Ai(ea), i = 1, 2, 3, a = 0, 1, . . . , 7

A1(x) =

 0 0 0
0 0 x
0 −x∗ 0

, A2(x) =

 0 0 −x∗
0 0 0
x 0 0

, A3(x) =

 0 x 0
−x∗ 0 0

0 0 0

. (87)

They act on J through the commutators

Ãi(ea)X =
1

2

[
Ai(ea), X

]
, i = 1, 2.3, a = 0, 1, ..., 7. (88)

The derivation algebra f4(4) of H3(O3) is obtained from here by substituting the
action of g2 by that of g2(2) and by replacing Ai(ea) by Ai(ẽa) for a = 3, 6, 5, 7. It
is for this non-compact form f4(4), that the Cartan elements are represented by real
diagonal matrices in the isotropic basis ξεµ (29)

α∨1 = H12(= α1), α∨2 = H23(= α2), α∨3 = 2H3(= 2α3)
(89)

α∨0 = H01 −H2 −H3 = 2α0.
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The physical meaning of the F4 covariance of the algebra J is revealed by exhibit-
ing the action of

Fω4 =
SU(3)× SU(3)

Z3
⊂ F4 (90)

(one of the maximal subgroup according to the Borel-de Siebentahal theory on
H3(O)). To do that we shall first extend the splitting of the octonions O = C⊕C3

into a splitting of the exceptional Jordan algebra, H3(O) = H3(C)⊕ C[3]

H3(O) 3 X(ξ, x) =

 ξ1 x3 x
∗
2

x∗3 ξ2 x1

x2 x
∗
1 ξ3

 = X(ξ, a) +X(0, ze) (91)

where

X(ξ, a) =

 ξ1 a3 a2

a3 ξ2 a1

a2 a1 a3


ar = x0

r + x7
re7, ar = x0

r − x7
re7, r = 1, 2, 3

X(0, ze) =

 0 z3e −z2e
−z3e 0 z1e
z2e −z1e 0

 (92)

zre = z1
re1 + z2

re2 + z4
re4, zjr = xjr + x3j(mod7)

r e7

in which we have used the conjugation property (ze)∗ = −ze of imaginary oc-
tonions. Multiplications mixes the two terms in the right hand side of (91). The
Freudenthal product X(ξ, x)× Y (η, b) can be expressed in a nice compact way if
we substitute the skew symmetric octonionic matricesX(0, ze), X(0,we) by 3×3
complex matrices Z,W

X(0, ze)←→ Z = (zjr , r = 1, 2, 3,  = 1, 2, 4) ∈ C[3] (93)

which transform naturally under the subgroup (90).

Indeed, using the fact that the matrices X(0, ze) and X(0,we) are traceless their
Fredenthal product (78) simplifies and we find

X(ξ, a) × X(0,we) = X(ξ, a) ◦X(0,we)− ξ1 + ξ2 + ξ3

2
X(0,we)

(94)
=⇒ X(ξ, a)×W = −1

2
WX(ξ, a), for W = (wjr)



Composition Algebras, Exceptional Jordan Algebra and Related Groups 79

X(0, ze)×X(0,we) = X(0, ze) ◦X(0,we)− 1

2
tr
(
X(0, ze)X(0,we)E

)
(95)

X(0, ze)×X(0,we) ↔ −1

2

(
W ∗Z + Z∗W + Z ×W

)
where Z ×W = (εrst(zs ×wt)

j), so that

(X(ξ, a) + Z)× (X(η, b) +W ) = X(ζ, c) + V

X(ζ, c) = X(ξ, a)×X(η, b)− 1

2
(Z∗W −W ∗Z) (96)

V = −1

2

(
WX(ξ, a) + ZX(η, b) + Z ×W

)
.

Thus, if we set V = (vjr) we would have

2v1 = −ξ1w1 − a3w2 − a2w3 − z2 ×w3

2v2 = −a3w1 − ξ2w2 − a1w3 − z3 ×w1

2v3 = −a2w1 − a1w2 − ξ3w3 − z1 ×w2.

The inner product in J is express in terms of the components X(ξ, a) and Z as

(X,Y ) = trX ◦ Y =
(
X(ξ, a), X(η, b)

)
+ 2(Z,W )

(97)

2(Z,W ) = Tr
(
Z∗W +W ∗Z

)
= 2

3∑
r=1

∑
j=1,2,4

(zjrw
j
r + wjrz

j
r).

