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1. Introduction

The group of Lorentz transformations is widely discussed especially in applica-
tion for electromagnetic field [18], [19]. In particular, there is an asymmetry be-
tween Lorentz transformations for potentials and field strengths in electrodynam-
ics. The potentials are transformed as the components of four-vector, while the
field strengths as the components of four-tensor [8]. However, it can be shown that
there is an alternative possibility of constructing equations for massless field with
different transformational properties.

In recent years, there have been a few publications devoted to the reformulation
of linear equations for electromagnetic field and weak gravity (gravitoelectromag-
netism [10]) in terms of hypercomplex field potentials. The first approach is based
on four-component quaternions, which consist of scalar and vector parts that ad-
equately describes the four-vector concept of special relativity [7], [9], [2]. How-
ever since the system of Maxwell equations consist of four equations for scalar,
pseudoscalar, vector and pseudovector values, the application of multi-component
algebras is more appropriate. Taking into account this spatial symmetry several
approaches have been proposed to describe massless fields on the basis of eight-
component octonions [6], [16], [1] and octons [11], [4], [3]. However, a consistent
relativistic consideration implies equally the space and time symmetries that re-
quire using the extended sixteen-component space-time algebras.
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Recently we proposed the space-time algebra of sixteen-component sedeons, which
takes into account the symmetry of physical values with respect to the space-time
inversion and realizes the scalar-vector representation of Poincare group [12], [13].
In particular we considered the equations for massive and massless fields based on
sedeonic potentials and space-time operators [14], [15]. In the present paper we
consider the generalized approach to the description of massless field on the ba-
sis of equations obtained as the limiting transition from the sedeonic equations for
massive field and discuss the transformational properties of these equations with
respect to the Lorentz transformations.

2. Algebra of Space-Time Sedeons

To begin with we briefly review the basic properties of sedeons [13]. The sedeonic
algebra encloses four groups of values, which are differed with respect to spatial
and time inversion.

1. Absolute scalars (A) and absolute vectors ( ~A) are not transformed under
spatial and time inversion.

2. Time scalars (Bt) and time vectors ( ~Bt) are changed (in sign) under time
inversion and are not transformed under spatial inversion.

3. Space scalars (Cr) and space vectors (~Cr) are changed under spatial inver-
sion and are not transformed under time inversion.

4. Space-time scalars (Dtr) and space-time vectors ( ~Dtr) are changed under
spatial and time inversion.

The indexes t and r indicate the transformations (t for time inversion and r for
spatial inversion), which change the corresponding values. The space-time sedeon
S̃ is defined by the following expression

S̃ = A+ ~A+Bt + ~Bt + Cr + ~Cr +Dtr + ~Dtr. (1)

Here and further we indicate the sedeon by bold symbol with wave. The compo-
nents of sedeon (1) can be written in the sedeonic space-time basis as

A = e0Aa0, ~A = e0 (A1a1 +A2a2 +A3a3)

Bt = etBa0, ~Bt = et (B1a1 +B2a2 +B3a3)

Cr = erCa0, ~Cr = er (C1a1 + C2a2 + C3a3)

Dtr = etrDa0, ~Dtr = etr (D1a1 +D2a2 +D3a3) .

(2)
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The values a0, a1, a2, a3 are scalar-vector basis (a0 ≡ 1 is absolute scalar unit
and the values a1, a2, a3 are absolute unit vectors generating the right Cartesian
basis) and values e0, et, er, etr are space-time basis (e0 ≡ 1 is a absolute scalar
unit; et is a time unit; er is a space unit; etr is a space-time unit). Further we will
omit the units a0 and e0 for simplicity.

The multiplication and commutation rules for the sedeonic absolute unit vectors
a1, a2, a3 and space-time units et, er, etr are presented in the Tables 1 and 2
respectively (in the tables and further the value “i” is the imaginary unit (i2 = −1)).
Note that sedeonic units et, er, etr commute with a1, a2, a3.

