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MATHEMATICS IN CAGING OF ROBOTICS
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Abstract. It is a crucial problem in robotics field to cage an object using robots
like multifingered hand. However the problem what is the caging for general ge-
ometrical objects and robots has not been well-described in mathematics though
there were many rigorous studies on the methods how to cage an object by certain
robots. In this article, we investigate the caging problem more mathematically and
describe the problem in terms of recursion of the simple euclidean moves. Using
this description, we show that the caging has the degree of difficulty which is closely
related to a combinatorial problem and a wire puzzle. It implies that in order to cap-
ture an object by caging, from a practical viewpoint the difficulty plays an important
role.
MSC : 51M04, 57N15, 57N35, 70B15, 70E60
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1. Introduction

In robotics fields, caging is a type of grasping where robots capture an object by
surrounding or hooking it. Thus the caging problem based on the shape of the
robots and the object is addressed via geometrical representation. Its mathematical
description has been partially studied with a focus on methodology how to cage
an object by certain robots. Though it is rigorous, it is not suitable for arbitrary
target objects and robots. In this article, we propose an essential of caging to
describe arbitrary target objects and robots from a mathematical viewpoint, and
then it naturally leads us to a degree of difficulty of escaping and caging. It is a
novel concept of the caging which is connected with practical approaches.

Caging or holding an object has been discussed in mathematics field in [3,21], and
has been applied to robotic manipulation in parallel. Rimon and Blake [16] raised
a caging by two circular robots driven by one parameter in two dimensional planar
space, and formulated its conditions. Wang and Kumar [19] proposed caging by
multi-robot cooperation with mathematical abstract formulas. More than three di-
mensional caging problem is formulated by [14], although only circular and spher-
ical robots are referred. There studies discuss existence of object’s free movable
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space closed by the robots. Hence path connectivity of the free space for the cap-
tured object [17] is an important matter to investigate whether the object is caged
or able to escape. As mentioned above, confinement of caging formation is stud-
ied previously in [14,16,17], particularly for problems of two dimensional caging.
Additionally although path connectivity can be examined by using probabilistic
search algorithm [5, 11], the difficulty of caging constraint is not quantitatively
qualified.

Therefore this article aims to describe caging problem in robotics mathematically
in order to apply the formulation to arbitrary robots and objects. We reveal dif-
ficulty of caging constraint mathematically based on the euclidean moves. For
examples, using the euclidean moves, control of multiple chains of links has been
studied rigorously [12, 20]. In this article, we focus only on the caging problem
weakly connected with such works.

From a mathematical viewpoint, we recall the fundamental fact that a compact con-
nected n-dimensional topological manifold M in n-dimensional euclidean space
En could be wrapped by the (n− 1)-dimensional sphere Sn−1, which corresponds
to holding in the real world. This fact is described well by the homotopy group
πn−1. It is based on the mathematical fact that Sn−1 in En divides En into its
inner side and outer side. The subspace M has the configuration space [M ] by the
euclidean moves ψ, i.e., [M ] = {ψ(M)}. Let us fix the sphere Sn−1 and then
it divides [M ] to the part [M ]in of the inner side of Sn−1, that of the outer side,
[M ]out, and the intersection part [M ]int, i.e., [M ] = [M ]in

∐
[M ]out

∐
[M ]int and

[M ]int := {M ′ ∈ [M ] ; M ′ ∩ Sn−1 6= ∅}. If [M ]in is not empty, it means that
Sn−1 holds M ∈ [M ]in.

On the other hand, caging is to divide the configurations space [M ] using an (n−2)
dimensional topological manifold K. Then there arises a problem how K with
two-codimension can divide the configuration space [M ] mathematically. This is a
fundamental problem on caging.

There are many mathematical studies on this problem to cage some proper geo-
metrical objects using special K as mentioned above. Further Fruchard and Zam-
firescu [6, 21] have studied the geometrical conditions whether a circle holds a
convex object [M ]. Rodriguez, Mason and Ferry [17] investigated geometrical and
topological properties the multifinger cages rigorously.

However there was no investigation on the above fundamental problem for general
M and K. Though the path connectivity of an object M in En \ K studied in
[5, 11, 17] is an essential property of caging, it is not sufficient. For example if
we regard a wire puzzle constituting two pieces as a pair of a robot K and a target
object M , M is not caged by K because there is a path between M “in” of K
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and that of the outer side of K. However a wire puzzle should be considered as
an example of caging and holding from a practical viewpoint. It is related to the
probabilistic treatment of the path connectivity [5, 11]. However the path space
is very complicate in general [2] and it is very difficult to assign a probabilistic
measure in the path space.

In order to introduce a degree of escaping mathematically, in this article, we de-
scribe the fundamental problem more mathematically, and then we show that caging
is represented in terms of recursion of the simple euclidean moves, i.e., the piece-
wise euclidean move defined in Definitions 8 and 14. The move means that caging
is classified countably and naturally leads us to the degree of difficulty of escap-
ing of [M ] from K. It is closely related to a combinatorial explosion and the wire
puzzle. It means that there might be a difference between practical caging and
complete caging. When we capture a complicate object by caging, we propose that
the difficulty should be proactively considered from a practical viewpoint. Further
if we treat the euclidean moves probabilistically, we could assign a natural measure
on the moves.

2. Mathematical Preliminaries

Let us consider the n-dimensional real euclidean space En and the n-dimensional
euclidean group SE(n) := Rn o SO(n). The element g of SE(n) acts on each
point x of En by Φg(x) ∈ En such that for g, g′ ∈ SE(n), Φg′g(x) = Φg′Φg(x)
and for the identity element e ∈ SE(n), Φe(x) = Id (x) = x [1, 7]. The action Φg

of g ∈ SE(n) on En has the matrix representation: for g, there are element u ∈ Rn
and A ∈ SO(n) such that for x ∈ En

Φg(x) =

(
1 0
u A

)(
1
x

)
=

(
1

Ax+ u

)
.