In the applications to the Standard Model of particle physics the (upper) index j
of z (j = 1, 2, 4) labels quark’s colour while r ∈ {1, 2, 3} is a family (or flavour)
index. The SU(3) subgroup of G2, displayed in Section 2 acting on individual
(imaginary) octonions is the colour group.

The subgroup Fω4 (cf. (90)) is defined as the commutant of the automorphism ω of
order three in F4

ωX(ξ, x) =

 ξ1 ωx3 (ωx2)∗

(ωx3)∗ ξ2 ωx1

ωx2 (ωx1)∗ ξ3

, ω(a+ ze) = a+ ω7ze

(98)

ω(X(ξ, a) + Z) = X(ξ, a) + ω7Z, ω7 = −1

2
+

√
3

2
e7, ω3

7 = 1 = ω3.

We leave to the reader to verify that the restriction of ω to O, given by

ωx = ω(a+ ze) = a+ ω7ze
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is an automorphism of O and that its commutant in G2 is SU(3). (One uses, in
particular, the relation ω7zeω7 = ω7ω7ze = ze). The automorphisms g ∈ Fω4 that
commute with ω (98) are given by pairs g = (A,U) ∈ SU(3) × SU(3) acting on
H3(O) by

(A,U) (X(ξ, a) + Z) = AX(ξ, a)A∗ + UZA∗. (99)

The central subgroup

Z3 = {(1, 1), (ω7, ω7), (ω2
7, ω

2
7)} ∈ SU(3)× SU(3) (100)

acts trivially on H3(O). We see that unitary matrix U acts (in (98)) on the colour
index j and hence belongs to the (unbroken) colour group SU(3)c, while A spans
the (badly broken) family symmetry.

4.3. The Jordan Subalgebra JSpin9 of H3(O) and its Automorphism Group
Spin(9) ⊂ F4

The ten dimensional Jordan algebra JSpin9 can be identified with the algebra of 2×
2 hermitian octonionic matrices H2(O) equipped with the Jordan matrix product.
It is generated by the 9-dimensional vector subspace sH2(O) of traceless matrices
ofH2(O) whose square is, in fact, a positive real scalar

X =

(
ξ x
x∗ −ξ

)
⇒ X2 = (ξ2 + x∗x)11, x ∈ O, ξ ∈ R. (101)

JSpin9 is a (special) Jordan subalgebra of the (associative) matrix algebra R[24]
that provides an IR of Cliff9. Clearly, it is a subalgebra ofH3(O)-consisting of 3×
3 matrices with vanishing first row and first column. Its automorphism group is the
subgroup Spin(9) ⊂ F4 which stabilizes the projector E1: Spin(9) = (F4)E1 ⊂
F4.

With our interpretation of J = H3(O) as (possibly part of) the finite quantum
algebra of the Standard Model of particle physics JSpin9 is the subalgebra corre-
sponding to the first generation of (left chiral) quarks and leptons(

νL ujL
e−L djL

)
, j is the colour index.

They are physically distinguished as being much lighter than the particles in the
second and third generation and therefore the relevant ones for the low energy
physics. This justifies a more detailed study of the Jordan spin factor JSpin9 and
its symmetry group.
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To begin with we shall interpret the 16-dimensional (real) spinor representation
S9 of Spin(9) as describing the two four-dimensional complex representations of
the first generation of particles. They correspond to the splitting of S9 into two
8-dimensional spinor representations S↑8 and S↓8 of Spin(8) that appear as eigen-
vectors of the Coxeter element ω8 of Cl8 (see Table 1)

S9 = S↑8 ⊕ S
↓
8 , (ω8 − 1)S↑8 = 0 = (ω8 + 1)S↓8 . (102)

In fact, Cl9 is isomorphic (as ungraded algebra) to the direct sum of two 16 × 16
matrix algebras

Cl9 u R[24]⊕ R[24]. (103)

Each of the irreducible components is spanned by Cliff8. Here is a (real) basis of
Cliff8 Γ -matrices with diagonal ω8