Table 1

a1 a2 a3

a1 1 ia3 −ia2
a2 −ia3 1 ia1
a3 ia2 −ia1 1

Table 2

et er etr

et 1 ietr −ier
er −ietr 1 iet
etr ier −iet 1

Thus the sedeon S̃ is the complicated space-time object consisting of absolute
scalar, time scalar, space scalar, space-time scalar, absolute vector, time vector,
space vector and space-time vector.

In sedeonic algebra we assume the Clifford multiplication of vectors. For example,
the sedeonic product of two absolute vectors ~A and ~B can be presented in the
following form

~A~B =
(
~A · ~B

)
+
[
~A× ~B

]
. (3)

Here we denote the sedeonic scalar multiplication of two vectors (internal product)
by symbol “·” and round brackets(

~A · ~B
)
= A1B1 +A2B2 +A3B3 (4)

and sedeonic vector multiplication (external product) by symbol “×” and square
brackets[
~A× ~B

]
= i (A2B3 −A3B2)a1 + i (A3B1 −A1B3)a2 + i (A1B2 −A2B1)a3.

(5)
Note that in sedeonic algebra the definition of the vector product differs from analo-
gous expression in Gibbs-Heaviside vector algebra. For the transition from sedeons
to the common used vector algebra the replacement

i
[
~A× ~B

]
⇒ −A×B (6)
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should be made in all sedeonic expressions. Here A and B are the vectors in
Gibbs-Heaviside algebra.

3. Sedeonic Equations for Massive Field

Here we shortly recall the sedeonic equations for massive field [21]. Let us con-
sider the massive field with mass of quantum m0. We introduce the following
operators

∂ =
1

c

∂

∂t
, ~∇ =

∂

∂x
a1 +

∂

∂y
a2 +

∂

∂z
a3, m =

m0c

~
· (7)

Here c is the speed of light, ~ is the Plank constant. Then the sedeonic second-order
wave equation for massive field can be presented as [14](

iet∂ − er~∇− ietrm
)(

iet∂ − er~∇− ietrm
)
W̃ = J̃ (8)

where W̃ is a sedeonic potential, J̃ is a phenomenological sedeonic source of
massive field. Let us choose the potential as

W̃ = ia1et − ia2er + a3 − ia4etr+ ~A1er + ~A2et − ~A3etr + i ~A4 (9)

where components as and ~As are real functions of coordinates and time. Here and
further the index s = 1, 2, 3, 4. Also we take the source in the following form

J̃ = −iρ1et + iρ2er − ρ3 + iρ4etr−~j1er −~j2et +~j3etr − i~j4 (10)

where ρs = 4πρs
′ ( ρs′ is the volume density of charges) and ~js = 4π~j′s ( ~j′s is the

volume density of currents). Let us introduce also the sedeon of field strength Ẽ as

Ẽ = −ε1 + iε2etr + iε3et − iε4er+ ~E1etr − i ~E2 + ~E3er + ~E4et (11)

where the scalar εs and vector ~Es components are defined as

ε1 = ∂a1 +
(
~∇ · ~A1

)
+ma4, ~E1 =− ∂ ~A1 − ~∇a1 + i

[
~∇× ~A2

]
+m~A4

ε2 = ∂a2 +
(
~∇ · ~A2

)
−ma3, ~E2 =− ∂ ~A2 − ~∇a2 − i

[
~∇× ~A1

]
−m~A3

ε3 = ∂a3 +
(
~∇ · ~A3

)
+ma2, ~E3 =− ∂ ~A3 − ~∇a3 − i

[
~∇× ~A4

]
+m~A2

ε4 = ∂a4 +
(
~∇ · ~A4

)
−ma1, ~E4 =− ∂ ~A4 − ~∇a4 + i

[
~∇× ~A3

]
−m~A1.

