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2 + 2 MOULTON CONFIGURATION

NAOKO YOSHIMI

Communicated by Charles-Michel Marle

Abstract. We pose a new problem of collinear central configurations in Newtonian
n-body problem. It is known that the configuration of two bodies moving along the
Newtonian force is always a collinear central configuration. Can we add new two
bodies on the straight line of initial two bodies without changing the move of the
initial two bodies and the configuration of the four bodies is central, too? We call it
2+2 Moulton configuration.

We find three special solutions to this problem and find each mass of new two bodies
is zero.
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1. Introduction

Euler found solutions of three-body problem on a line, collinear three problem [2],
(n, d) = (3, 1), for the first time in history. In general solutions of n-body problem
on a line, called a collinear n-body-problem, become collinear central configura-
tion, that is, the ratios of the distances of the bodies from the center of mass are con-
stants [5]. F. Moulton [5] proved that for a fixed mass vector m = (m1, . . . ,mn)
and a fixed ordering of the bodies along the line, there exists a unique collinear
central configuration q = (q1, . . . , qn) with mass m = (m1, . . . ,mn) (up to trans-
lation and scaling). The configuration is called a Moulton Configuration, which
will be abbreviated as M.C.

Many papers about M.C. were published by many authors since then. For example,
Albouy and Moeckel [1] consider the inverse problem: given a fixed collinear con-
figuration (q1, . . . , qn) of n bodies, the problems to find masses m1,m2, . . . ,mn

which make (q1, . . . , qn) with (m1, . . . ,mn) central. They proved that for n ≤
6, each configuration (q1, . . . , qn) determines a one-parameter family of masses
(m1, . . . ,mn) which makes (q1, . . . , qn) with (m1, . . . ,mn) central.
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In this paper, we consider the following problem. We assume we are given a M.C.
of two bodies, A1, A2 of configuration q = (qA1

, qA2
) ∈ R2, such that qA1

< qA2

with mass mA = (mA1
,mA2

). We consider to add two bodies, B1, B2 of qB =

(qB1
, qB2

) with mB = (mB1
,mB2

), to A1, A2 on the same line so that

i) the positions qA1
, qA2

, qB1
, qB2

are mutually distinct and their configuration
is M.C. with masses mA1

,mA2
,mB1

,mB2

ii) the motion of A1, A2 are kept invariant during the process.

We call it 2 + 2-Moulton-Configuration for two bodies qA = (qA1
, qA2

) with
mA = (mA1

,mA2
). More precisely, we denote by q1, . . . , q4 the positions of

A1, A2, B1, B2 and (m1, . . . ,m4) their mass, respectively, and we define

Definition 1 (2+2-Moulton-Configuration) We call q = (q1, q2, q3, q4) with m =
(m1,m2,m3,m4) “2+2 Moulton-Configuration” for two bodies, qA with mA

when it satisfies the following conditions.

i) The configuration q with m is a Moulton Configuration without changing
the initial configuration qA with mA

ii) The center of mass of the systems c and center of mass of A1 and A2 cA are
the same, and the motion of A1 and A2 is invariant.

The main result of this paper is the following.

Theorem 2 (2 + 2 Moulton Configuration) i) There exist three 2 + 2 Moulton
Configurations for two bodies, qA with mA with order

• qB1
< qA1

< qB2
< qA2

• qB1
< qA1

< qA2
< qB2

• qA1
< qB1

< qA2
< qB2

ii) The masses of added two bodies mB1
and mB2

are zero for each case.

We can also set the k + l Moulton Configuration problem in the same manner. We
will consider this problem in forthcoming papers.

We will prove Theorem 1 by showing i), namely the positions of q = (q1, q2, q3, q4)
first, and then by determining mB1

,mB2
to obtain ii). We call the problem i) the

position problem and ii) the mass problem.
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Then this paper is organized as follows. In Section 2, we deduce the equations for
the position problem and also the mass problem. In Section 3, we solve position
problem each case. In Section 4, we show that the mass of the added bodies is
zero where any cases and in last section we show an example of 2 + 2 central
configuration.

