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Abstract. In this paper we consider twice-dimensionally reduced, generalized
Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel
feature of the reduction technique is that the resulting equations produce an ex-
tra “Higgs field”. Under suitable regularity assumptions, we show that the moduli
space of gauge-equivalent classes of solutions to the reduced equations, is a smooth
Kähler manifold and construct a pre-quantum line bundle over the moduli space of
solutions.
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1. Introduction

Dimensional reduction of gauge-theories have been instrumental in the understand-
ing of Topological QFTs (TQFT). As motivating examples, one can consider the
vortex equations [7], which are the dimensional reduction of four-dimensional
Yang-Mills equations, the dimensional reduction and quantization of three-dimen-
sional Chern-Simons gauge theory.

Seiberg-Witten gauge theory has been of interest to mathematicians, for as a TQFT,
it provides new topological invariants which may provide new directions leading
towards the classification of smooth, four-dimensional manifolds. Dimensional re-
duction of Seiberg-Witten equations to two-dimensions has been studied by Martin
& Restuccia [8], Saclioglua & Nergiza [12] and Dey [6]. Except for [6], the reduc-
tion does not involve any Higgs field.

In this paper, we construct a dimensional reduction of generalized Seiberg-Witten
equations in four-dimensions. The central element of this generalization involves
construction of a non-linear Dirac operator by replacing the spinor representation
H with a hyperKähler manifold admitting certain symmetries. The generalization
was introduced by Taubes [13] for dimension three and extended to dimension four
by Pidstrygach [10].

The reduction technique we use is similar to the one in [6]. Namely, we first con-
sider the generalized Seiberg-Witten equations on R4 and then project the equa-
tions on the complex plane. The resulting equations are conformally invariant and
therefore can be defined on any manifold modelled on R2 by using conformal maps
- namely Riemann surfaces.

Under suitable regularity conditions, the moduli space of solutions to the reduced
equations is a smooth Kähler manifold. If the Kähler two-form is integral, we show
that the Quillen determinant line-bundle on the configuration space, descends as
the pre-quantum line bundle over the moduli space. Following [4], we regard the
moduli space as the phase space and define its Hilbert space quantization as the
space of holomorphic sections of the Quillen determinant line-bundle.

The article is organized as follows: we first review the requisite preliminaries on
the hyperKähler manifolds in Section 2 and then proceed to a quick introduction
to the non-linear Dirac operator in four-dimensions in subsection (2.1). Using this,
we introduce the generalized Seiberg-Witten equations. Although the generaliza-
tion makes sense for any four-dimensional manifold, for the sake of simplicity
and with the further exposition in mind, we stick to the simplest case where the
base manifold is R4. In Section 3, we describe a dimensional reduction technique
and define the reduced equations on R2. Using the conformal invariance of the
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equations, we define them on an arbitrary compact, oriented, Riemann surface. In
Section 4 we show that the moduli space of gauge-equivalent solutions is a smooth,
Kähler manifold. In the final Section 5, we describe the Quillen determinant line
bundle construction on the moduli space.

2. Definitions and Notations

A hyperKähler manifold (M, gM , I1, I2, I3) is a 4n-dimensional Riemannian man-
ifold, endowed with three complex structures satisfying quaternionic relations I2

1 =
I2

2 = I2
3 = I1I2I3 = −1, such that the metric gM is Kähler with respect to each

Ij , j = 1, 2, 3.

In fact, for any ξ1, ξ2, ξ3 ∈ R such that ξ2
1 +ξ2

2 +ξ2
3 = 1, Iξ := ξ1I1+ξ2I2+ξ3I3 ∈

End(TM) is again a Kähler structure on M . In other words, M carries a family
of Kähler structures, parametrized by two-sphere S2. In particular, a hyperKähler
manifold is a symplectic manifold in many different ways.

Suppose that a Lie groupG acts smoothly onM , preserving the hyperKähler struc-
ture. Namely, the action is isometric and fixes the two-sphere of complex struc-
tures. Then G preserves the Kähler forms ω1, ω2, ω3, associated to I1, I2, I3 re-
spectively. Additionally, if the three associated symplectic moment maps exist,
then they can be combined into a single hyperKähler moment map µ : M −→
R3 ⊗ g∗, where g denotes the Lie algebra of G. Such an action of G on M for
which the hyperKähler moment map exists is said to be tri-Hamiltonian.

Example 1. Let M = H. Then TH = H × H. For (h, v) ∈ TH, define the
complex structures

I1(h, v) = (h,−vi), I2(h, v) = (h,−vj), I3(h, v) = (h,−vk).

We have ω = 1
2 dh̄ ∧ dh. Consider the U(1)-action on H given by U(1) × H 3

(z, h) 7→ zh ∈ H. The action preserves the three Kähler structures and is tri-
Hamiltonian, with the hyperKähler moment map µ : H −→ sp(1) ∼= sp(1)∗ given
by

µ(h) =
1

2
h̄ih.
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2.1. Generalized Seiberg-Witten on R4

Consider the flat Euclidean space R4 = H, with co-ordinates (x0, x1, x2, x3). Fix
the constant Spin-structure c : H = TxH −→ H×H, given by

c(ξ) =

(
∗ γ(ξ)

−γ(ξ) 0

)
, γ(ξ) =

(
ξ0 + iξ1 ξ2 + iξ3

−ξ2 + iξ3 ξ0 − iξ1

)
.