(12)

Then (
iet∂ − er~∇− ietrm

)
W = Ẽ (13)
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and the sedeonic wave equation (8) takes the form(
iet∂ − er~∇− ietrm

)
Ẽ = J̃. (14)

Producing the action of the operator on the left side of equation (14) and separating
the values with different space-time properties, we obtain a system of equations for
the field strengths, similar to the system of Maxwell equations in electrodynamics

∂ε1 +
(
~∇ · ~E1

)
−mε4 = ρ1, ∂ ~E1 + ~∇ε1 + i

[
~∇× ~E2

]
+m~E4 =−~j1

∂ε2 +
(
~∇ · ~E2

)
+mε3 = ρ2, ∂ ~E2 + ~∇ε2 − i

[
~∇× ~E1

]
−m~E3 =−~j2

∂ε3 +
(
~∇ · ~E3

)
−mε2 = ρ3, ∂ ~E3 + ~∇ε3 − i

[
~∇× ~E4

]
+m~E2 =−~j3

∂ε4 +
(
~∇ · ~E4

)
+mε1 = ρ4, ∂ ~E4 + ~∇ε4 + i

[
~∇× ~E3

]
−m~E1 =−~j4.

(15)

All these equations are coupled by the mass terms. From the system of equa-
tions (15) we can get some relations for the energy and momentum of the massive
field. Multiplying each of the equations (15) to the corresponding field strength
and adding these equations to each other, we obtain

1

2
∂
(
ε1

2 + ε2
2 + ε3

2 + ε4
2 + ~E1

2
+ ~E2

2
+ ~E3

2
+ ~E4

2
)

(
~∇ ·
(
ε1 ~E1 + ε2 ~E2 + ε3 ~E3 + ε4 ~E4 − i[ ~E1 × ~E2] + i[ ~E3 × ~E4]

))
(16)

= ε1ρ1 + ε2ρ2 + ε3ρ3 + ε4ρ4

−
(
~E1 ·~j1

)
−
(
~E2 ·~j2

)
−
(
~E3 ·~j3

)
−
(
~E4 ·~j4

)
.

Let us introduce the volume density of energy as

w =
1

2

(
ε1

2 + ε2
2 + ε3

2 + ε4
2 + ~E1

2
+ ~E2

2
+ ~E3

2
+ ~E4

2
)

(17)

and volume density of energy flow as

~P = ε1 ~E1 + ε2 ~E2 + ε3 ~E3 + ε4 ~E4 − i
[
~E1 × ~E2

]
+ i
[
~E3 × ~E4

]
. (18)

Then equation (16) have the sense of Pointing theorem for massive field

∂w + (~∇ · ~P ) = ε1ρ1 + ε2ρ2 + ε3ρ3 + ε4ρ4

−
(
~E1 ·~j1

)
−
(
~E2 ·~j2

)
−
(
~E3 ·~j3

)
−
(
~E4 ·~j4

)
. (19)
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Corresponding expression for the energy gradient is

~∇w +2im
[
~E1 × ~E3

]
+ 2im

[
~E2 × ~E4

]
−i∂

[
~E1 × ~E2

]
+ ε1∂ ~E1 + ε2∂ ~E2 − ~E1∂ε1 − ~E2∂ε2

−
(
~E1 · ~∇

)
~E1 −

(
~E2 · ~∇

)
~E2 − ~E1

(
~∇ · ~E1

)
− ~E2

(
~∇ · ~E2

)
+iε1

[
~∇× ~E2

]
− iε2

[
~∇× ~E1

]
+ i
[
~E2 × ~∇ε1

]
− i
[
~E1 × ~∇ε2

]
−i∂

[
~E3 × ~E4

]
+ ε3∂ ~E3 + ε4∂ ~E4 − ~E3∂ε3 − ~E4∂ε4 (20)

−
(
~E3 · ~∇

)
~E3 −

(
~E4 · ~∇

)
~E4 − ~E3

(
~∇ · ~E3

)
− ~E4

(
~∇ · ~E4

)
−iε3

[
~∇× ~E4

]
+ iε4

[
~∇× ~E3

]
− i
[
~E4 × ~∇ε3

]
+ i
[
~E3 × ~∇ε4

]
= − ~E1ρ1 − ~E2ρ2 − ε1~j1 − ε2~j2 − i

[
~E2 ×~j1

]
+ i
[
~E1 ×~j2

]
− ~E3ρ3 − ~E4ρ4 − ε3~j3 − ε4~j4 − i

[
~E4 ×~j3

]
+ i
[
~E3 ×~j4

]
.

