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GEODESICS ON ROTATIONAL SURFACES IN PSEUDO-GALILEAN
SPACE
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Abstract. In this paper, we study rotational surfaces in the pseudo-Galilean three-
space G1

3 with pseudo-Euclidean rotations and isotropic rotations. In particular,
we investigate properties of geodesics on rotational surfaces in G1

3 and give some
examples.
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1. Introduction

Geodesics are curves in surfaces that plays a role analogous to straight lines in
the plane. Geometrically, a geodesic in a surface is an embedded simple curve
such that the portion of the curve between any two points is the shortest curve on
the surface. A geodesic can be obtained as the solutions of the non-linear system
of the second order ordinary differential equations (the Euler-Lagrange equations)
with the given points and its tangent direction for the initial conditions. It is well-
known that great circles are geodesics on a sphere. Also, meridians (lines), par-
allels (circles) and helices are geodesics on a circular cylinder. For more details
about geodesics and some relative topics in Euclidean space, Minkowski space or
simple isotropic space we refer to [1–3] and [5]. In this paper, we study geodesics
on rotational surfaces in the pseudo-Galilean three-space.

2. Preliminaries

In 1872, F. Klein in his Erlangen program proposed how to classify and character-
ize geometries on the basis of projective geometry and group theory. He showed
that the Euclidean and non-Euclidean geometries could be considered as spaces
that are invariant under a given group of transformations. The geometry motivated
by this approach is called a Cayley-Klein geometry. Actually, the formal definition
of Cayley-Klein geometry is pair (G,H), whereG is a Lie group andH is a closed

doi: 10.7546/jgsp-45-2017-87-94 87



88 Dae Won Yoon, Murat Kemal Karacan and Bahaddin Bukcu

Lie subgroup of G such that the (left) coset G/H is connected. G/H is called the
space of the geometry or simply Cayley-Klein geometry.

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries with
projective signature (0, 0,+,−). The absolute of the pseudo-Galilean geometry is
an ordered triple {ω, f, I}, where ω is the ideal (absolute) plane, f the line in ω
and I the fixed hyperbolic involution of f .

Homogenous coordinates in G1
3 are introduced in such a way that the absolute

plane ω is given by x0 = 0, the absolute line f by x0 = x1 = 0 and the hyperbolic
involution by (0 : 0 : x2 : x3)→ (0 : 0 : x3 : x2). Metric relations are introduced
with respect to the absolute figure. In affine coordinates defined by (x0 : x1 : x2 :
x3) = (1 : x : y : z), the distance between the points Pi = (xi, yi, zi) (i = 1, 2) is
defined by (cf. [4])

dG(P1,P2) =

{
|x2 − x1|, if x1 6= x2√

(y2 − y1)2 + (z2 − z1)2, if x1 = x2.

The group motions of G1
3 is a six-parameter group given (in affine coordinates) by

x̄ = a+x, ȳ = b+cx+y coshϕ+z sinhϕ, z̄ = d+ex+y sinhϕ+z coshϕ.

A pseudo-Galilean scalar product of two vectors x = (x1, y1, z1) and y = (x2, y2, z2)
in the pseudo-Galilean three-space G1

3 is defined as

〈x,y〉G =

{
x1x2, if x1 6= 0 or x2 6= 0

y1y2 − z1z2, if x1 = 0 and x2 = 0
(1)

and a pseudo-Galilean norm of x is given by

||x||G =

{
|x1|, if x1 6= 0√
|y21 − y22|, if x1 = 0.

A vector x is called isotropic if x1 = 0, otherwise it is called non-isotropic. All unit
non-isotropic vectors are the form (1, y1, z1). An isotropic vector x = (0, y1, z1)
of G1

3 is said to be spacelike if y21 − z21 > 0, timelike if y21 − z21 < 0 and lightlike
if y21 − z21 = 0. A non-lightlike isotropic vector is a unit vector if y21 − z21 = ±1.

A pseudo-Galilean cross product of x and y on G1
3 is defined by

x×G y =

∣∣∣∣∣∣
0 −e2 e3
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ (2)

where e2 = (0, 1, 0) and e3 = (0, 0, 1).



Geodesics on Rotational Surfaces in Pseudo-Galilean Space 89

Consider a Cr-regular surface Σ, r ≥ 1, in G1
3 parameterized by

x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2)).

We denote by xui , yui and zui the partial derivatives of the functions x, y and z
with respect to ui (i = 1, 2), respectively. A surface in G1

3 is admissible if it does
not have pseudo-Euclidean tangent planes, that is, xui 6= 0 for some i = 1, 2.