Γ0 =σ1 ⊗ P0, Γa =c⊗ Pa, P0 =118 = 11⊗ 11⊗ 11

P1 = 11⊗ c⊗ σ3, P2 =c∗ ⊗ σ3 ⊗ σ3, P4 =σ1 ⊗ c∗ ⊗ σ1

P3 =σ3 ⊗ c∗ ⊗ σ1, P6 =c⊗ 11⊗ σ1, P5 = c∗ ⊗ σ1 ⊗ σ3

P7 = 11⊗ 11⊗ c∗, a =1, . . . , 7

(104)

Γ8 ≡ ω8 = Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7 = σ3 ⊗ 11⊗ 11⊗ 11 = σ3 ⊗ ω−7

c∗ = −c =

(
0 −1
1 0

)
. (105)

(Each factor 11 in (104) is a 2 × 2 matrix.) The
(

9
2

)
= 36 generators of the Lie

algebra Spin(9) can be chosen as the commutators of these matrices. The maximal
Lie subalgebra su(4)⊕ su(2) of Spin(9) is spanned by

su(4) : {Γab =
1

2

[
Γa,Γb

]
= ΓaΓb for a < b, a, b = 1, . . . , 6}

isu(2) : 2I1 = iΓ7ω8 =σ1 ⊗ 11⊗ 11⊗ σ2, 2I2 =iΓ0ω8 =σ2 ⊗ 11⊗11⊗11 (106)

2I3 = iΓ0Γ7 = σ3 ⊗ 11⊗ 11⊗ σ2,
[
I1, I2

]
= iI3,

[
Ij ,Γab

]
= 0.

The general element X (101) of the space sH2(O) is written as

X = ξω8 + xaΓa = (ξσ3 + x0σ1)⊗ P0 + c⊗
7∑

a=1

xaPa. (107)

The 8 ⊗ 8 matrices Pa are an 8-dimensional counterpart of the 2 ⊗ 2 matrix real-
ization of the quaternion units 11, qj = −iσj . They are characterized by similar
anticommutation relations and product of imaginary units

PaP
∗
b + PbP

∗
a = 2δab, a, b = 0, 1, . . . , 7

(108)
P ∗a = −Pa, a = 1, . . . , 7, P1 . . . P7 = ω−7 = 1
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while the 28 skew symmetric matrices 1
2(PaP

∗
b − PbP

∗
a ) span the Lie algebra

so(8).

We stress that the map ea → Pa (unlike the representation qj = −iσj) only re-
spects the Jordan products (i.e. the anticcommutators) of the octonion units, not
their commutators. It could not have been otherwise as the Pa belong to the 64-
dimensional associative algebra of real 8×8 matrices which can be identified (due
to the last relation (108)) with the Clifford algebra Cliff−6 .

The correspondence between octonions x = xaea and 8× 8 matrices x̂ = xaPa is
norm preserving

x = xaea ←→ x̂ = xaPa =⇒ xx∗ = N(x) = x̂x̂∗. (109)

The norm preserving action of the Lie algebra so(8) on x given by the operators
Gab (51) corresponds to commutation with 1

2Ĝab where

Ĝab =
1

2
(PaP

∗
b − PbP ∗a ), i.e., Ĝa0 = Pa = −Ĝ0a

(110)
Ĝab = −Pab = Pba (= −Ĝba) for 0 < a < b.

We have
1

2
[Ĝab, x̂] = Paxb − xaPb ←−−→ Gabx = eaxb − xaeb. (111)

From now on we shall omit the hat on Ĝab and will identify it with Gab. The
Lie subalgebra su(4) = so(6) is spanned by Gab, a, b = 1, . . . , 6. Its commutant
in so(8) consists of the multiples of the U(1) generator G07, that corresponds to
the third component of the weak isospin I3 (106). In order to reveal the physical
meaning of the su(4) Lie algebra we shall identify its colour su(3) subalgebra
which belongs to g2 ⊂ so(7). According to the results of Section 2.3 it is spanned
by
−iH12 =G13 −G26, −iH24 =G26 −G45

L12 =G12 +G36, L24 =G24 +G65, L14 =G14 +G35

N12 =G16 +G23, N24 =G25 +G46, N14 =G15 +G43.