Note that this expression contains two terms with mass.

4. Two Types of Lorentz Transformations

In the frames of sedeonic algebra the transformation of values from one inertial
coordinate system to another are carried out with the following sedeons [13]

L̃ = coshϑ− etr~n sinhϑ, L̃∗ = coshϑ+ etr~n sinhϑ (21)

where tanh(2ϑ) = v/c and v is velocity of motion along the unit vector ~n. The
transformed sedeonic potential can be presented as

W̃′ = L̃∗W̃ L̃. (22)

In the transition from one inertial system to another the components of potential
are transformed in different ways. The components of the first group (Group I),
which comprises a1, a2, ~A1, ~A2, are transformed as follows

a′1 = a1 cosh(2ϑ)−
(
~n · ~A1

)
sinh(2ϑ)

a′2 = a2 cosh(2ϑ)−
(
~n · ~A2

)
sinh(2ϑ)

(23)
~A′1 = ~A1 +

(
~n · ~A1

)
~n (cosh(2ϑ)− 1)− a1~n sinh(2ϑ)

~A′2 = ~A2 +
(
~n · ~A2

)
~n(cosh(2ϑ)− 1)− a2~n sinh(2ϑ).
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If we take the x axis directed along the vector ~n, then we get

A′1y =A1y, a′1 = a1
1√

1− (v/c)2
−A1x

v/c√
1− (v/c)2

A′1z =A1z, a′2 = a2
1√

1− (v/c)2
−A2x

v/c√
1− (v/c)2

A′2y =A2y, A′1x =A1x
1√

1− (v/c)2
− a1

v/c√
1− (v/c)2

A′2z =A2z, A′2x =A2x
1√

1− (v/c)2
− a2

v/c√
1− (v/c)2

.

(24)

The components of the second group (Group II), which comprises a3, a4, ~A3, ~A4

transformed as follows

a′3 = a3

a′4 = a4 (25)
~A′3 = ~A3 cosh(2ϑ)−

(
~n · ~A3

)
~n(cosh(2ϑ)− 1)− i

[
~n× ~A4

]
sinh(2ϑ)

~A′4 = ~A4 cosh(2ϑ)−
(
~n · ~A4

)
~n(cosh(2ϑ)− 1) + i

[
~n× ~A3

]
sinh(2ϑ).

For the x axis directed along the vector ~n we get

a′3 = a3, A′3y =A3y
1√

1− (v/c)2
−A4z

v/c√
1− (v/c)2

a′4 = a4, A′3z =A3z
1√

1− (v/c)2
+A4y

v/c√
1− (v/c)2

A′3x =A3x, A′4y =A4y
1√

1− (v/c)2
+A3z

v/c√
1− (v/c)2

A′4x =A4x, A′4z =A4z
1√

1− (v/c)2
−A3y

v/c√
1− (v/c)2

.

(26)

Thus, these two groups of potentials are differed by their space-time properties and
by Lorentz transformations. Similarly, the field sources are also divided into two
groups differing by Lorentz transformations

ρ′1 = ρ1 cosh(2ϑ)−
(
~n ·~j1

)
sinh(2ϑ)

ρ′2 = ρ2 cosh(2ϑ)−
(
~n ·~j2

)
sinh(2ϑ)

(27)
~j′1 = ~j1 +

(
~n ·~j1

)
~n(cosh(2ϑ)− 1)− ρ1~n sinh(2ϑ)

~j′2 = ~j2 +
(
~n ·~j2

)
~n(cosh(2ϑ)− 1)− ρ2~n sinh(2ϑ)
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and

ρ′3 = ρ3

ρ′4 = ρ4 (28)
~j′3 = ~j3 cosh(2ϑ)−

(
~n ·~j3

)
~n(cosh(2ϑ)− 1)− i

[
~n×~j4

]
sinh(2ϑ)

~j′4 = ~j4 cosh(2ϑ)−
(
~n ·~j4

)
~n(cosh(2ϑ)− 1) + i

[
~n×~j3

]
sinh(2ϑ).