On the other hand, the unit normal vector field N of a regular admissible surface Σ
is defined by

N =
1

ω
(0, xu1zu2 − xu2zu1 , xu1yu2 − xu2yu1)

where the positive function ω is given by

ω =
√
|(xu1zu2 − xu2zu1)2 − (xu1yu2 − xu2yu1)2|.

We put
gi = xui , hij = 〈x̃ui , x̃uj 〉G, i = 1, 2

where x̃uk
is the projection of a vector xuk

onto the yz-plane. Then, the first
fundamental form of Σ is given by

ds2 = (g1du1 + g2du2)
2 + δ(h11du

2
1 + 2h12du1du2 + h22du

2
2)

where

δ =

{
0, if direction du1 : du2 is nonisotropic
1, if direction du1 : du2 is isotropic.

On the other hand, the function ω can be represented in terms of gi and hij as
follows

ω2 = −ε(g21h22 − 2g1g2h12 + g22h11) > 0

where ε(±1) is the sign of the unit normal vector N. A surface is spacelike if
g21h22− 2g1g2h12 + g22h11 > 0, timelike otherwise. We can notice that if a surface
is spacelike, both parts of the first fundamental form, ds21 = (g1du1 +g2du2)

2 and

ds22 = h11du
2
1 + 2h12du1du2 + h22du

2
2 =

−ε
ω2

g21
du22, if g1 6= 0

− εω2

g22
du21, if g2 6= 0

are positive definite, while for a timelike surface, the form ds21 is positive definite
and ds22 is negative definite. Thus, the matrix of the first fundamental form ds2 of
a surface Σ in G1

3 is given by

ds2 =

(
ds21 0
0 ds22

)
.

In such case, we denote the components of ds2 by g∗ij for i, j = 1, 2.
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3. Geodesics on Rotational Surfaces

A rotational surface in the Euclidean space is generated by revolving of an arbitrary
curve about an arbitrary axis. In the pseudo-Galilean space, however, there are
different cases of curves (nonisotropic or isotropic) as well as different cases of
rotations (pseudo-Euclidean or isotropic).

Case 1. The curve is nonisotropic and the rotation is pseudo-Euclidean.

Suppose that a nonisotropic curve C lies in the xy-plane or xz-plane. Then the
curve C is given by

C(u) = (f(u), g(u), 0) or C(u) = (f(u), 0, g(u))

where g is a positive function and f is a smooth function on an open interval I .

By a pseudo-Euclidean rotation given by the normal form

x̄ = x, ȳ = y cosh t+ z sinh t, z̄ = y sinh t+ z cosh t

the rotational surface is parametrized as

x(u, v) = (f(u), g(u) cosh v, g(u) sinh v) (3)

or
x(u, v) = (f(u), g(u) sinh v, g(u) cosh v) (4)

for any v ∈ R (see [4], [6]).

Case 2. The curve is isotropic and the rotation is isotropic. Without loss of
generality, we may assume that an isotropic curve C lies in the yz-plane and so it
is given by

C(u) = (0, f(u), g(u))

for some smooth functions f and g.

On the other hand, an isotropic rotation in G1
3 is given by the normal form

x̄ = x+ bt, ȳ = y + xt+ b
t2

2
, z̄ = z

where t ∈ R and b is a positive constant.

Thus the rotational surface generated by revolving the z-axis can be parameterized
by

x(u, v) = (v, f(u) +
v2

2b
, g(u)) (5)

where f and g are smooth functions and b 6= 0 (see [4], [6]).
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First of all, we study geodesics on rotational surfaces generated by a nonisotropic
curve.

Let Σ be a rotational surface generated by a unit speed nonisotropic curve C(u) =
(u, g(u), 0) in G1

3. Then a parametrization of the surface is given by

x(u, v) = (u, g(u) cosh v, g(u) sinh v) (6)

where g is a positive function. We have

g1 = 1, g2 = 0, h11 = h12 = 0, h22 = −g2(u)

which imply the components of the first fundamental form ds2 on M are given by

g∗11 = 1, g∗12 = 0, g∗22 = −g2(u).

Let γ(t) = x(u(t), v(t)) be a geodesic on Σ. Then the Euler-Lagrange equations
of the geodesic become

d

dt
(u̇) = −1

2

d

du
(g2(u))v̇2,

d

dt
(g2(u)v̇) = 0 (7)

where the “dot” denotes the derivative with respective to the parameter t.

Consider a meridian v(t) = v0. From the first equation of (7) ü(t) = 0, that is,
u(t) is a linear function. Also the second equation of (7) holds obviously. Thus, if
u(t) = at+ b for some constants a, b ∈ R, then the meridian is a geodesic.