Thus, γ(e0) = I, γ(ej) = Ij for j = 1, 2, 3. The covariant derivative of a spinor
u : R4 −→ H is given by

Du(ei) =
∂u

∂xi
·

Composing this with Clifford multiplication c, we obtain the Dirac operator D :
C∞(R4,H) −→ C∞(R4,H) on the space of positive spinors

D+ = − ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
·

We say that a smooth map u : R4 −→ H is harmonic if D+u = 0. Clearly,
the Dirac operator (and hence also the harmonicity condition) can be easily gen-
eralized to the case where H is replaced by an arbitrary hyperKähler manifold
(M, gM , I1, I2, I3). More precisely, for a hyperKähler manifold (M, gM , I1, I2, I3)
and a smooth map u : R −→M

Du = − ∂u

∂x0
+ I1

∂u

∂x1
+ I2

∂u

∂x2
+ I3

∂u

∂x3
·

The second ingredient we need in order to define the generalized S-W equations
is a hyper-Kähler moment map. Assume that M admits a tri-Hamiltonian action
of a compact Lie group G. Consider R4 with basic co-ordinates (x1, x2, x3, x4)
and let P denote the trivial product bundle R4 ×G −→ R4. A connection on P is
described by a Lie-algebra-valued one-form

a = a0 dx0 + a1 dx1 + a2 dx2 + a3 dx3 ∈ Ω1(R4, g)

where ai : R4 −→ g are smooth maps. The curvature of a is a g-valued two-form

F (a) =
∑
i<j

F ija dxi ∧ dxj ∈ Ω2(R4, g)

in which

F ija =
(∂aj
∂xi
− ∂ai
∂xj

)
+ [ai, aj ].
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For a smooth map u : R4 −→ M and a connection a on P , we define the twisted
Dirac operator by

Dau = −
(
∂u

∂x0
+ LMu a0

)
+

3∑
i=1

Ii

(
∂u

∂xi
+ LMu ai

)
where LMu ai denotes the fundamental vector field generated by the infinitesimal
action of G on M , at a point u(·) given by

(LMu a0)(p) =
d

dt
exp(t a0(p)) · u(p)

∣∣∣∣
t=0

, p ∈ R4.

The generalized S-W equations for a pair (u, a) ∈ C∞(R4,M) × Ω1(R4, g) are
given by

F+
a + µ ◦ u = 0

Dau = 0
(1)

where, F+
a ∈ Ω2(R4,Λ2

+(R4)∗ ⊗ g) is the self-dual part of the curvature Fa. In
the first equation we use the identification Λ2

+(R4)∗ ∼= R3 and g ∼= g∗ using an
ad-invariant metric on g.

Equivalently, we can write the equations as

F 01
a + F 23

a + µ1 ◦ u = 0
F 02
a + F 31

a + µ2 ◦ u = 0
F 03
a + F 12

a + µ3 ◦ u = 0

−
(
∂u

∂x0
+ LMu a0

)
+

3∑
i=1

Ii

(
∂u

∂xi
+ LMu ai

)
= 0

(2)

where {µ1, µ2, µ3} are the moment maps associated with the Kähler two-forms
ω1, ω2, ω3 respectively.

3. Dimensional Reduction

In this section, we generalise the approach in [6] for the equations (2). Namely, we
consider the generalised Seiberg-Witten equations on R4 and then project them on
the complex plane. The resulting equations are conformally invariant and so can
be defined on Riemann surfaces.

For the rest of this article, we will focus our attention to the case when G = U(1).

Identify the Lie algebra iR ∼= R and assume that the Lie-algebra-valued functions
{ai}3i=0 are independent of (x2, x3). Then a0, a1 define a connection a := a0dx0+
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a1dx1 over R2. The maps a2 and a3, which we re-label as φ1 and φ2, define an
auxillary field φ = φ1 + iφ2 (also known as Higgs fields) on R2. The first equation
now reads

Fa + (µ1 ◦ u)ωΣ = 0(
∂φ1

∂x1
− ∂φ2

∂x2

)
+ µ2 ◦ u = 0(

∂φ1

∂x2
+
∂φ2

∂x1

)
+ µ3 ◦ u = 0.

(3)

Here ωΣ is the volume form of Σ. From a more co-ordinate independent point of
view, we have a connection a on a principal U(1)-bundle P over R2 together with
an auxiliary field

φ ∈ Ω0
(
R2,C

)
.

Set z = x0 + ix1 and define the one-form

Φ = φdz ∈ Ω1
(
R2,C

)
.