2. Equations for 2 + 2 Moulton Configuration

2.1. Collinear Central Configuration

We consider the d-dimensional Newtonian n-body problem

miq̈i(t) =

n∑
j=1 i 6=j

mimj(qj(t)− qi(t))

‖qi(t)− qj(t)‖3
=

∂

∂qi(t)
U(q(t)), 1 ≤ i ≤ n

(1)

where U(q) is the Newtonian potential function

U(q) =
∑

(i,j) i<j

mimj

‖qi − qj‖
, i, j = 1, · · · , n

mi ∈ R+(i = 1, 2, . . . , n) are masses of the bodies and q(t) = (q1(t), . . . ,qn(t))
∈ (Rd)n, 1 ≤ d ≤ 3 is their configuration. Here we except qi(t) = qj(t) for
some i 6= j.

If we consider a solution of the form q(t) = c̃ + φ(t)(q − c̃), we easily see
q satisfies the equation (2) below, where φ(t) is a scalar-valued function, q =
(q1, . . . ,qn) is a constant vector, c is the center of mass of the system c =∑n

i=1miqi/
∑n

i=1mi and c̃ = (c, . . . , c). Then we naturally obtain the following
concept.

Definition 3 (Central Configuration [4] Section 2.1.3) We call q = (q1,q2, . . . ,
qn) ∈ (Rd)n a central configuration with m = (m1,m2, . . . ,mn) ∈ (R+)n if q
satisfies

n∑
j=1

mj(qj − qi)

r3ij
+ λ(qi − c) = 0, i = 1, 2, . . . , n (2)

for some λ ∈ R, where rij = ‖qi − qj‖ is a distance of two bodies.

We easily see that the λ automatically satisfies λ = U(q)/(2I), where I =∑n
i=1mi‖qi − c‖2/2. We remark here λ is positive.
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Conversely for a central configuration q = (q1, . . . ,qn) with mass m = (m1,

. . . ,mn), and for a real valued function φ(t) which satisfies φ̈ = −λφ/|φ|3, if we
put q(t) = c̃ + φ(t)(q− c̃), then q(t) is a solution of the equation (1).

Now we consider d = 1, which means that all bodies lie on a straight line, that is,
collinear. We call it a collinear central configuration, or a Molton Configuration.
Since the configuration of the bodies are collinear, the equation (2) is rewritten in
the form

A · tm + λt(q− c̃) = 0 for some λ ∈ R

where q = (q1, . . . , qn) ∈ Rn and A is a skew-symmetric matrix defined by
A = (aij), aij = (qi − qj)−2 for i < j, and aii = 0, aji = −aij . One can easily
see A is regular when n is even. Then for even n we have

tm = −λA−1 · t(q− c̃). (3)

Remark 4. It is known that any two-body problem is always reduced to a collinear
central configuration.

2.2. Key Lemma

When we consider conditions for A1, A2, B1, B2 to become 2 + 2 Moulton Con-
figuration for two bodies qA with mA , we get naturally the following

Proposition 5. If we have a 2 + 2 Moulton Configuration, then we have

(mB1
qB1

+mB2
qB2

)/(mB1
+mB2

) = cA .

In what follows we take the origin of coordinates as the center of mass of the
system A1, A2, that is, cA = 0, for simplicity. We can set the distance of qA1

and
qA2

is unit by scaling. Then we set (qA1
, qA2

) = (u − 1, u), u ∈ (0, 1). Since
two bodies are always a collinear central configuration, or Moulton Configuration,
then the equation (3) gives(
mA1

mA2

)
= −λ

(
0 a12
−a12 0

)−1(
qA1

qA2

)
= −λ

(
0 −1
1 0

)(
u− 1
u

)
=λ

(
u

1− u

)
(4)

because a12 = (qA1
− qA2

)−2 = 1.

Then we add new two bodies B1, B2 of configuration qB = (qB1
, qB2

), qB1
< qB2

with mB = (mB1
,mB2

). We denote by q = (q1, . . . q4) the configuration of
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{A1, A2, B1, B2} and by m = (m1, . . . ,m4) their masses, respectively. When
{A1, A2, B1, B2} is M.C., the equation (3) also gives

m1 = (ã23q4 − ã24q3 + ã34q2)λ̃/P4

m2 = (ã14q3 − ã13q4 − ã34q1)λ̃/P4

m3 = (ã12q4 − ã14q2 + ã24q1)λ̃/P4

m4 = (ã13q2 − ã12q3 − ã23q1)λ̃/P4

(5)

where P4 is a Pfaffian of the matrixA = (ãij), i.e., P4 = ã12ã34−ã13ã24+ã14ã23,
A = (ãij) is the coefficient matrix for (q1, q2, q3, q4), and λ̃ is a certain constant.
It is easy to see P4 > 0 because ã12 > ã13, ã34 > ã24 then ã12ã34 > ã13ã24.