Consider a parallel u(t) = u0. Since g(u0) > 0 the first equation of (7) implies
dg(u)

du
= 0 when u = u0. From this, the second equation of (7) gives v̈ = 0, that

is, v(t) = at+ b for some constants a, b ∈ R.

Theorem 1. Let γ(t) = (u(t), g(u(t)) cosh v(t), g(u(t)) sinh v(t)) be a curve on
the rotational surface given by (6) in the pseudo-Galilean three-space. Then, the
following statements are true

1) A meridian v(t) = v0 is a geodesic if and only if u(t) = at + b for some
constants a, b ∈ R.

2) A parallel u(t) = u0 is a geodesic if and only if u0 is a stationary point of g
and v(t) = at+ b for some constants a, b ∈ R.

We consider hyperbolic cylinders z2 − y2 = r2 (y2 − z2 = r2) which are ev-
erywhere a spacelike (timelike) surface. They are spheres of the space G1

3, called
hyperbolic spheres. Planes y2 − z2 = 0 are everywhere lightlike surfaces.
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If we consider the hyperbolic sphere parametrized by

x(u, v) = (u, r cosh v, r sinh v), r ∈ R− {0} (8)

then the equations of the geodesics are given by

ü = 0, r2v̈ = 0.

Thus we have

u(t) = at+ b, v(t) =
c

r2
t+ d, a, b, c, d ∈ R.

Consequently, we have

Proposition 2. The geodesics of the hyperbolic sphere given by (8) in the pseudo-
Galilean space G1

3 are the curves of a equation

γ(t) = (at+ b, r cosh(ct+ d), r sinh(ct+ d)), a, b, c, d ∈ R

that includes: 1) the meridians, 2) the parallels, 3) the helices.

Example 3. To find a partial solution of (7) we take a positive function g(u) = eu

on a real number R. Then the equations (7) can be rewritten in the form

ü = −e2uv̇2, e2uv̇ = c1

for some constant c1, and it follows that

ü+ c21e
−2u = 0.

From this, a solution is given by

u(t) = ln(c1t+ c2), c2 ∈ R

and it leads to
v(t) = −(c1t+ c2)

−1 + c3, c3 ∈ R.

Thus, a curve

γ(t) = (ln(c1t+c2), (c1t+c2) cosh(c3−
1

c1t+ c2
), (c1t+c2) sinh(c3−

1

c1t+ c2
)

is a geodesic on the rotational surface x(u, v) = (u, eu cosh v, eu sinh v).

Now, we consider a rotational surface Σ defined by (4). Then, similarly as above,
we have the following result
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Theorem 4. Let γ(t) = (u(t), g(u(t)) sinh v(t), g(u(t)) cosh v(t)) be a curve on
the rotational surface given by (4) in the pseudo-Galilean three-space. Then, the
following statements are true

1) A meridian v(t) = v0 is a geodesic if and only if u(t) = at + b for some
constants a, b ∈ R.

2) A parallel u(t) = u0 is a geodesic if and only if u0 is a stationary point of g
and v(t) = at+ b for some constants a, b ∈ R.

Last of all, let Σ be a rotational surface in G1
3 generated by an isotropic curve

α(u) = (0, f(u), g(u)). Assume that the curve α is parametrized by arc-length,
that is,

f ′(u)
2 − g′(u)

2
= −η(= ±1).

Then the parametrization of Σ is given by

x(u, v) = (v, f(u) +
v2

2b
, g(u)) (9)

where f and g are smooth functions and b 6= 0. In this case, we have

g1 = 0, g2 = 1, h11 = −η, h12 = h22 = 0

which imply the components of the first fundamental form ds2 on Σ are given by

g∗11 = 1, g∗12 = 0, g∗22 = −η.
From this, the Euler-Lagrange equations of the geodesics on Σ become

ü = 0, −ηv̈ = 0

and the solutions of the equations are given by

u(t) = a1t+ a2, v(t) = a3t+ a4, ai ∈ R.
Consequently, we have

Theorem 5. Let Σ be a rotational surface given by

x(u, v) = (v, f(u) +
v2

2b
, g(u)) (10)

in the pseudo-Galilean three-space G1
3. A curve γ(t) = (v(t), f(u(t)) +

v2(t)

2b
,

g(u(t))) is a geodesic on Σ if and only if u(t) and v(t) are linear.

Example 6. Take f(u) = a1u+a2 and g(u) = a3u+a4 in (10) with a21−a23 = −η.
Then the curve

γ(t) = (c1t+ c2, c3t+ c4 +
b

2
(c1t+ c2)

2, c5t+ c6), ai ∈ R

is a geodesic on the parabolic sphere in G1
3.
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