(112)

The commutant u(1) of su(3) in su(4) is spanned by the Cartan element

i(h1 + h2 + h3) = G13 +G26 +G45 (113)

whose physical meaning will be made clear shortly. The operators G13, G26 and
G45 form a basis of the Cartan subalgebra of so(6)

G13 = −P1P3 = σ3 ⊗ 11⊗ c∗, G26 = 11⊗ σ3 ⊗ c∗

G45 = σ3 ⊗ σ3 ⊗ c∗ =⇒ G13G26G45 = ω6 = 11⊗ 11⊗ c = P ∗7 (114)

w−6 = P1P2P3P4P5P6 = P1P
∗
3P2P

∗
6P4P

∗
5 .
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The equation ω−6 = P ∗7 and ω−7 = ω−6P7) imply the last equation (108). The
resulting real 8-dimensional representation of su(4) (given by the matrices Ĝab =
Gab (110) for 1 ≤ a, b ≤ 6) is equivalent to a complex four-dimensional represen-
tation which can be obtained from (110) by identifying the matrix P7 = 11⊗11⊗c∗
(which commutes with the above Gab) with the imaginary unit i. For the Cartan
generators (115) we obtain, in particular

P7 → i =⇒ Gab → γab, γ13 = iσ3 ⊗ 11, γ26 = i11⊗ σ3
(115)

γ45 = iσ3 ⊗ σ3 −→ γ13γ26γ45 = −i.

We shall go instead in the opposite direction: diagonalizing the 16-dimensional
hermitian Cartan matrices hj = iΓj3j , j = 1, 2, 4, in a complexified basis in which
hj become real diagonal. To this end we use the unitary similarity transformation

Γ→ SΓaS
∗, S = 11⊗ 11⊗ 11⊗ 1 + iσ1√

2
⇒ SS∗ = 1116 (116)

with the result

h1 : = SiΓ13S
∗ = −11⊗ σ3 ⊗ 11⊗ σ3

h2 : = SiΓ26S
∗ = −11⊗ 11⊗ σ3 ⊗ σ3 (117)

h3 : = SiΓ45S
∗ = −11⊗ σ3 ⊗ σ3 ⊗ σ3.

Inserting the matrices in the tensor products, so that

11⊗ σ3 =

(
σ3 0
0 σ3

)
, σ3 ⊗ 11 =

(
11 0
0 −11

)
, σ3 ⊗ σ3 =

(
σ3 0
0 −σ3

)
we find for the sum (113) the product of the 2×2 unit matrix with a 4×4 diagonal
matrix with 2× 2 diagonal bloks

h1 + h2 + h4 = 11⊗


−3σ3 0 0 0

0 σ3 0 0
0 0 σ3 0
0 0 0 σ3

 . (118)

4.4. The Structure Group Spin(9, 1) of JSpin9 and its 32-Dimensional Dirac
Spinor Representation

The spectrum of the operator h1+h2+h4 consisting of four eigenvalues±3 and±1
corresponds to the odd part of the operator 3Y , where Y is the weak hypercharge
acting on the 32-dimensional space of fundamental fermions and antifermions of
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the Standard Model (SM). This motivates us to go one step further, to the structure
group Spin(9, 1) of the Jordan spin factor JSpin9 which, by definition, preserves
the determinant

det

(
ξ1 x
x∗ ξ2

)
= ξ1ξ2 − xx∗, ξ1,2 ∈ R, x ∈ O. (119)

Its Lie algebra is spanned by the 32× 32 matrices

Tab =
1

2

[
Ta, Tb

]
for a, b = −1, 0, 1, . . . , 8

(120)
Ta = σ1 ⊗ SΓaS

∗, a = 0, 1, . . . , 8, Γ8 = ω8, T−1 = c⊗ 1116

with Ta being the generators of Cliff(9, 1). It is another real form of the complex-
ification of so(10), the ultimate “grand unified” Lie algebra (see [4] for a peda-
gogical review and references). The (complexified) Cartan subalgebra of so(9, 1)
is spanned by five diagonal matrices

Hj = 11⊗ hj = iTj3j , j = 1, 2, 4, H0 = iT07

H8 = T−18 = σ3 ⊗ σ3 ⊗ 118 (121)

γ = H0H1H2H4H8 = −σ3 ⊗ 1116 = −ω9,1.

