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TWISTOR SPACES AND COMPACT MANIFOLDS ADMITTING
BOTH KÄHLER AND NON-KÄHLER STRUCTURES∗

LJUDMILA KAMENOVA

Communicated by Claude LeBrun

Abstract. In this expository paper we review some twistor techniques and re-
call the problem of finding compact differentiable manifolds that can carry both
Kähler and non-Kähler complex structures. Such examples were constructed inde-
pendently by Atiyah, Blanchard and Calabi in the 1950’s. In the 1980’s Tsanov
gave an example of a simply connected manifold that admits both Kähler and non-
Kähler complex structures - the twistor space of a K3 surface. Here we show that
the quaternion twistor space of a hyperkähler manifold has the same property.

MSC : 53C28, 32L25, 14J28, 53C26
Keywords: hyperkähler manifolds, K3 surfaces, twistor spaces

1. Introduction

In this paper we discuss a couple of classical approaches to twistor theory. Roughly
speaking, the twistor space Z(M) is a family of (almost) complex structures on an
orientable Riemannian manifold (M, g) compatible with the given metric g and
the orientation. We are going to apply twistor techniques towards the problem
of constructing simply connected compact manifolds that carry both Kähler and
non-Kähler complex structures.

Atiyah’s idea behind his examples in [1] was to consider the set of all complex
structures Mn on the real torus T 2n = R2n/Z2n coming from the complex vector
space structures on R2n. The space Mn is a complex manifold which is differen-
tially a product of an algebraic variety and the torus T 2n, and therefore admits a
Kähler structure. On the other hand, there exists a “twisted” complex structure on
Mn which is non-Kähler. This rationale works in many other cases, and in particu-
lar, one can produce simply connected examples of similar nature. In [22] Tsanov
showed that the twistor space of aK3 surface is a simply connected 6-dimensional
compact manifold which carries both Kähler and non-Kähler complex structures.
Here we give examples of twistor spaces of hyperkähler manifolds and show that
they also carry both Kähler and non-Kähler complex structures.
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Twistor theory was originally introduced by Penrose [20] and studied by Atiyah,
Hitchin and Singer [2] in four-dimensional Riemannian geometry. Given a four-
dimensional manifold M with a conformal structure, the twistor transform asso-
ciates to M the projective bundle of anti-self-dual spinors, which is a S2-bundle
over M . In higher dimensions the notion of twistor space was generalized by
Bérard-Bergery and Ochiai in [4]. Given a 2n-dimensional oriented manifold
with a conformal structure, the twistor space Z(M) parametrizes almost com-
plex structures on M compatible with the orientation and the conformal struc-
ture. For quaternionic Kähler and hyperkähler manifolds there is an alternative
twistor generalization introduced by Salamon [21] and independently by Bérard-
Bergery (see [5, Theorem 14.9]). For a quaternionic Kähler manifold M (i.e., a
manifold with holonomy group contained in Sp(n) · Sp(1)) there is a natural S2-
bundle Z0(M) over M of complex quaternionic structures on M , the “quaternion
twistor space”. The quaternion twistor construction applied to hyperkähler man-
ifolds gives examples of simply connected manifolds that carry both Kähler and
non-Kähler complex structures. The idea behind this result is that on one hand, the
quaternion twistor space of a hyperkähler manifold is diffeomorphic to a product
of Kähler manifolds, and on the other hand, the twistor complex structure is not
Kähler.

Theorem 1. Let M be a hyperkähler manifold of real dimension 4n. Then the
quaternion twistor space Z0(M) is a simply connected compact manifold that car-
ries both Kähler and non-Kähler complex structures.

2. Basics on Twistor Geometry

Fix a scalar product and an orientation on the 2n-dimensional real space R2n. De-
note the type-DIII compact hermitian symmetric space SO(2n)

U(n) by Γn. Notice that,
as a hermitian symmetric space, Γn is a complex Kähler manifold. The space Γn
can be identified with the set of complex structures on R2n, compatible with the
metric and the given orientation. Indeed, if J ∈ SO(2n) with J2 = −1 is a
complex structure on R2n, then the group SO(2n) acts on J by conjugation. The
isotropy group is U(n) ⊂ SO(2n). The real dimension of Γn is n(n− 1).