If {A1, A2, B1, B2} is also a 2 + 2 Moulton Configuration for A1, A2, the masses
corresponding to A1, A2 are the same as in equation (4). Then the point is that
Definition 1 i) yields the following.

Lemma 6 (Key Lemma). The equation (4), i.e., (mA1
,mA2

) = λ(u, 1− u) coin-
cides with the corresponding equations in (5) above.

Using this relation we will solve the problems i) and ii). As a possibility we have
the following cases:

Case 1: qB1
< qB2

< qA1
< qA2

Case 2: qB1
< qA1

< qB2
< qA2

Case 3: qB1
< qA1

< qA2
< qB2

Case 4: qA1
< qB1

< qB2
< qA2

Case 5: qA1
< qB1

< qA2
< qB2

Case 6: qA1
< qA2

< qB1
< qB2

.

We easily obtain that mB1
qB1

+ mB2
qB2
6= 0 in Cases 1 and 6 because both qB1

and qB2
are negative in Case 1 and those are positive in Case 6. Then the Cases 1

and 6 give no solutions.

3. Position Problem

We prove Theorem 2 i) by determining the positions of added bodies B1 and B2

for every given u ∈ (0, 1) in Cases 2, 3 and 5. Then we show that Case 4 allows
no solutions.

3.1. Case 2

We set (q1, q2, q3, q4) = (qB1
, qA1

, qB2
, qA2

), in which q1 < q2 < q3 < q4 with
(m1,m2,m3,m4) = (mB1

,mA1
,mB2

,mA2
) (See Fig. 1). Then we have (m2,m4)
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qA1qB1 qB2 qA2

u-s-1 u-1 u-t u

Figure 1. Case 2.

= (mA1
,mA2

). Since the motion of the system is determined by the solution of
φ̈ = −λφ/|φ|3, Definition 1 (ii) gives λ = λ̃ in equation (5). Then we obtain from
(4) and (5)

1

P4

(
ã14q3 − ã13q4 − ã34q1
ã13q2 − ã12q3 − ã23q1

)
=

(
u

1− u

)
. (6)

Since q2 = qA1
, q4 = qA2

, we put (q1, q2, q3, q4) = (u− s− 1, u− 1, u− t, u)

such that s > 0, t ∈ (0, 1) for every u ∈ (0, 1). Then ã12 = s−2, ã13 = (1 + s−
t)−2, ã14 = (1 + s)−2, ã23 = (1− t)−2, ã24 = 1, ã34 = t−2 and (6) is equivalent
to (

s− u+ 1

t2
+

u− t
(s+ 1)2

− u

(s− t+ 1)2

)
1

P4
= u (7)

−
(
u− t
s2

+
1− u

(s− t+ 1)2
+
−s+ u− 1

(t− 1)2

)
1

P4
= 1− u (8)

where
P4 =

1

s2t2
+

1

(s+ 1)2(t− 1)2
− 1

(s− t+ 1)2
·

Then we see easily that (7), (8) are equivalent (9), (10) below respectively.

(s+ 1)2

s2
(s3 + (1− u)s2 − u) =

t3

(t− 1)2
(t2 − (u+ 2)t+ 2u+ 1) (9)

s3

(s+ 1)2
(s2 + (3− u)s+ 3− 2u) =

(1− t)3

t2
(t2 + (1− u)t+ 1− u). (10)

The positions of B1 and B2 are decided by the solutions s and t of (9), (10) for a
given u ∈ (0, 1).

Lemma 7. For every u ∈ (0, 1) which there is a unique solution (s, t) of simulta-
neous equation (9), (10).

Proof: Let us put the left hand side of (9) as f1(s) and the right hand side as g1(t).
Similarly, we set the left hand side of (10) as f2(s) and the right hand as g2(t).
(See Fig. 2 and Fig. 3).
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f1

f2

s0

0
s

f(s)

Figure 2. (s, f(s))-plane in Case 2.

g1g2

0 1

t

g(t)

Figure 3. (t, g(t))-plane in Case 2.