Here γ is the parity operator taking value 1 for the left chiral fermions and −1 for
the right chiral fermions. The fundamental fermions are labeled by three quantum
numbers: the parity γ, the third component I3 of the weak isospin and the weak
hypercharge Y defined as eigenvalue of the corresponding operators

2I3 =
1

2
(H8 −H0) = diag{(σ−3 )×4, (−σ−3 )×4, (−σ+

3 )×4, (σ+
3 )×4}

(122)

σ−3 =

(
0 0
0 1

)
, σ+

3 =

(
1 0
0 0

)
where σ×4 stands for a 4× 4 block diagonal matrix with 2× 2 matrix blocks σ on
the diagonal, and

3Y =
3

2
(H8 +H0) +H1 +H2 +H4 =

(
A 0

0 Ã

)
A = diag{

(
0 0
0 3

)
,

(
4 0
0 −1

)×3

,

(
−6 0

0 3

)
,

(
−2 0

0 −1

)×3

} (123)

Ã = diag{
(
−3 0

0 0

)
,

(
1 0
0 −4

)×3

,

(
−3 0

0 6

)
,

(
1 0
0 2

)×3

}.



Composition Algebras, Exceptional Jordan Algebra and Related Groups 85

The 16 fundamental particles of negative parity (γ = −1) corresponding to right
chiral fields, are characterized by the pairs of eigenvalues (2I3, 3Y ) as follows

νR v (0, 0), e+
R v (1, 3), uR v (0, 4), uR v (−1,−1)

(124)
dR v (1,−1), e−R v (0,−6), νR v (−1, 3), dR v (0,−2).

The corresponding left chiral fermions (γ = 1) are obtained from (124) by going
to antiparticles and changing the sign of the quantum numbers

νL v (0, 0), e−L v (−1,−3), uL v (0,−4), uL v (1, 1)

dL v (−1, 1), e+
L v (0, 6), νL v (1,−3), dL v (0, 2). (125)

The projection operators to this states are polynomial functions of the Cartan ele-
ments. The electric charge Q is related to Y by

Q = I3 +
1

2
Y ⇒ 2Q− Y ∈ Z, Q+ Y ∈ Z. (126)

We see that the 32-dimensional Dirac spinor splits into two 16-dimensional left and
right Weyl spinors which transform under irreducible representations of Spin(9, 1).
The splitting between left and right (or, equivalently, between even and odd ele-
ment of the Clifford algebra Cliff(5,C)) thus appears to be more relevant also
mathematically than the difference between particles and antiparticles.

5. The Symmetry Algebra of the Standard Model

It has been observed by Baez and Huerta [4] that the gauge group of the SM

S(U(2)× SU(3)) =
SU(2)× SU(3)×U(1)

Z6
(127)

can be obtained as the intersection of the Georgi-Glashow and Pati-Salam grand
unified theory groups SU(5) and (SU(4)×SU(2)×SU(2))/Z2 viewed as subgroup
of Spin(10). It was suggested in [30] that one can deduce the symmetry of the SM
by applying the Borel-de Siebenthal theory to the automorphism group F4 of the
exceptional Jordan algebra J.

Here we shall consider instead maximal rank subalgebras of the complexified Lie
algebra C ⊗ so(9, 1) of the structure group Spin(9, 1) of JSpin9 which commute
with the exact symmetry Lie algebra

su(3)c ⊕ u(1)Q, Q = I3 +
1

2
Y. (128)
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The resulting superselected observables (in the terminology introduced in [31])
give rise to a three dimensional abelian algebra spanned by the operators 2I3, 3Y
and

H = H1 +H2 +H4 = 11⊗ (h1 + h2 + h4) = 114 ⊗


−3σ3 0 0 0

0 σ3 0 0
0 0 σ3 0
0 0 0 σ3

 (129)

(cf. (118)), which are all traceless with integer eigenvalues. In order to reveal
the physical meaning of H we shall recall the realization of the 32-dimensional
fermionic Fock space F as the exterior algebra

ΛC5 =
5⊕

ν=0

Λν , Λν = ΛνC5 (130)

where

Λ0 = νL, Λ1 = e+
R, νR, dR = (dcR) (131)

see [4, Section 2].