Definition 2. Let M be an oriented Riemannian manifold of dimension 2n. The
holonomy group of M is contained in SO(n). Denote by P the associated princi-
pal SO(2n)-bundle of orthonormal linear frames onM . The fiber bundle Z(M) =
P ×SO(2n) Γn → M is called the twistor bundle or twistor space of M . Equiva-
lently, Z(M) can be identified with P/U(n).
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The dimension of Z(M) is even: indeed, dimRZ(M) = dimRM + dimRΓn =
2n + n(n − 1) = n(n + 1). The twistor space Z(M) has a “tautological” al-
most complex structure J which we describe here. Denote by p : Z(M) → M
the projection. For a point z ∈ Z(M), let its image be x = p(z) ∈ M . The
fiber of p over x is p−1(x) = Γn, and therefore z ∈ Γn can be considered as a
complex structure Iz on the tangent space TxM . The Riemannian connection of
M determines a splitting of the tangent space TzZ(M) = Vz ⊕ Hz into vertical
and horizontal parts. The vertical part Vz is identified with the tangent space to the
fiber p−1(x) = Γn at z, and it has an integrable almost complex structure K. The
connection of M defines an isomorphism Hz

∼= TxM and we can consider Iz as a
complex structure on Hz .

Definition 3. The almost complex structure J on Z(M) is defined by Jz = K ⊕
Iz : Vz ⊕ Hz → Vz ⊕ Hz . As z varies in p−1(x) = Γn, the projection of Jz on
the horizontal part Hz

∼= TxM = R2n varies in the space of complex structures
compatible with the metric and orientation.

When dimR(M) = 4, the fiber Γ2 = S2 and the generalized twistor definition
coincides with the classical definition which was first introduced for Riemannian 4-
manifolds. Twistor spaces can also be defined in terms of spinors. In our notations
Z(M) coincides with the projectivized bundle P(PS+) of positive pure spinors on
M [15, Proposition 9.8].

Proposition 4. LetM be an oriented Riemannian manifold of dimension 2n. Then
the orthogonal orientation preserving almost complex structures on M are in one-
to-one correspondence with the sections of the twistor space Z(M) = P(PS+). In
particular, M is Kähler if and only if there is a parallel cross section of Z(M).

From the definition of the almost complex structure J on Z(M) it is clear that
the integrability of J depends only on the Riemannian metric g on M . When
dimR(M) > 4, the Weyl tensor W is irreducible, however when dimR(M) > 4,
the Weyl tensor splits into two parts: self-dual and anti-self-dual W = W+⊕W−.

Theorem 5. Let M be an oriented Riemannian manifold of dimension 2n. The
almost complex structure J on Z(M) is integrable if and only if:

• M is anti-self-dual, i.e., the self-dual part of the Weyl tensor vanishes: W+ =
0, when dimR(M) = 4 [2, Theorem 4.1]

• M is conformally flat (i.e., W = 0) when dimR(M) > 4 [4, Section 3].
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Another important question in complex geometry is to determine when a given
manifold is Kähler.

Theorem 6. The twistor space Z(M) of a compact oriented Riemannian manifold
M is Kähler if and only if:

• M is conformally equivalent to the complex projective space CP2 or to the
sphere S4 when dimR(M) = 4 [10, Theorem 6.1]

• M is conformally equivalent to the sphere S2n when dimR(M) = 2n > 4
see [3].

Notice that the sections of p : Z(M) → M represent almost complex structures
on M compatible with the Riemannian metric and the orientation. If the section is
holomorphic, it represents an integrable almost complex structure.

Theorem 7 (Michelsohn [19]) . Let M be an oriented Riemannian manifold of
even dimension with an almost complex structure I determined by a projective
spinor field s ∈ Γ(Z(M)). Then I is integrable if and only if the section s is
holomorphic.