Firstly we see easily that f1 and g1 are strictly monotone increasing satisfying
lims→0 f1 = −∞, lims→∞ f1 = ∞ and limt→0 g1 = 0, limt→1 g1 = +∞. We
set s0 such that f1(s0) = 0. Then for every t ∈ (0, 1) there exists s1 = s1(t) such
that f1(s1(t)) = g1(t). The function s1(t) satisfies s1(t) > s0 and is continuous,
monotone increasing in t ∈ (0, 1).

Secondly, f2(s) is strictly monotone increasing for s > 0, and lims→0 f2 = 0,
lims→+∞ f2 = +∞, while g2(t) is a strictly monotone decreasing function on
t ∈ (0, 1), and limt→0 g2 =∞, g2(1) = 0. Therefore there is a unique s2 = s2(t)
for every t ∈ (0, 1) such that f2(s2(t)) = g2(t), and then s2(t) is a continuous
monotony decreasing function of t.

Notice the functions s1(t), s2(t) satisfy that as t → 0, s1(t) → s0 > 0 and
s2(t) → +∞, and as t → 1−0, s1(t) → +∞ and s2(t) → 0. Then there exists a
unique t = t̄ ∈ (0, 1) such that s1(t̄) = s2(t̄), which gives the solution (s1, t̄) for
(9), (10). �

3.2. Case 3

We set (q1, q2, q3, q4) = (qB1
, qA1

, qA2
, qB2

), q1 < q2 < q3 < q4 with
(m1,m2,m3,m4) = (mB1

,mA1
,mA2

,mB2
) (See Fig. 4). Then similarly to the

Case 2 we obtain from (4) and (5) the equation(
m2

m3

)
=

λ̃

P4

(
ã14q3 − ã13q4 − ã34q1
ã12q4 − ã14q2 + ã24q1

)
= λ

(
u

1− u

)
. (11)

Here we also assume λ̃ = λ. We put (q1, q2, q3, q4) = (u−s−1, u−1, u, u+t),
such that s, t > 0 for every u ∈ (0, 1). Then ã12 = s−2, ã13 = (1 + s)−2,
ã14 = (1 + s+ t)−2, ã23 = 1, ã24 = (1 + t)−2 and ã34 = t−2. Therefore we can
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qA1qB1 qB2qA2

u-s-1 u-1 u u+t

Figure 4. Case 3

rewrite the equation (11) in the form

(s+ 1)2

s2
(s3 + (1− u)s2 − u) =

t3

(t+ 1)2
(t2 + (u+ 2)t+ 2u+ 1) (12)

s3

(s+ 1)2
(s2 + (3− u)s+ 3− 2u) =

(t+ 1)2

t2
(t3 + ut2 + u− 1). (13)

Let us put the left hand side of (12) as f3(s) and the right hand side as g3(t),
similarly, we set the left hand side of (13) as f4(s) and the right hand side as g4(t).
(See Fig. 5 and Fig. 6)

f3 f4

(s ,F)

s0

0
s

f(

Figure 5. (s, f(s))-plane in Case 3.

g3
g4

(t*,G)

t0
0

t

g(t)

Figure 6. (t, g(t))-plane in Case 3.

It is clear f3(s), f4(s), g3(t) and g4(t) are strictly monotone increasing functions.
Moreover lims→0 f3 = −∞, lims→∞ f3 = +∞, g3(0) = 0, and limt→∞ g3 =∞,
while f4(0) = 0, lims→∞ f4 = +∞, limt→0 g4 = −∞ and limt→∞ g4 = ∞.
Then we obtain a unique solution s = s3(t) > s0 such that f3(s3(t)) = g3(t)
and for every t > 0, and s = s4(t) such that f4(s4(t)) = g4(t) for every t > t0,
respectively, where the constants s0, t0 are given by f3(s0) = 0, g4(t0) = 0,
respectively.

Lemma 8. There exists uniquely t = t̄ such that s3(t̄) = s4(t̄).

Proof: It is easy to see that the graphs of f3 and f4 intersect once at a certain
s = s∗ > 0 because f3(s) − f4(s) is monotone increasing and f3(2) − f4(2) =
(556 − 277u)/36 > 0. We set F = f3(s

∗) = f4(s
∗). Similarly, we see easily
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that the graphs of g3(t) and g4(t) intersect at a unique point t = t∗ > 0 and
g4(t) > g3(t) for t > t∗.