The second and the third equations in (3) can be combined into a single equation

∂Φ + (µc ◦ u)ωΣ = 0 (4)

where, µc ◦ u := µ2 ◦ u+ iµ3 ◦ u. The equations (3) now read

Fa + (µ1 ◦ u)ωΣ = 0

∂Φ + (µc ◦ u)ωΣ = 0.
(5)

The fourth equation in (2) can be re-written as

−
[(

∂u

∂x0
+ LMu a0

)
− I1

(
∂u

∂x1
+ LMu a1

)]
+
(
I2L

M
u φ1 + I3L

M
u φ2

)
= 0. (6)

Let IR2 denote the standard complex structure on R2, given by ∂
∂x1

= IR2

(
∂
∂x0

)
and ∂

∂x0
= −IR2

(
∂
∂x1

)
. Observe that

a0 = a

(
∂

∂x0

)
a1 = a

(
∂

∂x1

)
= a

(
IR2

(
∂

∂x0

))
.
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Then the left hand side of (6) can be written as(
∂u

∂x0
+ LMu a0

)
− I1

(
∂u

∂x1
+ LMu a1

)
= du

(
∂

∂x0

)
+ LMu

(
a

(
∂

∂x0

))
− I1

(
du

(
∂

∂x1

)
+ LMu

(
a

(
∂

∂x1

)))
= Dau

(
∂

∂x0

)
− I1Dau

(
IR2

(
∂u

∂x0

))
=

(
Dau− I1Dau ◦ IR2

)(
∂

∂x0

)
:= ∂au

(
∂

∂x0

)
.

On the other hand, observe now that

φ1 = Φ

(
∂

∂x0

)
and φ2 = Φ

(
− ∂

∂x1

)
.

The right-hand side can be expressed as

(
I2L

M
u φ1 + I3L

M
u φ2

)
= I2L

M
u

(
Φ

(
∂

∂x0

))
+ I3L

M
u

(
Φ

(
− ∂

∂x1

))
= I2L

M
u

(
Φ

(
∂

∂x0

))
− I3L

M
u

(
Φ

(
IR2

(
∂

∂x0

)))
= I2L

M
u

(
Φ

(
∂

∂x0

))
− I1

(
I2L

M
u

(
Φ

(
IR2

(
∂

∂x0

))))
=

(
I2L

M
u Φ− I1

(
I2L

M
u Φ ◦ IR2

))( ∂

∂x0

)
=

(
XΦ(u)

)1,0( ∂

∂x0

)
.

Combining this together with (5), we get the reduced equations on R2

Fa + (µ1 ◦ u)ωΣ = 0

∂au− (XΦ(u))1,0 = 0 (7)

∂Φ + (µc ◦ u)ωΣ = 0.

The equations are conformally invariant and hence can be defined on manifolds
modelled locally on R2, namely, Riemann surfaces.
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3.1. Generalized Seiberg-Witten on a Riemann Surface

Let (Σ, gΣ, JΣ) be a compact, oriented Riemann surface of genus g, with a confor-
mal metric ds2 = h2dz⊗dz̄. Let πP : P → Σ be a principal U(1)-bundle over Σ.
Let (M, gM , I1, I2, I3) be a hyperKähler manifold endowed with a tri-Hamiltonian
action of U(1).

Let u ∈ C∞(P,M)U(1) be a smooth, U(1)-equivariant map to M . Then the co-
variant derivative of u with respect to a connection a on P is given by

Dau = du+ LMu a ∈ Ω1(P, u∗TM)
U(1)
hor

where the subscript “hor" denotes that the one-form is horizontal. This therefore
descends to a one form on Σ with values in u∗TM/U(1). The complex structure
I1 determines a U(1)-invariant complex structure on u∗TM −→ P and hence also
on u∗TM/U(1) −→ Σ. We denote by ∂au the (1, 0)-part of the one-form Dau,
with respect to I1. More precisely

∂au =
1

2
(Dau− I1 ◦Dau ◦ JΣ) .

Denote the space of smoothU(1)-equivariant maps u : P →M byC∞(P,M)U(1),
the space of smooth connections on P by A(P ).

Define the configuration space

C = A(P )× C∞(P,M)U(1) × Ω1,0(Σ,C).

The space C is an infinite-dimensional Frechét manifold with an action of the gauge
group G = C∞(P,U(1)) given by

g · (a, u,Φ) 7−→
(
a + g−1dg, g · u ,Φ

)
.

Note that the gauge group does not act on the Higgs field!

For (a, u,Φ) ∈ C, we define the dimensional reduction of generalized Seiberg-
Witten equations on Σ by

Fa + (µ1 ◦ u) ωΣ = 0

∂au− (XΦ(u))1,0 = 0 (8)

∂Φ + (µc ◦ u) ωΣ = 0.

The equations (8) are invariant under the action of G. The first and third equations
require some explanation. For the first equation, we consider Fa ∈ Ω2(P,R)hor.
For the third equation, observe that µc◦u : P −→ C is U(1)-invariant and therefore
descends to a complex-valued map on Σ, which we again denote by µc ◦ u.
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4. Moduli Space

In this section, we show that the moduli space of gauge equivalent solutions to
(8) can be realised as a Marsden-Weinstein reduction of a certain submanifold
of the irreducible configuration space. In other words, we identify the solution
to equations (8) with the zero locus of moment map and the one defining the sub-
manifold. Further, we also show that the L2-metric on the moduli space is a Kähler
metric. The techniques we use are fairly similar to those of Hitchin used to study
moduli spaces of vortices and Higgs bundles.