We conclude this section with some interesting examples of twistor spaces and
fibers of the twistor projection in small dimensions.

Example 8. Consider the sphere S2n as the conformal compactification of R2n.
Then from the topology of fiber bundles it is clear that Z(S2n) = Γn+1. This
implies that there are no complex structures on S6 compatible with the standard
metric. Indeed, if s : S6 → Z(S6) = Γ4 is a section representing such a complex
structure, then s(S6) ⊂ Γ4 would be a complex submanifold by Theorem 7. This
would imply that s(S6) is Kähler which is impossible since H2(S6,R) = 0 and
there could not be any Kähler (1, 1) classes on S6.

Example 9. Due to a lot of special isomorphisms between symmetric spaces of
small dimensions, we have the following isomorphisms

• Γ1 is a point, because SO(2) ∼= U(1)

• Γ2 = S2 = CP1, because SO(4)
U(2)

∼= U(2)
U(1)

• Γ3 = CP3, because SO(6)
U(3)

∼= U(4)
U(1)×U(3)

• Γ4 = Q6 is a complex 6-dimensional quadric, because SO(8)
U(4)

∼= SO(8)
SO(2)×SO(6) ·
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3. Examples of Twistor Spaces of Surfaces

Let M be a 4-dimensional oriented Riemannian manifold. By the construction of
the almost complex structure J = K ⊕ I on the twistor space Z(M), the fibers of
the twistor map p : Z(M)→M are holomorphic rational curves in Z(M), called
“twistor lines”. The normal bundle of each twistor line is O(1)⊕O(1). From the
results in [2] we get the following universal property of twistor spaces.

Theorem 10. Let M be an anti-self-dual 4-manifold, i.e., W+ = 0. Then the
twistor space Z(M) is a complex manifold that admits a “real structure”, i.e., an
anti-holomorphic involution ι : Z(M)→ Z(M). The restriction of the involution
ι on each twistor line CP1 = S2 is the antipodal map. Conversely, the holomorphic
data above is sufficient to define a twistor space. More precisely, if Z is a 3-
dimensional complex manifold with an antiholomorphic involution ι, foliated by
rational curves with normal bundles O(1)⊕O(1), such that ι restricted to a fiber
of the foliation CP1 is the antipodal map, then Z is a twistor space of an anti-self-
dual 4-manifold.

Here are the first examples where a twistor-type (almost) complex structure was
explored even before twistor spaces were defined.

Example 11. Consider the 4-dimensional real torus M = T 4 = R4/Z4. The
twistor space Z(T 4) of the torus is the quotient of O(1) ⊕ O(1) by a corre-
sponding lattice action. In [6] Blanchard considered this example and showed
that Z(T 4) is a compact complex manifold admitting a holomorphic fibration to
CP1 whose fibers are complex tori. In [7] Calabi also explored 6-dimensional ex-
amples of oriented Riemannian manifolds embedded into the Cayley space, which
are diffeomorphic to a Kähler manifold but do not admit a Kähler metric. In [1]
Atiyah considered fiber spaces of higher-dimensional complex tori that arise as
twistor spaces. On one hand, Atiyah established the non-Kähler property of these
fiber spaces, and on the other hand, he showed that they are diffeomorphic to the
product of two complex Kähler manifolds (namely, the given complex torus and a
symmetric space of type DIII).

Atiyah was interested in these examples, because they illustrate the existence of
Kähler and non-Kähler complex structures on the same differentiable manifold.
In [1] he asked if a simply connected compact differentiable manifold can carry
both Kähler and non-Kähler structures. The following example answers Atiyah’s
question.
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Example 12. In [22] Tsanov noticed that the twistor space Z(S) of a K3 surface
S is simply connected and admits both Kähler and non-Kähler complex structures.
Indeed, the quaternions H act as parallel endomorphisms on the tangent bundle
TS. Fix the standard basis {I, J,K} of H. This gives a trivialization of Z(S),
i.e., Z(S) is diffeomorphic to S × CP1. Notice that since every K3 surface is
Kähler, S × CP1 admits a Kähler product structure, however Z(S) endowed with
the twistor complex structure is not Kähler by Hitchin’s result (Theorem 6).