Firstly we see that s3(t0) > s4(t0) because s3(t0) > s0 > 0, and s4(t0) = 0 since
g4(t0) = 0 (see Fig. 5). Secondly we show that s3(t) < s4(t) for large t. Take
a sufficiently large ť such that g4(ť) > g3(ť) > F . Then f3(s4(ť)) > f4(s4(ť))
because s4(ť) > s∗. On the other hand f4(s4(ť)) > f3(s3(ť)) because g4(ť) >
g3(ť) and fi(si(ť)) = gi(ť) (i = 1, 2). Then we have f3(s4(ť)) > f3(s3(ť)). Since
f3(s) is monotone increasing s4(ť) > s3(ť).

Then we have s3(t0) > s4(t0) and s3(ť) < s4(ť), hence there exists t̄ > t0 such
that s3(t̄) = s4(t̄). �

3.3. Case 5

Let (q1, q2, q3, q4) = (qA1
, qB1

, qA2
, qB2

), and (m1, m2, m3, m4)

= (mA1
,mB1

,mA2
,mB2

) (See Fig. 7). Then we obtain(
m1

m3

)
=

λ̃

P4

(
ã23q4 − ã24q3 + ã34q2
ã12q4 − ã14q2 + ã24q1

)
= λ

(
u

1− u

)
. (14)

Here we assume λ̃ = λ.

qA1 qB1 qB2qA2

u-1 u-s u u+t

Figure 7. Case 5.

We set (q1, q2, q3, q4) = (u− 1, u− s, u, u+ t), such that s ∈ (0, 1), t > 0 for
every u ∈ (0, 1). Then ã12 = (1 − s)−2, ã13 = 1, ã14 = (1 + t)−2, ã23 = s−2,
ã24 = (s + t)−2 and ã34 = t−2. Therefore we can write the equation (14) in the
form

s3

(s− 1)2
(s2 − (u+ 2)s+ 2u+ 1) =

t3

(t+ 1)2
(t2 + (u+ 2)t+ 2u+ 1) (15)

(s− 1)3

s2
(s2 + (1− u)s− u+ 1) = −(t+ 1)2

t2
(t3 + ut2 + u− 1). (16)

Lemma 9. For every u ∈ (0, 1), there is a unique solution (s, t) of simultaneous
equations (15) and (16).
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f5

f6

0 1

s

f(s)

Figure 8. (s, f(s))-plane in Case 5.

g5

g6

t0

0
t

g(t)

Figure 9. (t, g(t))-plane in Case 5.

Proof: Let us put the left hand side of (15) as f5(s) and the right hand side as g5(t)
and similarly, we set the left hand side of (16) as f6(s) and the right hand side as
g6(t). (See Fig. 8 and Fig. 9)

First f5(s) and g5(s) are monotone increasing for s ∈ (0, 1) and t > 0, re-
spectively, and lims→0 f5(s) = 0, lims→1 f5(s) = +∞, and limt→0 g5(t) = 0,
limt→+∞ g5(t) = +∞ . Therefore, for every t > 0 there exists s5 = s5(t) such
that f5(s5(t)) = g5(t). Since both f5 and g5 are monotone increasing, so is s5(t)
such that limt→+0 s5(t) = +0 and limt→+∞ s5(t) = +∞.

Secondly f6(s) is strictly monotone increasing for s ∈ (0, 1) such that lims→0 f6 =
−∞, lims→1 f6 = 0, and g6(t) is strictly monotone decreasing for t > 0 such that
limt→0 g6 = +∞, limt→+∞ g6 = −∞. We set t0 > 0 such that g6(t0) = 0, then
there exists s6 = s6(t) > 0 such that f6(s6) = g6(t) for every t > t0. Since f6 is
increasing and g6 is decreasing, s6(t) is decreasing such that limt→t0+ s6(t) = 1,
limt→+∞ s6(t) = +0. We notice limt→t0+ s5(t) = s̃, where f5(s̃) = g5(t0) and
s̃ < 1. Then there exists unique t = t̄ ∈ (t0,∞) such that s5(t̄) = s6(t̄), which
gives the solution (s5(t̄), t̄) for (15), (16). �

3.4. Case 4

In this subsection, we show that there are no solutions for the Case 4. Let (q1, q2,
q3, q4) = (qA1

, qB1
, qB2

, qA2
), and (m1, m2, m3, m4) = (mA1

,mB1
,mB2

,mA2
),

then we obtain(
m1

m4

)
=

λ̃

P4

(
ã23q4 − ã24q3 + ã34q2
ã13q2 − ã12q3 − ã23q1

)
= λ

(
u

1− u

)
. (17)

Here we set λ̄ = λ. We put (q1, q2, q3, q4) = (u − 1, u − s − t, u − t, u),
such that s, t > 0, s+ t ∈ (0, 1) for every u ∈ (0, 1). Then ã12 = (1− s− t)−2,
ã13 = (1− t)−2, ã14 = 1, ã23 = s−2, ã24 = (s+ t)−2 and ã34 = t−2. Therefore
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we write the equation (17) in the form

t2
(
t− u− u

(t− 1)2

)
= (s+ t)2

(
s+ t− u− u

(s+ t− 1)2

)
(18)

(t− 1)2
(
u− t+

1− u
t2

)
= (s+ t− 1)2

(
u− s− t+

1− u
(s+ t)2

)
. (19)

We can rewrite the equations (19) and (18), f(t) = f(s + t) and g(t) = g(s +
t), respectively. Moreover f(t) and g(t) are monotone decreasing. Therefore,
obviously, we have no solutions.

Remark 10. We can prove that there are no solutions (s, t) for Case 1 and Case 6
by the similar manner as Case 4.

4. Mass Problem

We will show that masses mB1 , mB2of added bodies are zero in Case 2, namely,
s, t, u which satisfy the equations (9) (10) give mB1 = mB2 = 0 by (5). We get
also mB1 = mB2 = 0 in Case 3 and Case 5.

In Section 3.1 we have shown that for each u ∈ (0, 1), there exists unique solution
(s, t) of the equation (9), (10), which gives a curve denoted by C in the space

S = {(s, t, u) ; 0 < s, 0 < t < 1, 0 < u < 1}

Hence the curve C is a real algebraic curve determined by the equation (9), (10).

On the other hand, the identity (5) yields in Case 2 that the mass of B1 and B2 is
given by

mB1
= m1 = (ã23q4 − ã24q3 + ã34q2)λ̃/P4

mB2
= m3 = (ã12q4 − ã14q2 + ã24q1)λ̃/P4.

In §3.1 we put (q1, q2, q3, q4) = (u − s − 1, u − 1, u − t, u) such that s > 0,
t ∈ (0, 1) for every u ∈ (0, 1). Then ã12 = s−2, ã13 = (1 + s − t)−2, ã14 =
(1 + s)−2, ã23 = (1− t)−2, ã24 = 1, ã34 = t−2 and then we have

mB1
=

λ

P4

(
u− 1

t2
+

u

(t− 1)2
+ t− u

)
mB2

=
λ

P4

(
u

s2
− u− 1

(s+ 1)2
− s+ u− 1

)
where P4 = 1/s2t2 + 1/(s+ 1)2(t− 1)2 − 1/(s− t+ 1)2.
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Now let us consider an algebraic curve C1 in S given by

mB1
= mB2

= 0. (20)

In what follows, we sill show C and C1 coincide.

First we solve u in (9), which is denoted by u1 and also we solve u in (10), denoted
by u2 respectively as

u1 =
s2(t− 1)2

(
s3 + 3s2 + 3s− t3 + 1

)
s2 (−t4 + 2t3 + 2t2 − 4t+ 2) + (s4 + 2s3 + 2s+ 1) (t− 1)2

(21)

u2 =

(
s2 + 3s+ 3

)
s3t2 + (s+ 1)2(t− 1)3

(
t2 + t+ 1

)
(s+ 2)s3t2 + (s+ 1)2(t− 1)3(t+ 1)

· (22)

Then the curve C is given by the equation

u1 = u2. (23)

Secondly we consider the curve C1 given by (20). Since P4 6= 0, the equations
mB1

= 0 and mB2
= 0 yield

u = um
B1

=
(t− 1)3

(
t2 + t+ 1

)
t4 − 2t3 − t2 + 2t− 1

(24)

u = um
B2

=
s3
(
s2 + 3s+ 3

)
s4 + 2s3 + s2 + 2s+ 1

(25)

respectively. Then the curve C is given by H(s, t) = u1 − u2 = 0 and the curve
C1 is given by h(s, t) = um

B1
− um

B2
= 0, respectively.