Also we have the following Lorentz transformations for the field strengths

ε′1 = ε1

ε′2 = ε4 (29)
~E′3 = ~E3 cosh(2ϑ)−

(
~n · ~E3

)
~n(cosh(2ϑ)− 1)− i

[
~n× ~E4

]
sinh(2ϑ)

~E′4 = ~E4 cosh(2ϑ)−
(
~n · ~E4

)
~n(cosh(2ϑ)− 1) + i

[
~n× ~E3

]
sinh(2ϑ)

and

ε′3 = ε3 cosh(2ϑ)−
(
~n · ~E3

)
sinh(2ϑ)

ε′4 = ε4 cosh(2ϑ)−
(
~n · ~E4

)
sinh(2ϑ)

(30)
~E′3 = ~E3 +

(
~n · ~E3

)
~n(cosh(2ϑ)− 1)− ε3~n sinh(2ϑ)

~E′4 = ~E4 +
(
~n · ~E4

)
~n(cosh(2ϑ)− 1)− ε2~n sinh(2ϑ).

5. Sedeonic Equations for Massless Electromagnetic Fields

If the mass of field quantum m0 is zero, then the wave equation (8) describes the
massless field [15]. In this case we have(

iet∂ − er~∇
)(

iet∂ − er~∇
)
W̃ = J̃. (31)

The sedeonic potential W̃ and field source J̃ have the same space-time structure
(9), (10) and the same Lorentz transformations. In massless case we can define
using (12) two groups of field strengths

ε1 = ∂a1 +
(
~∇ · ~A1

)
, ~E1 =− ∂ ~A1 − ~∇a1 + i

[
~∇× ~A2

]
ε2 = ∂a2 +

(
~∇ · ~A2

)
, ~E2 =− ∂ ~A2 − ~∇a2 − i

[
~∇× ~A1

] (32)
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and

ε3 = ∂a3 +
(
~∇ · ~A3

)
, ~E3 =− ∂ ~A3 − ~∇a3 − i

[
~∇× ~A4

]
ε4 = ∂a4 +

(
~∇ · ~A4

)
, ~E4 =− ∂ ~A4 − ~∇a4 + i

[
~∇× ~A3

]
.

(33)

These field strengths satisfy two independent systems of Maxwell equations

∂ε1 +
(
~∇ · ~E1

)
= ρ1, ∂ ~E1 + ~∇ε1 + i

[
~∇× ~E2

]
=−~j1

∂ε2 +
(
~∇ · ~E2

)
= ρ2, ∂ ~E2 + ~∇ε2 − i

[
~∇× ~E1

]
=−~j2

(34)

and

∂ε3 +
(
~∇ · ~E3

)
= ρ3, ∂ ~E3 + ~∇ε3 − i

[
~∇× ~E4

]
= −~j3

∂ε4 +
(
~∇ · ~E4

)
= ρ4, ∂ ~E4 + ~∇ε4 + i

[
~∇× ~E3

]
=−~j4.

(35)

For simplicity let us consider the equations without magnetic charges (ρ2 = ρ3
= 0) and magnetic currents (~j2 = ~j3 = 0). Taking into account the Lorentz gauge

∂a1 +
(
~∇ · ~A1

)
=0, ∂a2 +

(
~∇ · ~A2

)
=0

∂a3 +
(
~∇ · ~A3

)
=0, ∂a4 +

(
~∇ · ~A4

)
=0

(36)

the Maxwell equations (34) and (35) can be rewritten as(
~∇ · ~E1

)
= ρ1, ∂ ~E1 + i

[
~∇× ~E2

]
=−~j1(

~∇ · ~E2

)
=0, ∂ ~E2 − i

[
~∇× ~E1

]
=0

(37)

and (
~∇ · ~E3

)
=0, ∂ ~E3 − i

[
~∇× ~E4

]
=0(

~∇ · ~E4

)
= ρ4, ∂ ~E4 + i

[
~∇× ~E3

]
=−~j4.