For the rest of the section we assume that the tri-Hamiltonian U(1)-action on M is
semi-free; i.e., outside the set of fixed points MU(1), the action is free.

4.1. Abstract Setup

We will not describe the Sobolev completion of fibre-bundles here, but rather refer
the interested reader to [14, Subsection 4.1 of Appendix B] for details. Set k ≥ 1
and p > 2 satisfy k − 2

p > 0 so that W k,p ↪→W 1,2
⋂
C0 by Sobolev embedding.

Fix a smooth fiducial connectionA0 on P and defineA1,p(P ) to be the completion
of A(P ) with respect to A0 in the W 1,p-Sobolev norm. For E := (P ×U(1)

M)/U(1), denote by W 1,p(P,M)U(1) ∼= W 1,p(Σ, E) the Sobolev completion of
C∞(P,M)U(1), Lastly, let W 1,p(Σ,Λ1,0Σ⊗C) denote the Sobolev completion of
Ω1(Σ,C) in W 1,p.

Since kp > 2, the Sobolev multiplication theorem W 1,p ⊗W 1,p −→ Lp implies
∂au ∈ Lp

(
Σ, Λ1,0Σ⊗ Eu

)
, where Eu := u∗TM/U(1). Also, for kp > 2,

the Sobolev composition law holds. Consequently, µ1 ◦ u ∈ W 1,p(Σ,R) and
µc ◦ u ∈W 1,p(Σ,C).

Finally, let G2,p denote the Sobolev completion of G in the W 2,p-norm. Then
G2,p is a Banach Lie group acting smoothly on A1,p. The Lie algebra is given by
Lie(G2,p) = W 2,p(Σ,R).

Consider the infinite dimensional Banach manifold

C1,p = A1,p(P )×W 1,p(Σ, E)×W 1,p(Σ,Λ1,0Σ⊗ C).

The tangent to C1,p at a point q := (a, u,Φ) ∈ C1,p is given by

TqC1,p = W 1,p(Σ,Λ1Σ)×W 1,p(Σ, Eu)×W 1,p(Σ,Λ1,0Σ⊗ C).

Consider the infinite-dimensional vector bundle Ep −→ C1,p, with fibre at a point
q ∈ C1,p being given by

Epq = Lp(Σ,Λ2Σ)× Lp(Σ,Λ1,0Σ⊗ Eu)× Lp(Σ,Λ2Σ⊗ C).
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Observe that the action of the gauge group G2,p on C1,p lifts to an action on Ep.
Define the equivariant section

F : C1,p −→ Ep

F(a, u,Φ) =
(
Fa + (µ1 ◦ u) ωΣ, ∂au− (XΦ(u))1,0 , ∂Φ + (µc ◦ u) ωΣ

)
.

(9)

Then the solutions to (8) are the zeroes of F .

4.2. Linearized Operator

The linearization of the equations (8) at a zero q = (a, u,Φ) ∈ C1,p of F gives the
operator

Dq : TqC1,p −→ Epq

Dq

 α
ξ
η1,0

 7−→
 dα+ dµ1(ξ) ωΣ

Da,u,Φξ + (Luα)1,0 − (Xη)
1,0

∂η1,0 + dµc(ξ) ωΣ

 .

Here Da,Φξ = (∇aξ)1,0 +
(
∇ξXΦ

)1,0, where ∇ is the Levi-Civita connection on
(M, gM). The induced connection on u∗TM is given by ∇aξ +∇ξXΦ(u), where
∇aξ = ∇ξ +∇ξKM

a .

The equivariance of the section F : C1,p −→ Ep under the action of the gauge
group G2,p implies that we have the following complex

0→W 2,p(Σ,R)
d1−→ TqC1,p d2−→ Epq → 0 (10)

where d1(α) = (Luα, dα, 0) ∈ TqCk,2 and d2

(
α, ξ, η1,0

)
= Dq

(
α, ξ, η1,0

)
.

Note that if we deform the complex by a homotopy, so as to get rid of the ze-
roeth order terms, the Euler characteristic or the symbols of the operators remain
unchanged. In other words, the complex (10) can be written as a sum of three
complexes

0→W 2,p(Σ,R)
d−→W 1,p(Σ,Λ1Σ)

da−→ Lp(Σ,Λ2Σ)→ 0 (11)

0→W 1,p(Σ, Eu)
Dq−−→ Lp(Σ,Λ0,1Σ⊗ Eu)→ 0 (12)

0→W 2,p(Σ,C)
∂−→W 1,p(Σ,Λ1,0Σ⊗ C)

∂−→ Lp(Σ,Λ2Σ)→ 0. (13)

Clearly, each of the above complexes is elliptic and consequently, (10) is an elliptic
complex.
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Let δ denote the equivariant map δ : P −→ EU(1) which is a lift of the classifying
map δ̃ : Σ −→ BU(1). Then (u, δ) : P −→M × EU(1) descends to a map

ū : Σ −→MU(1) := M ×U(1) EU(1).

Define [u] ∈ H2(MU(1),Z) to be the push-forward of the fundamental class of [Σ]
under the map ū.