For any anti-self-dual complex surface S we can consider Z(S) as the projec-
tivized bundle P(PS+) of positive pure spinors on S [15, Proposition 9.8]. For
the tautological complex structure J on Z(S), the projection p : (Z(S), J) → S
is not a holomorphic map in general. However, there exists a complex structure
J ′ on Z(S) such that p : (Z(S), J ′) → S becomes a holomorphic CP1-bundle.
Tsanov proved that (Z(S), J) and (Z(S), J ′) are not deformation equivalent to
each other, and therefore the moduli space of complex structures on the complex
manifold Z(S) is not connected. The method used in [22] is an explicit computa-
tion of the first Chern classes of (Z(S), J) and (Z(S), J ′). Two complex structures
on a 3-dimensional complex manifold are homotopic if and only if their first Chern
classes coincide. Tsanov shows that there is no diffeomorphism φ of Z(S) such
that φ∗ sends c1(Z(S), J) to c1(Z(S), J ′).

Example 13. Let Σg be a Riemannian surface of genus g ≥ 2. Kato [13] considers
the twistor space Z(S) of the ruled surface S = CP1 × Σg. By Theorem 6, Z(S)
is non-Kähler. Kato showed that there are no non-constant meromorphic functions
on Z(S). A classical result by Catanese states that the existence of a non-constant
holomorphic map from a compact Kähler manifold to a compact Riemannian sur-
face of genus g ≥ 2 is determined by its topology. Kato’s example shows that
the Kähler assumption is essential and cannot be removed from Catanese’s result.
In [12] we described explicitly the complex structures of S in terms of holomor-
phic sections S → Z(S). Kato’s example fits into the theory of scalar-flat Kähler
surfaces, which are explored in the key papers [16] of LeBrun and [14] of Kim,
LeBrun and Pontecorvo.

4. Twistor Spaces of Hyperkähler Manifolds

Definition 14. A 4n-dimensional Riemannian manifold is called hyperkähler if its
holonomy group is contained in the compact symplectic group Sp(n).

Since Sp(n) = Sp(2n,C) ∩ U(2n) is a subgroup of SU(2n), by Berger’s classifi-
cation, every hyperkähler manifold is Kähler with zero Ricci curvature.
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Definition 15. A 4n-dimensional Riemannian manifold is called quaternion Käh-
ler if its holonomy group is contained in Sp(n) · Sp(1).

On the other hand, Sp(n) · Sp(1) is not a subgroup of U(n), and therefore a gen-
eral quaternion Kähler manifold is not Kähler. If n ≥ 2, any quaternion Kähler
manifold is Einstein.

From now on we assume thatM is a hyperkähler manifold of dimension dimRM =
4n. Then the imaginary quaternions act on TM as parallel endomorphisms. Fix
the standard basis {I, J,K} of the imaginary quaternions. Both Salamon [21] and
Bérard-Bergery [5, Theorem 14.9 and Definition 14.67] independently introduced
an alternative notion of a twistor space for quaternion Kähler manifolds. Let E be
the 3-dimensional vector subbundle of End(TM) spanned by {I, J,K}. The vec-
tor bundle E carries a natural Euclidean structure, with respect to which {I, J,K}
is an orthonormal basis.

Definition 16. The unit-sphere subbundle Z0(M) of E is the quaternion twistor
space of M .

Salamon [21] proved that the quaternion twistor space Z0(M) of M admits a nat-
ural complex structure such that the fibers of the projection π : Z0(M) → M
are holomorphic rational curves called “twistor lines”. Notice that the complex
structures {I, J,K} give a trivialization of Z0(M), and therefore Z0(M) is dif-
feomorphic to M × S2 ∼= M × CP1.