(38)

Then the expression for the gradient of volume density of energy (20) in this case
takes the following form

~∇
(
~E1

2
+ ~E2

2
+ ~E3

2
+ ~E4

2
)
− i∂

[
~E1 × ~E2

]
− i∂

[
~E3 × ~E4

]
−
(
~E1 · ~∇

)
~E1 −

(
~E2 · ~∇

)
~E2 − ~E1

(
~∇ · ~E1

)
− ~E2

(
~∇ · ~E2

)
−
(
~E3 · ~∇

)
~E3 −

(
~E4 · ~∇

)
~E4 − ~E3

(
~∇ · ~E3

)
− ~E4

(
~∇ · ~E4

)
= − ~E1ρ1 − i

[
~E2 ×~j1

]
− ~E4ρ4 − i

[
~E3 ×~j4

]
.

(39)
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It can be clearly seen that in this expression the field strengths and charges of first
group are not mixed with the field strengths and charges of second group. So the
expressions for the electromagnetic forces have the following form

~FeI = ~E1ρ1 + i
[
~E2 ×~j1

]
, ~FeII = ~E4ρ4 + i

[
~E3 ×~j4

]
. (40)

Thus we have the same Maxwell equations for the field strengths ~E1, ~E2 (37) and
~E3, ~E4 (38), but different Lorentz transformations (23) and (25).

6. Sedeonic Equations for Weak Gravitational Fields

In the frames of gravitoelectromagnetism the weak gravitational field can be de-
scribed by the following sedeonic equation [15](

iet∂ − er~∇
)(

iet∂ − er~∇
)
Ṽ = Ĩ. (41)

where Ṽ is a sedeonic gravitational potential, Ĩ is a phenomenological sedeonic
source of gravitational field. Let us choose the potential as

Ṽ = ib1et − ib2er + b3 − ib4etr+ ~B1er + ~B2et − ~B3etr + i ~B4. (42)

Also we take the source in the following form

Ĩ = −iβ1et + iβ2er − β3 + iβ4etr−~l1er −~l2et +~l3etr − i~l4 (43)

where βs = 4πβs
′ ( βs′ is the volume density of gravitational charges) and ~ls =

4π~l′s ( ~l′s is the volume density of gravitational currents). The sedeonic potential
Ṽ and field source Ĩ have the same space-time structure (9), (10) and the same
Lorentz transformations as (23), (25). Let us introduce two groups of scalar gs and
vector ~Gs field strengths according to the following definitions

g1 = ∂b1 +
(
~∇ · ~B1

)
, ~G1 =− ∂ ~B1 − ~∇b1 + i

[
~∇× ~B2

]
g2 = ∂b2 +

(
~∇ · ~B2

)
, ~G2 =− ∂ ~B2 − ~∇b2 − i

[
~∇× ~B1

] (44)

and

g3 = ∂b3 +
(
~∇ · ~B3

)
, ~G3 =− ∂ ~B3 − ~∇b3 − i

[
~∇× ~B4

]
g4 = ∂b4 +

(
~∇ · ~B4

)
, ~G4 =− ∂ ~B4 − ~∇b4 + i

[
~∇× ~B3

]
.

(45)
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These field strengths satisfy two independent systems of Maxwell equations

∂g1 +
(
~∇ · ~G1

)
=β1, ∂ ~G1 + ~∇g1 + i

[
~∇× ~G2

]
=−~l1

∂g2 +
(
~∇ · ~G2

)
=β2, ∂ ~G2 + ~∇g2 − i

[
~∇× ~G1

]
=−~l2

(46)

and

∂g3 +
(
~∇ · ~G3

)
=β3, ∂ ~G3 + ~∇g3 − i

[
~∇× ~G4

]
=−~l3

∂g4 +
(
~∇ · ~G4

)
=β4, ∂ ~G4 + ~∇g4 + i

[
~∇× ~G3

]
=−~l4.