Proposition 2. The operator d∗1 +d2 : TqC1,p −→ Ω0(Σ,R)Lp⊕Epq is a Fredholm
operator for every solution (a, u,Φ) ∈ C1,p of (8) and has a real index given by

Index (d∗1 + d2) = (2n− 1)χ(Σ) + 2
〈
c

U(1)
1 (TM), [u]

〉
+ 2g (14)

where cU(1)
1 (TM) is the equivariant first Chern class of TM .

Proof: The ellipticity of the complex (10) has the consequence that the operator
d∗1 + d2 : TqC1,p −→ Ω0(Σ,R)Lp ⊕ Epq is Fredholm and therefore has a well-
defined index. Since the complex (10) decomposes into three complexes, the index
of (10) is the sum of indices of the complexes (11), (12), (13). The index for the
operator

Ω1(Σ,R) −→ Ω0(Σ,R)⊕ Ω0(Σ,R) : α 7→ (d∗α, ∗dα)

is given by −χ(Σ). By Riemann-Roch theorem, the index of the complex (12) is
given by 2〈cU(1)

1 (TM), [u]〉 + 2nχ(Σ). Finally, the index for the third complex
(13) is 2g. It is a simple observation now that d∗1 + d2 is a compact perturbation of
the elliptic operators. Therefore, the index of d∗1 + d2 is given by

Index (d∗1 + d2) = (2n− 1)χ(Σ) + 2
〈
c

U(1)
1 (TM), [u]

〉
+ 2g. (15)

The statement follows. �

Note: Our computation is standard. For the case of the symplectic vortices, the
index is just (n− dim(G))χ(Σ)+2

〈
c

U(1)
1 (TM), [u]

〉
where the dimension of the

target symplectic manifold is 2n. For our case, there is an additional contribution
2g due to Higgs field.

4.3. Transversality

In order to prove that the moduli space of solutions is a smooth Banach manifold,
we need to establish transversality. Namely, we need to prove that F is transverse
to the zero section ι : C1,p −→ Ep. The transversality condition in needed to ensure



58 Rukmini Dey and Varun Thakre

that the zero-set of the section, i.e., the space of solutions to the reduced equations,
is a submanifold of the configuration space. In other words, this means that zero
is a regular value of F . We can achieve transversality by suitably perturbing the
section F . For a suitable class of such perturbations, the action of the gauge group
on the space of solutions to the perturbed equations is free. We thus obtain the
structure of a smooth manifold on the moduli space of solutions to the reduced
equations.

The techniques used for this are almost verbatim to the ones used in [3, 9], for the
case of symplectic vortices. So we skip mentioning the proofs.

Define the space of perturbations

P := {(σ1, σ2, σ3) ∈ C ; g · (σ1, σ2, σ3) = (σ1, σ2, σ3), g ∈ G} .

For c ∈ R, consider the perturbed equations

∗Fa − µ1 ◦ u = c+ σ1

∂au− (XΦ(u))1,0 = σ2 (16)

∗∂Φ1,0 + µc ◦ u = σ3.

Fix a cohomology class B ∈ H2(MU(1),Z) and for a fixed σ ∈ P , define the
solution space

Nσ(B, c) :=
{

(a, u,Φ) ∈ C1,p ; [u] = B and (a, u,Φ) satisfy (16)
}
.

Observe that Nσ(B, c) is invariant under the action of the gauge group G2,p. Let
MU(1) denote the fixed points of the U(1)-action on the hyperKähler manifold M .
Define

C0 = µ1

(
MU(1)

)
− 2π

deg(P )

Vol(Σ)
⊂ R.

Define S1,p
∗ :=

{
u ∈ S1,p ; [u] = B, u (P ) *MU(1)

}
.

The following lemma follows almost verbatim from [9, Lemma 3.4.1, Cor. 3.4.2].

Lemma 3. 1. Let c ∈ R \ C0 and define Pc = {σ ∈ P ; |σ1| < |c− C0|}.
Then, for σ ∈ Pc, if (a, u,Φ) satisfy (16), then u (P ) *MU(1).

2. If σ ∈ Pc, the action of G2,p on Nσ(B, c) is free.

Define the moduli space of solutions to be the quotient

Mσ(B, c) := Nσ(B, c)/G2,p. (17)

The following theorem follows almost verbatim from [9, Theorem 3.4.4].
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Theorem 4. Let c ∈ R \ C0. Then for any σ ∈ Pc, the moduli spaceMσ(B, c) is
a smooth manifold of real dimension

(2n− 1)χ(Σ) + 2
〈
c

U(1)
1 (TM), B

〉
+ 2g.

4.4. Kähler Structure on Moduli Space

In this section we show that the moduli space can be realized as a Marsden-
Weinstein quotient of a submanifold of the configuration space C1,p. The argu-
ments in this section follow the work in [1] on moduli space of Seiberg-Witten
equations on Kähler surfaces.

Recall that for a finite dimensional symplectic manifold (M,ω), with a Hamilto-
nian action of a Lie group G, there exists a moment map µ : M −→ g∗, which
is unique up to addition by constants in the centre of g. The equivariance of the
moment map implies that the zero-locus of µ is G-invariant. If 0 is a regular
point of µ, then µ−1(0)/G is again a symplectic manifold. This follows from the
well-known Marsden-Weinstein reduction theorem. If M is Kähler and the group
action preserves both the metric and the symplectic form, then the quotient is a
Kähler manifold. If M is a hyperKähler manifold and the group action preserves
the metric and all the three Kähler forms, then the quotient is again a hyperKähler
manifold.