We can also describe the quaternion twistor space Z0(M) of a hyperkähler man-
ifold M as follows. We set Z0(M) = CP1 ×M , where CP1 is identified with
the unit sphere S2 ⊂ H of complex structures on M . We define the “tautologi-
cal” (almost) complex structure J ′ on Z0(M) in the same way as in the case of
Riemannian 4-folds. Denote by π : Z0(M) → M the projection. Every point
z ∈ Z0(M) is of the form z = (α, π(z)), where α ∈ CP1. Let K be the natu-
ral complex structure of CP1. Then we define the “tautological” almost complex
structure J ′ on TzZ0(M) by J ′z = (K,α), where α ∈ CP1 is considered as a com-
plex structure on Tπ(z)M . This defines an integrable almost complex structure J ′

on Z0(M) by Salamon [21] and Z0(M) becomes a (2n+1)-dimensional complex
manifold. The quaternion twistor space Z0(M) is an almost complex submanifold
(and a subbundle) of the “big” twistor space Z(M).

As Joyce notes in [11], the quaternion twistor space Z0(M) of a hyperkähler mani-
foldM satisfies very similar properties to the 4-dimensional Riemannian case. The
projection p : (Z0(M), J ′) → CP1 is holomorphic and p−1(α) is isomorphic to
the complex manifold (M,α) for any α ∈ CP1. There is an antiholomorphic sym-
plectic involution ι : Z0(M) → Z0(M) defined by ι(α, x) = (−α, x). Consider
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the projection π : Z0(M)→ M . For every point x ∈ M the fiber over x is called
a twistor line and it is a holomorphic rational curve (see [21]) with normal bundle
O(1)⊕2n. The twistor lines are preserved by the involution ι and the restriction
of ι on a twistor line coincides with the antipodal map. As in Theorem 10, the
holomorphic data above is sufficient to show that a given (2n + 1)-dimensional
complex manifold with this data is biholomorphic to a quaternion twistor space of
a hyper-complex manifold equipped with a pseudo-hyperkähler metric [11, Theo-
rem 7.1.4].

Theorem 17. Let M be a hyperkähler manifold of real dimension 4n. Then the
quaternion twistor space Z0(M) is a simply connected compact manifold that car-
ries both Kähler and non-Kähler complex structures.

Proof: From the definition of Z0(M) it is clear that the quaternion twistor space
is diffeomorphic to the product of complex manifolds M × CP1, which admits a
product Kähler structure. We have that π1(Z0(M)) = π1(M) × π1(S2) = 0, i.e.,
the quaternion twistor space is simply connected.

Now considerZ0(M) together with its twistor complex structure J ′. For a compact
hyperkähler manifold M Fujiki [8] showed that the general fiber of the twistor
family p : (Z0(M), J ′) → CP1 does not contain neither effective divisors nor
curves, and therefore the general fiber is not projective.

Notice that H0(Z0(M),Ωi
Z0(M)) = 0 for i > 0. Let’s first show this for i = 1. If

we assume there is a section σ ∈ H0(Z0(M),Ω1
Z0(M)), then σ defines a linear map

TZ0(M)|CP 1 → C, where CP 1 is a twistor line of the projection π : Z0(M) →
M . Since the normal bundle of a twistor line is O(1)⊕2n by [21], we have the
following splitting: TZ0(M)|CP 1 = TCP 1 ⊕ NCP 1/Z0(M) = O(2) ⊕ O(1)⊕2n

for every twistor line, i.e., for every fiber of π. But since the dual O(−1) of the
hyperplane bundle doesn’t have non-trivial sections, it follows that σ = 0. Since
we can express ΛiTZ0(M)|CP 1 as a direct sum of tensor powers of O(1), we can
use the same argument for i > 1.