(47)

Let us consider these equations without magnetic charges (β2 = β3 = 0) and
magnetic currents (~l2 = ~l3 = 0). Taking into account the Lorentz gauge

∂b1 +
(
~∇ · ~B1

)
=0, ∂b2 +

(
~∇ · ~B2

)
=0

∂b3 +
(
~∇ · ~B3

)
=0, ∂b4 +

(
~∇ · ~B4

)
=0

(48)

we get Maxwell equations for gravitational field in the following form(
~∇ · ~G1

)
=β1, ∂ ~G1 + i

[
~∇× ~G2

]
=−~l1(

~∇ · ~G2

)
=0, ∂ ~G2 − i

[
~∇× ~G1

]
=0

(49)

and (
~∇ · ~G3

)
=0, ∂ ~G3 − i

[
~∇× ~G4

]
=0(

~∇ · ~G4

)
=β4, ∂ ~G4 + i

[
~∇× ~G3

]
=−~l4.

(50)

Then the gradient of gravitational energy is

~∇
(
~G1

2
+ ~G2

2
+ ~G3

2
+ ~G4

2
)
− i∂

[
~G1 × ~G2

]
− i∂

[
~G3 × ~G4

]
−
(
~G1 · ~∇

)
~G1 −

(
~G2 · ~∇

)
~G2 − ~G1

(
~∇ · ~G1

)
− ~G2

(
~∇ · ~G2

)
−
(
~G3 · ~∇

)
~G3 −

(
~G4 · ~∇

)
~G4 − ~G3

(
~∇ · ~G3

)
− ~G4

(
~∇ · ~G4

)
= −~G1β1 − i

[
~G2 ×~l1

]
− ~G4β4 − i

[
~G3 ×~l4

]
.

(51)

It can be clearly seen that in this expression the field strengths, charges and currents
of first group are not mixed with the field strengths, charges and currents of second
group. So the expressions for the gravitational forces have the following form

~FgI = ~G1β1 + i
[
~G2 ×~l1

]
, ~FgII = ~G4β4 + i

[
~G3 ×~l4

]
. (52)

Thus we have the same Maxwell equations for the gravitational field strengths
~G1, ~G2 (49) and ~G3, ~G4 (50), but different Lorentz transformations (23) and (25).
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7. Massless Fields Described by Sedeonic Firs-Order Wave Equations

There is the special class of electromagnetic and weak gravitational fields de-
scribed by first-order wave equations [15](

iet∂ − er~∇
)
W̃ = 0 (53)

and (
iet∂ − er~∇

)
Ṽ = 0. (54)

Taking into account the expressions for potentials W̃ (9) and Ṽ (42) one can see
that these two sedeonic wave equations are equivalent to the following systems

∂a1 +
(
~∇ · ~A1

)
=0, −∂ ~A1 − ~∇a1 + i

[
~∇× ~A2

]
=0

∂a2 +
(
~∇ · ~A2

)
=0, −∂ ~A2 − ~∇a2 − i

[
~∇× ~A1

]
=0

∂a3 +
(
~∇ · ~A3

)
=0, −∂ ~A3 − ~∇a3 − i

[
~∇× ~A4

]
=0

∂a4 +
(
~∇ · ~A4

)
=0, −∂ ~A4 − ~∇a4 + i

[
~∇× ~A3

]
=0

(55)

and

∂b1 +
(
~∇ · ~B1

)
=0, −∂ ~B1 − ~∇b1 + i

[
~∇× ~B2

]
=0

∂b2 +
(
~∇ · ~B2

)
=0, −∂ ~B2 − ~∇b2 − i

[
~∇× ~B1

]
=0

∂b3 +
(
~∇ · ~B3

)
=0 −∂ ~B3 − ~∇b3 − i

[
~∇× ~B4

]
=0

∂b4 +
(
~∇ · ~B4

)
=0, −∂ ~B4 − ~∇b4 + i

[
~∇× ~B3

]
=0.

(56)

As seen in this case there are also two types of electromagnetic fields and two types
of gravitational fields, which are differed in Lorentz transformations.