We now turn to the infinite-dimensional analogue of the above quotient construc-
tions, namely for an action of the gauge group G2,p on the configuration space C1,p.
The configuration space C1,p carries a hyper-Kähler structure, given by

I1 =

∗ 0 0
0 I 0
0 0 −∗

 , I2 =

0 0 ∗
0 J 0
∗ 0 0

 , I3 =

0 0 −1
0 K 0
1 0 0

 .

The L2-metric on C1,p, defined by

gC(X,Y ) =
1

2

∫
Σ
α1 ∧ ∗α2 +

1

2

∫
Σ
gM
u (ξ1, ξ2) ωΣ +

1

2

∫
Σ
η1 ∧ ∗η2

where, X = (α1, ξ1, η1), Y = (α2, ξ2, η2) ∈ TqC1,p. Here, the pull-back metric
gM
u : u∗TM ⊗ u∗TM −→ R is defined by

gM
u ((p, v), (p, w)) = gM

u(p)(v, w), (p, v), (p, w) ∈ u∗TM ⊂ P × TM.

The metric gC is G2,p-invariant and is Hermitian with respect to all three complex
structures; i.e., gC(IiX, IiY ) = gC(X,Y ) for all i = 1, 2, 3. Therefore, the as-
sociated two-forms Ωi(·, ·) = gC(Ii(·), ·) are clearly non-degenerate, closed and
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therefore Kähler. Thus the natural L2-metric on the configuration space C1,p is
a hyperKähler metric. The action of the gauge group G2,p on C1,p preserves the
metric and the hyperKähler structure and is therefore hyperHamiltonian.

The real and the complex moment maps for the gauge action are given by first and
the third equations of (8) respectively. This can indeed be seen as follows:

The fundamental vector field for the infinitesimal action of the gauge group G2,p,
at a point q ∈ C1,p is given by LCqγ = (dγ, Luγ, 0). Define

µ̃I1 : C1,p −→ Lie(G2,p)∗, 〈µ̃I1 , γ〉(q) =
1

2

∫
Σ
Fa · γ + 〈γ, µ1 ◦ u〉 ωΣ (18)

where 〈·, ·〉 denotes the pairing. Therefore, for X = (α, ξ, η) ∈ TqC1,p

〈dµ̃I1(X), γ〉(q) =
1

2

∫
Σ

dα · γ + 〈γ,d(µ1 ◦ u)(ξ)〉 ωΣ

=
1

2

∫
Σ
−dγ ∧ α+ gMu (I1L

M
u γ, ξ) ωΣ

= ιLCq γΩ1(X).

Denote by C′ ⊂ C1,p, the subspace of all the solutions to second and third equations
in (8)

C′ =
{(

a, u,Φ ∈ C1,p
∗
)

;

(
∂au− (XΦ)1,0

∗∂η1,0 − µc ◦ u

)
= 0

}
. (19)

Lemma 5. C′ is a complex submanifold of C1,p with respect to the complex struc-
ture I1.

Proof: We only need to show that TC′ ⊂ TC1,p is a complex sub-bundle. Abbre-
viate Da,u,Φ := D for simplicity. The tangent space at a point q := (a, u,Φ) ∈ C′
is given by

TqC′ =


 ξ
α
η

 ;

(
Dξ + (Luα)1,0 − (Xη)

1,0

∗∂η1,0 − dµc(ξ)

)
= 0

 . (20)

To see that I1 preserves TqC′, observe that

I1

α
ξ
η

 =

 ∗α
−I1ξ
− ∗ η1,0

 .
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But since D is a Cauchy-Riemann operator and (Lu(∗α))1,0 = −I1(Luα)1,0 and
similarly (X∗η)

1,0 = −I1 (Xη)
1,0, we get

D(−I1)ξ + (Lu(∗α))1,0 − (X∗η)
1,0 = (−I1)

(
Dξ + (Luα)1,0 − (Xη)

1,0
)

= 0.

Since, η1,0 ∈ Ω1,0(Σ,C), ∗η1,0 = −iη. Also, dµc(−I1ξ) = −idµc(ξ). Clearly
then,

∗ ∗ ∂ ∗ η1,0 − dµc(I1ξ) = −i
(
∗∂η1,0 − dµc(ξ)

)
= 0.

Therefore I1 preserves TC′ ⊂ TC1,p. �

The L2-metric restricts to a Kähler metric on C′. The induced action of the gauge
group G2,p preserves the induced metric and the symplectic two-form Ω1. C′ also
admits a momentum map µ′I1 which is just a restriction of the momentum map µ̃I1
on the configuration space. We denote this restriction by µ̃I1 itself. The solutions to
the dimensionally reduced generalized Seiberg-Witten equations now correspond
to the quotient of the zero locus of the momentum map µ̃I1 by the gauge group
G2,p. Using the standard arguments in Kähler geometry, we now show that the
L2-metric that is induced on the quotientM := µ̃−1

I1 {0}/G
2,p is a Kähler metric.