From (21), (22), we have H(s, t) = Hn(s, t)/Hd(s, t), where the numerator Hn

is given by

Hn = s7
(
−
(
−2t6 + 6t5 − 3t4 − 4t3 + 7t2 − 4t+ 1

))
− s6

(
2t7 − 14t6 + 33t5 − 23t4 − 9t3 + 26t2 − 16t+ 4

)
− s5

(
6t7 − 33t6 + 72t5 − 59t4 − 2t3 + 37t2 − 24t+ 6

)
− s4(t− 1)2

(
7t5 − 21t4 + 24t3 + 2t2 − 6t+ 3

)
− s3(t− 1)2

(
8t5 − 15t4 + 12t3 − 5t2 + 6t− 3

)
− s2(t− 1)3

(
7t4 − 5t3 + t2 − 6t+ 6

)
− 4s(t− 1)5

(
t2 + t+ 1

)
− (t− 1)5

(
t2 + t+ 1

)
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and from (24), (25), h(s, t) = hn(s, t)/hd(s, t), where the numerator hn is given
by

hn = s5
(
−t4 + 2t3 + t2 − 2t+ 1

)
+ s4

(
t5 − 5t4 + 7t3 + 2t2 − 4t+ 2

)
+ s3

(
2t5 − 7t4 + 8t3 + t2 − 2t+ 1

)
+ s2(t− 1)3

(
t2 + t+ 1

)
+ 2s(t− 1)3

(
t2 + t+ 1

)
+ (t− 1)3

(
t2 + t+ 1

)
respectively. A direct calculation gives

Lemma 11. We have the identity

Hn(s, t) =
(
s2(−2t2 + 2t− 1)− (2s+ 1)(t− 1)2

)
hn(s, t).

ThereforeHn(s, t) = 0 is equivalent to hn(s, t) = 0 because s2
(
−2t2 + 2t− 1

)
−

(2s+ 1)(t− 1)2 < 0 for s > 0, t ∈ (0, 1). Then we see mB1
= mB2

= 0 on C.

Similarly, in Case 3 we have

u1 =
s2(t+ 1)2

(
s3 + 3s2 + 3s− t3 + 1

)
s4(t+ 1)2+2s3(t+ 1)2+s2 (t4+ 2t3 + 2t2+4t+ 2)+2s(t+ 1)2+(t+ 1)2

u2 =
s5t2+3s4t2+3s3t2−s2(t+1)2

(
t3−1

)
−2s(t+1)2

(
t3−1

)
−(t+1)2

(
t3−1

)
s4t2 + 2s3t2 + s2(t+ 1)2 (t2 + 1) + 2s(t+ 1)2 (t2 + 1) + (t+ 1)2 (t2 + 1)

um1=−
(t+ 1)2

(
t3 − 1

)
t4 + 2t3 + t2 + 2t+ 1

, um4 =
s3
(
s2 + 3s+ 3

)
s4 + 2s3 + s2 + 2s+ 1

then

Hn = s7
(
2t5 + 5t4 + 4t3 + 5t2 + 4t+ 1

)
+ s6

(
4t6 + 19t5 + 31t4 + 23t3 + 22t2 + 16t+ 4

)
+ s5

(
2t7 + 19t6 + 56t5 + 71t4 + 46t3 + 35t2 + 24t+ 6

)
+ s4(t+ 1)2

(
5t5 + 21t4 + 24t3 + 4t2 + 6t+ 3

)
+ s3(t+ 1)2

(
4t5 + 15t4 + 12t3 − t2 − 6t− 3

)
+ s2(t+ 1)2

(
5t5 + 12t4 + 6t3 − 5t2 − 12t− 6

)
+ 4s(t+ 1)4

(
t3 − 1

)
+ (t+ 1)4

(
t3 − 1

)
hn = s5

(
−
(
t4 + 2t3 + t2 + 2t+ 1

))
− s4

(
t5 + 5t4 + 7t3 + 2t2 + 4t+ 2

)
− s3

(
2t5 + 7t4 + 8t3 + t2 + 2t+ 1

)
− s2(t+ 1)2

(
t3 − 1

)
− 2s(t+ 1)2

(
t3 − 1

)
− (t+ 1)2

(
t3 − 1

)
.
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Similarly we have

Hn(s, t) = −
(
s2(2t+ 1) + 2s(t+ 1)2 + (t+ 1)2

)
hn(s, t)

and s2(2t+ 1) + 2s(t+ 1)2 + (t+ 1)2 > 0 for s, t > 0.