8. Summary

Thus, we have shown that in the frames of sedeonic approach there are two types
of massless fields, which have the same equations but are described by potentials
with different space-time properties and different Lorentz transformations. The
sources of these fields do not interact with each other. This model of matter can
be investigated for the possible explanation of the dark matter and dark energy
properties [17], [5].



Two Types of Lorentz Transformations for Massless Fields 95

Acknowledgments

The authors are very thankful to Galina Mironova for the assistance and moral
support.

References

[1] Chanyal B., Bisht P. and Negi O., Generalized Octonion Electrodynamics,
Int. J. Theor. Phys. 49 (2010) 1333-1343.

[2] Demir S., Tanisli M. and Candemir N., Hyperbolic Quaternion Formulation
of Electromagnetism, Adv. App. Clifford Alg. 20 (2010) 547-563.

[3] Demir S., Tanisli M. and Kansu M., Octonic Massless Field Equations, Int.
J. Mod. Phys. A 30 (2015) 1550084.

[4] Demir S., Tanisli M. and Tolan T., Octonic Gravitational Field Equations,
Int. J. Mod. Phys. A 28 (2013) 1350112.

[5] Freese K., Lisanti M. and Savage C., Colloquium: Annual Modulation of
Dark Matter, Rev. of Modern Phys. 85 (2013) 1561-1581.

[6] Gamba A., Maxwell’s Equations in Octonion Form, Nuovo Cimento A 111
(1998) 293-302.

[7] Imaeda K., A New Formulation of Classical Electrodynamics, Nuovo Ci-
mento 32 (1976) 138-162.

[8] Landau L. and Lifshits E., Classical Theory of Fields, Pergamon Press, New
York 1975.

[9] Majernik V., Quaternionic Formulation of the Classical Fields, Adv. Appl.
Clifford Alg. 9 (1999) 119-130.

[10] Mashhoon B., Gravitoelectromagnetism: A Brief Review. In: L. Iorio (Ed),
The Measurement of Gravitomagnetism: A Challenging Enterprise, NOVA
Science, New York 2007, pp 29-39.

[11] Mironov V. and Mironov S., Octonic Representation of Electromagnetic Field
Equations, J. Math. Phys. 50 (2009) 012901.

[12] Mironov V. and Mironov S., Sedeonic Generalization of Relativistic Quantum
Mechanics, Int. J. Mod. Phys. A 24 (2009) 6237-6254.

[13] Mironov V. and Mironov S., Reformulation of Relativistic Quantum Mechan-
ics Equations with Non-commutative Sedeons, App. Math. 4 (2013) 53-60.

[14] Mironov S. and Mironov V., Sedeonic Equations of Massive Fields, Int. J.
Theor. Phys. 54 (2015) 153-168.



96 Victor L. Mironov and Sergey V. Mironov

[15] Mironov V. and Mironov S., Sedeonic Equations of Gravitoelectromagnetism,
J. Modern Phys. 5 (2014) 917-927.

[16] Tolan T., Özdas K. and Tanisli M., Reformulation of Electromagnetism with
Octonions, Nuovo Cimento B 121 (2006) 43-55.

[17] Trimble V., Existence and Nature of Dark Matter in the Universe, Ann. Rev.
Astronomy Astrophysics 25 (1987) 425-472.

[18] Ungar A., The Proper-Time Lorentz Group Demystified, J. Geom. Symmetry
Phys. 4 (2005) 69-95.

[19] Ungar A., Parametric Realization of the Lorentz Transformation Group in
Pseudo-Euclidean Spaces, J. Geom. Symmetry Phys. 38 (2015) 39-108.

Victor L. Mironov
Institute for Physics of Microstructures
of Russian Academy of Sciencies
Nizhny Novgorod, GSP-105
603950, RUSSIA
E-mail address: mironov@ipmras.ru

Sergey V. Mironov
Institute for Physics of Microstructures
of Russian Academy of Sciencies
Nizhny Novgorod, GSP-105
603950, RUSSIA
E-mail address: sermironov@rambler.ru