Assume that Z0(M) is Kähler, thenH0(Z0(M),Ω2
Z0(M)) = 0 andH2(Z0(M)) =

H1,1(Z0(M)) 6= 0 andH1,1(Z0(M)) would contain rational classes, henceZ0(M)
is projective by the Kodaira embedding theorem. However, every closed analytic
subvariety of a projective variety is projective. Then the fibers of the twistor fam-
ily p : Z0(M) → CP1 would be smooth projective varieties, which contradicts
Fujiki’s result. Therefore, the quaternion twistor space Z0(M) together with the
tautological twistor complex structure is not Kähler, and the underlying simply
connected differentiable manifold M × CP1 carries both Kähler and non-Kähler
complex structures. �
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Remark 18. Claude LeBrun pointed out an alternative argument that the complex
structure J ′ on the “small” twistor space Z0(M) is non-Kähler for a hyperkähler
manifold M of complex dimension 2n. Let p : Z0(M) → CP1 be the holomor-
phic twistor map. Hitchin’s argument [10] on the action of the real structure on
H1,1(Z0(M)) shows that if J ′ is a Kähler sructure, then the anti-canonical line
bundle K∗ is ample. In the hyperkähler case, K∗ = p∗O(2n + 2) is a pull-back
from the base CP1 via the projection p : (Z0(M), J ′)→ CP1, and hence it is triv-
ial on every fiber of p : Z0(M)→ CP1. Therefore, its sections are pull-backs, too.
Then the linear system of any power ofK∗ collapses every fiber of Z0(M)→ CP1.
This contradicts ampleness ofK∗. By the same argument, the algebraic dimension
of Z0(M) is a(Z0(M)) = 1 for a hyperkähler manifold M .

If M is a hyperkähler manifold, then there exists a universal deformation space
U → Def(M) of M , where the base Def(M) is smooth. The quaternion twistor
space p : Z0(M)→ CP1 induces a non-trivial map CP1 → Def(M). In [9] Fujiki
showed that the corresponding 1-dimensional subspace of the Zariski tangent space
H1(M,T 1,0M) ∼= H1,1(M) of Def(M) is spanned by the Kähler class of the
given hyperkähler metric on M , which coincides with the Kodaira-Spencer class.

Example 19. In [18] Claude LeBrun gives the following example. Let M be a
hyperkähler manifold of complex dimension 2n and let f :→ CP1 be a ramified
cover of degree k. Consider the pull-back Ẑ0(M) = f∗Z0(M) of the map p :
Z0(M)→ CP1 via f and let p̂ = f∗p be the associated holomorphic submersion.
Then Ẑ0(M) is a complex (2n + 1)-manifold with canonical line bundle K =
p̂∗O(−2nk − 2). LeBrun noticed that once we take a ramified cover of the base
CP1 of the twistor space, then the deformation space of Ẑ0(M) is the deformation
space of the corresponding rational curve in the Teichmüller space, which grows as
the degree k of the cover grows. The spaces of type Ẑ0(M) can also be constructed
if one takes any rational curve in the Teichmüller space and restricts the universal
fibration U to this curve. The methods used in the proof of our Theorem 17 also
show that Ẑ0(M) is non-Kähler. LeBrun’s example is related to his earlier work
[17], where he shows that if S is any complex surface with even Betti number b1,
and if M = S#k(−CP2) is its blow-up at a large number k >> 0 of points, then
the twistor space Z(M) admits both Kähler and non-Kähler complex structures,
and moreover, they have different Chern numbers.

Remark 20. LetM be a hyperkähler manifold of real dimension 4n. When n > 1,
the twistor space Z(M) is integrable if and only if M is flat, i.e., M is a torus,
because the vanishing of the Weyl tensor (as required by Theorem 5) for a Ricci-
flat manifold implies the vanishing of the entire curvature tensor. However, it is
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still an interesting question to answer when the almost complex manifold Z(M)
is diffeomorphic to a product M × Γ2n. In particular, it would be interesting to
know if there is a relation that the characteristic classes of a hyperkähler complex
2n-fold M have to satisfy so that Z(M) is a trivial bundle.
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