Also in Case 5 we see

u1 =
(s− 1)2(t+ 1)2

(
s3 − t3

)
s4(t+ 1)2 − 2s3(t+ 1)2 + s2t3(t+ 2)− 2st3(t+ 2) + t3(t+ 2)

u2 = −
s5t2 − 2s4t2 + s3t2 + s2

(
t5 + 2t4 + t3 − 2t2 − 2t− 1

)
+2st2−t2

s4 (−t2) + 2s3t2 + s2(t+ 1)2 (t2 + 1)− 2st2 + t2

um2 = −
(t+ 1)2

(
t3 − 1

)
t4 + 2t3 + t2 + 2t+ 1

, um4 =
(s− 1)3

(
s2 + s+ 1

)
s4 − 2s3 − s2 + 2s− 1

then

Hn = s7
(
2t6 + 6t5 + 7t4 + 8t3 + 7t2 + 4t+ 1

)
− s6

(
−2t7 + 9t5 + 14t4 + 25t3 + 23t2 + 12t+ 3

)
− s5

(
6t7 + 9t6 − 10t4 − 32t3 − 28t2 − 12t− 3

)
− s4t2

(
−3t5 + 2t4 + 16t3 + 18t2 + 21t+ 9

)
+ s3t2

(
4t5 + 19t4 + 32t3 + 21t2 + 12t+ 3

)
− s2t3

(
7t4 + 23t3 + 28t2 + 9t+ 3

)
+ 4st5

(
t2 + 3t+ 3

)
− t5

(
t2 + 3t+ 3

)
hn = −s5

(
t4 + 2t3 + t2 + 2t+ 1

)
+ s4

(
−t5 + 3t3 + 3t2 + 6t+ 3

)
+ s3

(
2t5 + 3t4 − 3t2 − 6t− 3

)
+ s2t3

(
t2 + 3t+ 3

)
− 2st3

(
t2 + 3t+ 3

)
+ t3

(
t2 + 3t+ 3

)
.

It holds
Hn(s, t) =

(
−s2

(
2t2 + 2t+ 1

)
+ 2st2 − t2

)
hn(s, t)

and −s2
(
2t2 + 2t+ 1

)
+ 2st2 − t2 < 0 for s ∈ (0, 1), t > 0. Thus we have

mB1
= mB2

= 0 for both Case 3 and Case 5.

5. Procyon – an Example

Procyon is the α star in Canis Minor. It is a couple of binary star, Procyon A and
B, which are the heavenly bodies where two fixed stars work on an orbit around
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the center of gravity of both. The mass of Procyon A is 1.42 ± 0.04Ms and of
Procyon B is 0.575±0.017Ms [3], where Ms is the weight of the sun, i.e., 1Ms =
1.989× 1030kg.

We consider a system of Procyon A and B as a initial two bodies A1, A2 of M.C..
We suppose A1 and A2 are not under the influence from other celestial bodies.
If we assume mA1

= 1.42 and mA2
= 0.575, then we obtain u ; 0.712 and

λ = 1.995 by solving simultaneous equations (4), namely mA1
= uλ = 1.42 and

mA2
= (1− u)λ = 0.575,

Using Mathematica we obtain the solution of (9), (10) is (s, t) ; (0.830, 0.408).
Therefore the position and mass of each bodies are as follows in Table 1. Similarly,
we can get their positions and mass in Case 3 and Case 5 (See Table 1).

Table 1. The positions and mass in each case Procyon.

q1 q2 q3 q4

Case 2 position −1.118 −0.288 0.304 0.712
mass(Ms) 0 0.575 0 1.42

Case 3 position −1.118 −0.288 0.712 1.259
mass(Ms) 0 0.575 1.42 0

Case 5 position −0.288 0.304 0.712 1.259
mass(Ms) 0.575 0 1.42 0
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