More generally, the 2n-dimensional vector space of the Clifford algebra Cliff(n,C)
is isomorphic to the exterior algebra ΛCn. If (e1, . . . , en) is basis in Λ1Cn we can
turn ΛCn into a Hilbert space by introducing the orthonormal basis

1, e1, . . . , en, ei ∧ ej , 1 ≤ i < j ≤ n, . . . , e1 ∧ · · · ∧ en. (132)

There is an equivalent fermionic Fock space realization of ΛCn w F in terms of n
creation and n annihilation operators a∗i and aj acting on F such that

a∗iΨ = ei ∧Ψ, 〈aiΦ,Ψ〉 = 〈Φ, a∗iΨ〉 Φ,Ψ ∈ F . (133)

It follows from (133) that (ai, a
∗
j ) satisfy the canonical anticommutation onrelations

[ai, aj ]+ = 0 = [a∗i , a
∗
j ]+, [ai, a

∗
j ]+ = δij . (134)

Furthermore, if we identify the “vector” 1 ∈ Λ0C with the Fock space vacuum |0〉
we shall have

ai|0〉 = 0, a∗j |0〉 = ej , a∗i a
∗
j |0〉 = ei ∧ ej , etc. (135)

Returning to the case n = 5 with the identification (131) we introduce the operators
r∗ = (r∗+, r

∗
0), d∗ = (d∗c) which create the states in Λ1

r∗+|0〉 = e+
R, r∗0|0〉 = νR, d∗|0〉 = dR, |0〉 = νL (136)
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with quantum numbers (2I3, 3Y,H) = (1, 3, 3), (−1, 3, 3), (0,−2, 1)×3, respec-
tively (and their annihilation counterparts r, d). The eigenvalues (3, 3, 1)×3 of H
are the same as those of the operator

H = [d, d∗] = 3− 2d∗d (137)

(where we skip the sum sign over the colour index in d∗d). We note that H is i-
times a generator of so(6)(⊂ so(9)) but not of su(5), so the sum of its eigenvalues
in Λ1 does not vanish but its trace on the entire right and left sectors, separately, is
zero

(trH)odd = trΛ1H + trΛ3H + trΛ5H = 9− 6− 3 = 0. (138)

Furthermore, in the 16-dimensional subspace F1 of F spanned by 8 isotopic dou-
blets (

νL
e−L

)
,

(
uL
dL

)
,

(
e+
R

νR

)
,

(
dR
uR

)
in which 3Y and 2I3 have odd eigenvalues and actually belong to so(8)

(−1)3Y = (−1)2I3 = −1, 3Y = H, 2I3 = iΓ07, Y = B − L ∈ F1 (139)

where B and L are the baryon and lepton numbers. The space F1 in fact coin-
cides with the spinor representation of Spin(9). The eight fundamental left chi-
ral particles and their (right chiral) antiparticles that take part in the weak inter-
action span (inequivalent) 8-dimensional irreducible representations of Spin(8).
All (anti)particles in the doublets are characterized by the pairs of eigenvalues
(2I3, 3Y ) (cf. (124) and (125))

νL v(1,−3), e−L v(−1,−3), uL v(1, 1), dL v(−1, 1)

e+
R v(1, 3), νR v(−1, 3), dR v(1,−1), uR v(−1,−1).

(140)

6. Outlook

The idea that exceptional structures in mathematics should characterize the fun-
damental constituents of matter has been with us since the ancient Greeks first
contemplated the Platonic solids. The octonions, the elements of the ultimate divi-
sion algebra, have been linked to the Standard Model of particle physics ever since
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Günaydin and Gürsey related them to the coloured quarks around 1973. When the
idea of a finite quantum geometry emerged [9, 15] it became natural to look for a
role of the exceptional algebraic structures in such a context. A promising step in
this direction was made by Dubois-Violette [14] who pointed out that the excep-
tional Jordan algebras J = H3(O) with its three octonions and three real elements
offers room to the three families of quarks and leptons along with three Majorana
neutrinos.

The next step [30], continued in the present notes, puts more emphasis on the au-
tomorphism (and isometry) groups of the algebraic structures. We identify such
basic observables as the weak hypercharge and isospin as elements of the subalge-
bra so(9, 1) of the Lie algebra of the structure group E6(−26) that preserves the
determinant of the elements of J.