Theorem 6. Let Σ be a connected, compact, oriented, Riemannian surface and
let µ′I1 : C′ −→ R denote the restriction of the moment map µ̃I1 as in (18) for
the action of the gauge group G2,p on C′. Then the metric induced on the quotient
(µ′I1)−1(0)/G2,p :=M is a Kähler metric.

Proof: The submanifold (µ′I1)−1(0) ⊂ C′ ⊂ C1,p carries a natural L2-metric,
induced from theL2-metric on C1,p. The action of the gauge group is by isometries,
which implies that there exists a unique Riemannian metric on the quotient such
that π : (µ′I1)−1(0) −→M is a Riemannian submersion. LetX,Y ∈ Γ(M, TM)

and X̃, Ỹ denote the horizontal lifts to (µ′I1)−1(0). Then the covariant derivative
of Ỹ with respect to X̃ is given by

∇MX Y = π∗

(
∇

(µ′I1
)−1(0)

X̃
Ỹ

)
where∇(µ′I1

)−1(0) denotes the restriction of the Levi-Civita connection on the con-
figuration space to (µ′I1)−1(0). We identify the pull-back of TM with the hori-
zontal sub-bundle of T

(
(µ′I1)−1(0)

)
π∗(TM) ∼= H

(
(µ′I1)−1(0)

)
= H(C′)|(µ′I1 )−1(0)

⋂
T
(
(µ′I1)−1(0)

)
.
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But the restriction to (µ′I1)−1(0) of TC′ splits L2-orthogonally as

TC′|(µ′I1 )−1(0) = H
(
(µ′I1)−1(0)

)
⊕
(
H
(
(µ′I1)−1(0)

))⊥
∼= π∗TM⊕

(
H
(
(µ′I1)−1(0)

))⊥
= π∗TM⊕ im(T0)⊕

(
ker(µ′I1)⊥

)
where T0 denotes the linearization of the orbit map. In order to define the com-
plex structure on TM, it now suffices to show that (π∗TM)⊥ is preserved by the
induced complex structure I ′1 and

• Note that the image of an element ξ ∈ Ω0(Σ,R) under the linearization of
the orbit map through q = (a, u,Φ) is the same as the fundamental vector
field Lqξ. We have

〈I1Lqξ, Z〉 = Ω1(Lqξ, Z) = 〈dµ′I1(Z), ξ〉.

This implies that I1Lqξ ⊥ ker(dµ′I1).

• Let Z ∈ ker(dµ′I1) and I1Z ⊥ im(T0). Then for ξ ∈ Ω0(Σ,R),

0 = 〈I1Z, Lqξ〉 = −Ω1(Lqξ, Z) = −〈dµ′I1(Z), Lqξ〉.

Therefore Z ∈ ker(dµ′I1)
⋂

ker(dµ′I1)⊥ = {0}.

Hence the complex structure preserves the splitting and defines a complex structure
IM onM.

It only remains to show that the complex structure is parallel. But this follows
directly from the fact that

• The complex structure I ′1 on C′ is parallel.

• The Levi-Civita connection on M is given by the projection of the Levi-
Civita connection on (µ′I1)−1(0).

• Projection commutes with the complex structures I ′1 and IM.

Thus we have proved that the induced complex structure on M is parallel with
respect to the Levi-Civita connection for the induced L2-metric onM. Therefore
the L2-metric onM is Kähler. �
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5. Pre-Quantum Line-Bundle on the Moduli Space Under the
Assumption of Integrality Condition

Geometric Quantization
Given a symplectic manifold (M,ω), with ω integral (i.e., its cohomology class is
inH2(M,Z)), one can construct a Hermitian line bundle with a connection (called
the pre-quantum line bundle) whose curvature Ω is proportional to the symplectic
form ω. One can assign to functions f ∈ C∞(M), an operator, f̂ = −i∇Xf

+ f
acting on the Hilbert space of square integrable sections of L (the wave functions).
Here ∇ = d− iθ where locally ω = dθ and Xf is defined by ω(Xf , ·) = −df(·).
We have taken ~ = 1. This assignment has the property that the Poisson bracket
(induced by the symplectic form), correspond to an operator proportional to the
commutator, i.e., if f3 = {f1, f2}PB then f̂3 is proportional to [f̂1, f̂2] for any two
functions f1, f2.

The Hilbert space of pre-quantization is usually too big for most purposes. Geo-
metric quantization involves construction of a polarization of the symplectic man-
ifold such that we now take polarized sections of the line bundle, yielding a finite
dimensional Hilbert space in most cases. However, f̂ does not map the polarized
Hilbert space to the polarized Hilbert space in general. Thus only a few observables
from the set of all f ∈ C∞(M) are quantizable.

This method of quantization was developed by Kostant and Souriau and discussed
at length in Woodhouse [16].

We now come back to the situation at hand. We construct a prequantum line bundle
over the configuration space. It will descend to the moduli space as long as the
symplectic form on the moduli space is integral. In the following we assume that
the form is integral.