In fact, the exceptional Jordan algebra is intimately related to all exceptional Lie
groups [5]. It will be interesting to reveal further the role of the structure group
E6(−26) and the conformal group E7(−25) of J in the physics of the Standard Model.
We intend to return to this problem in future work.

Intriguingly, the basic doublets that participate in the weak interaction fit in the
16-dimensional spinor representation of the subgroup Spin(9) of the (compact)
automorphism group F4 of the exceptional Jordan algebra which in turn splits into
two 8-dimensional Spin(8) spinors corresponding to the eight fundamental parti-
cles and to their antiparticles, respectively.
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Application A. The Fano Plane of Imaginary Octonions

The multiplication table for the seven octonionic imaginary units can be recovered
from the following properties

e2
i = −1 , i = 1, . . . , 7, ei ej = −ej ei (A.1)

ei ej = ek ⇒ ei+1 ej+1 = ek+1 , e2i e2j = e2k (A.2)

where indices are counted modulo seven, and a single relation of the type

e1 e2 = e4 (A.3)
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producing a quaternionic line. We have displayed on Fig. 1 the points ei as non-
zero triples of homogeneous coordinates taking values 0 and 1 such that the product
ei ej (in clockwise order) is obtained by adding the coordinates (a, b, c), a, b, c ∈
{0, 1}, modulo two.

e1 = (0, 0, 1), e2 = (0, 1, 0) =⇒ e1e2 = e4 = (0, 1, 1)

e3 = (1, 0, 0) =⇒ e2 e3 = e5 = (1, 1, 0)

e1 e5 = e6 = (1, 1, 1), e4 e5 = e7 = (1, 0, 1).

Figure 1. Projective plane in Z3
2 with seven points and seven lines.

Application B.

Two bases of so(8) related by the outer automorphism π. The generators Gab of
so(8) are given directly by their action on the octonion units (51)

Gabeb = ea, Gabea = −eb, Gabec = 0 for a 6= c 6= b. (B.1)

The action of Fab can also be deduced from definition (51) and multiplication rules:

Fabeb =
1

2
ea, Fabea = −1

2
eb, (a 6= b)Fab = −Fba

Fj0e2j =
1

2
e4jmod7(= −F0je2j), j = 1, 2, 4

(B.2)
Fj0e3j =

1

2
e7, F70e7 =

1

2
e3j F07 =

1

2
ej

F0je6j =
1

2
e5j , Fj0e5j =

1

2
e6j , [Fj0, F0k] = Fjk.



90 Ivan Todorov and Svetla Drenska

(All indices are counted mod7.) From (B.1) and (B.2) we find

2F0j = G0j +G2j4j +G3j7 +G5j6j

2F03j = G03j −GJ7 −G2j5j +G4j6j , j = 1, 2, 4 (B.3)

2F07 = G07 +G13 +G26 +G45.

In particular, taking the show symmetry ofGab and the counting mod7 into account
we can write

2F02 = G02 −G14 +G35 −G76

2F04 = G04 +G12 −G36 −G75

2F03 = G03 −G17 −G25 +G46 (B.4)

2F06 = G06 +G15 −G27 −G43

2F05 = G05 −G16 +G23 −G47.

Note that with the abc are ordering (1, 2, 4, 3, 7, 5, 6) The first (positive) indices of
G (2, 3, 5; 1, 3, 7; 1, 2, 4) correspond to quaternionic triples:e2e3 = e5, e1e3 = e7,
e1e2 = e4. Setting

G1 =


G01

G24

G37

G56

 , G2 =


G02

G14

G35

G76

 , G4 =


G04

G12

G36

G75

 , G3 =


G03

G17

G25

G46



G7 =


G07

G13

G26

G45

 , G5 =


G05

G16

G23

G47

 , G6 =


G06

G15

G27

G43


and similarly for F1, . . . F6 we find

Fa = XaGa, a = 1, . . . , 7, with

X1 = X7 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , X2 = X5 =
1

2


1 −1 1 −1
−1 1 1 −1

1 1 1 1
−1 −1 1 1



X4 = X6 =
1

2


1 1 −1 −1
1 1 1 1
−1 1 1 −1
−1 1 −1 1

 , X3 =
1

2


1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

1 1 1 1

 .
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They all define involutive transformations

X2
k = 11, detXk = −1, k = 1, 2, 3, 4. (B.5)
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