Let ρ denote the local Kähler potential for the first symplectic form ω1 of M ,
our target hyperKähler manifold. Local potentials exist for any Kähler form. Let
p ∈ P . Then u(p) ∈ M . Let Vp be a neighbourhood of u(p) such that ρ(u(p))
is local a Kähler potential for ω1 in Vp. u−1(Vp) is a covering of P which has a
finite covering, namely u−1(Vpi), i = 1, 2..., N . Let φi , i = 1, ..., N be a partition
of unity subordinate to this finite covering of P . Let ρi, i = 1, ..., N be the local
Kähler potential for Vpi for the form ω1. Let z = π(p) be a point on the Riemann
surface Σ. Define

ρ0(u) =

∫
Σ

ΣN
i=1ρi(u(π−1(z)))φi(π

−1(z))ωΣ.

Let us define on the configuration space parametrized by the triple (a, u,Φ) a
Quillen determinant bundle Q = det(∂a), [11], i.e., a line bundle whose the fiber
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over (a, u,Φ) is given by

∧top(ker ∂a)
∗ ⊗ ∧top(coker ∂a).

Following the idea in [2], we modify the Quillen metric exp(−ζ ′A(0)) by multi-

plying it with exp(
i

4π
(ρ0(u)) and exp

(
i

8π

∫
Σ

Φ ∧ ∗Φ
)

, where Φ = φdz− φ̄dz̄.

From the metric, one can calculate the curvature by the formula δwδw̄log||σ||
where w is the holomorphic coordinate on the configuration space and σ is the
canonical section of the determinant bundle [11]. The holomorphic coordinates
on the configuration space is given by (a0,1, u,Φ) w.r.t. the complex structure I1.
The first term in the metric, namely exp(−ζ ′a(0)) contributes to the curvature by a

term
i

2π

(
−1

2

∫
Σ
π! (α1 ∧ α2)

)
, [4,11], which is the first term in Ω1(X,Y ). The

second term in the metric contributes to the second term in Ω1. This can be seen as
follows. Let u(p) = (u1(p), ..., un(p)), in some local coordinate system centered
at u(p) ∈M where n = dimM . Once again z = π(p).

γ = δuδūρ0(u) =

∫
Σ

ΣN
i=1δuδūρi(u(π−1(z)))φi(π

−1(z)))ωΣ

=

∫
Σ

ΣN
i=1ΣdimM

j=1 δujδūjρi(u(π−1(z)))φi(π
−1(z)))ωΣ

=
1

2

∫
Σ

ΣN
i=1g

M
u (I1·, ·)φi(π−1(z))ωΣ =

1

2

∫
Σ
gM
u (I1·, ·)ωΣ

where we have used the fact that since ρi is a Kähler potential for ω1 on Vpi ,
ΣdimM
j=1 δujδūjρi(u(π−1(z))) = gM

u (I1·, ·) and ΣN
i=1φi(π

−1(z)) = 1.Then γ(ξ1, ξ2)

=

∫
Σ
gM
u (I1ξ1, ξ2)ωΣ. The third term in the metric contributes to the third term in

Ω1. This can be seen as follows: Recall Φ = φdz − φ̄dz̄, ∗Φ = φ̄dz̄ + φdz so

that exp

(
i

8π

∫
Σ

Φ ∧ ∗Φ
)

= exp

(
i

4π

∫
Σ

(φφ̄)dz ∧ dz̄

)
. Let

τ = δφδφ̄

(
log

(
exp

(
i

4π

∫
Σ

(φφ̄)dz ∧ dz̄

)))
=

i

4π

∫
Σ
δφδφ̄(φφ̄)dz ∧ dz̄

=
i

4π

∫
Σ

(
δφ⊗ δφ̄− δφ̄⊗ δφ

)
dz ∧ dz̄.

Then, τ(η1, η2) =
i

4π

∫
Σ
η1∧η2. The three terms combined gives us the following

proposition:
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Proposition 7. On the configuration space, the Quillen bundle Q equipped with

the modified metric mentioned above has curvature
i

2π
Ω1.

As in [4, 5], it can be shown that this line bundle descends to the moduli space as
long as the descendent of Ω1 is integral.

Proposition 8. If the symplectic form (i.e., the descendent of Ω1) on the moduli
space is integral, the Quillen bundle Q equipped with the modified metric men-

tioned descends to the moduli space and has curvature the descendent of
i

2π
Ω1.

It is holomorphic and is a prequantum bundle since its curvature is proportional to

the symplectic form with the proportionality constant
i

2π
· Since the moduli space

is Kahler and the line bundle is holomorphic, one can take holomorphic square
integrable sections of this bundle as the Hilbert space of quantization.

6. Summary and Discussion

The dimensional reduction technique mentioned gives us a generalization of the
Symplectic vortex equations (Φ = 0). It is well-known that the invariants for
Hamiltonian group actions on a symplectic manifold are related to Gromov-Witten
invariants for its symplectic reduction [17]. Assuming that we at least have the
moduli space of finite volume, for Φ = 0, we must get equivalence between invari-
ants for Hamiltonian group action on µc ◦u = 0 and Gromov-Witten invariants for
hyperKähler reduction of M . The latter are known to be trivial! This gives rise to
an interesting question as to whether the presence of a non-zero Higgs-field helps
us define non-trivial, Gromov-Witten like invariants for hyper-Kähler manifolds.
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