In this article, let us refer a `-dimensional topological manifold in En, `-subspace.
We say that the `-subspaces M and M ′ of En are congruent if there is an element
g of SE(n) such that Φg(M) = M ′. We denote it by M ' M ′. Let [M ] be the
configuration space of M , i.e., [M ] := {Φg(M) ; g ∈ SE(n)}. The quotient
space of the set of the n-subspaces divided by SE(n) is denoted by M, which
classifies the shape of subspace in En. We call M moduli of the shapes, [M ] ∈M.

We consider a continuous map ψ : [0, 1]→ SE(n), i.e., ψ ∈ C0([0, 1], SE(n)) with
a fixing point ψ(0) = Id , where C0(N,F ) means the set of F -valued continuous
functions over N .

For given ψ ∈ C0([0, 1], SE(n)), the action Φψ on En parameterized by t ∈ [0, 1]
is called orbit by ψ.
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Lemma 1. For an n-subspaceM ⊂ En, the action Φψ(t)(M) induces a congruent
family {Φψ(t)(M)}t∈[0,1]

For the Lie group SE(n), there is its Lie algebra se(n) whose element g satisfies
exp(g) ∈ SE(n); for the economy of notations, we use the same notation g for its
matrix representation.

Lemma 2. For g =

(
0 0
ξ ω

)
∈ se(n), where ω ∈ so(n) and ξ ∈ Rn

exp(g) = eg =

(
1 0

v(ω)ξ eω

)

where v(ω) :=

∞∑
k=0

1

(k + 1)!
ωk =

∫ 1

0
esωds

ωv(ω) = eω − In

and where In is the n× n unit matrix. If ω is regular, v(ω) = (eω − In)ω−1.

Proof: The straightforward computation leads gk =

(
0 0

ωk−1ξ ωk

)
and thus we

have the result. �

Here we recall some of the properties of so(n) [9]

Lemma 3. 1. dimR so(n) =
n(n− 1)

2

2. the matrix representation of an element ω of so(n) is given by (ωij) such
that tω = −ω, i.e., ωij = −ωji (i, j = 1, 2, . . . , n)

3. the maximal rank of the matrix representation of so(n) is (n−1) if n = odd
and n otherwise, and

4. for the matrix representation ω ∈ so(n), we have the natural decomposition

Rn = ω(Rn)⊕ kerω

by considering ω : Rn → Rn, i.e., the cokernel cokerω agrees with the
kernel of ω.

Proof: Items 1, 2, and 3 are obvious as in [9, p.63]. Using the euclidean inner
product, let us show that ω(Rn)⊥ = kerω which is equivalent with item 4. Let
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us consider an element x of ω(Rn)⊥ = (imgω)⊥, which means (x, ωy) = 0 for
every y ∈ Rn, and equivalently (tωx, y) vanishes. The element x must belongs to
kertω or kerω because of tω = −ω. �

Since for g ∈ se(n) and t ∈ [0, 1], tg belongs to se(n), by using this relation
between SE(n) and se(n), we consider a euclidean move ψ(t) = exp(tg), which
we call the simple euclidean move.

Lemma 4. For t ∈ [0, 1] and g =

(
0 0
ξ ω

)
∈ se(n)

exp(tg) =

(
1 0

vt(ω)ξ etω

)

where vt(ω) = tv(tω) =

∫ t

0
esωds satisfying

ωvt(ω) = etω − In.

If ω is regular, vt(ω) = (etω − In)ω−1.

Proof: vt(ω) = tv(tω) =
∞∑
k=1

1

k!
tkωk−1 = t

∫ 1

0
estωds. By replacing s with st,

vt(ω) =

∫ t

0
esωds. �

Though the action of the euclidean move should be regarded as a “rotation” in the
projective space PRn via SL(n,R) in Rn+1, the simple euclidean move is given by
the following lemma

Lemma 5. For t ∈ [0, 1] and g =

(
0 0
ξ ω

)
∈ se(n), the orbit of x ∈ En by the

simple euclidean move ψ(t) := etg, i.e., ψ(t)x = etωx+ vt(ω)ξ, is reduced to

ψ(t)x = etω(x+ ξ0)− ξ0 + ξ1t (1)

where ξ = ωξ0 + ξ1 for ξ1 ∈ kerω and ξ0 ∈ Rn. It means the following

1. If ξ1 vanishes, ψ(t) means a rotation by etω, at a center −ξ0 ∈ En by iden-
tifying Rn with En as a set.

2. If ω vanishes, ψ(t) is the translation

ψ(t)x = x+ ξt.
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3. If both ω and ξ1 do not vanish, it is a mixed move of the rotation and the
translation.

Proof: Since this action satisfies

ωψ(t)x = etω(ωx+ ξ)− ξ

and we have the decomposition ξ = ωξ0 + ξ1 where ξ1 is the kernel of ω from
Lemma 3, we obtain the identity (1) by substituting ξ into ψ(t)x. �

Lemma 6. The map exp from se(n) to SE(n) is surjective.

Proof: Though it can be directly proved from the Lemma 3, it is also obtained
from (1) by setting t = 1. Then its surjectivity is can be directly proved by the
triangulation of the matrix ω though it is a little bit complicate due to the maximal
tori in SO(n). �

Corollary 7. For every pair of congruent n-subspaces M and M ′, there is a sim-
ple euclidean move ψ(t) = exp(tg) of g ∈ se(n) such that Φψ(1)(M) = M ′.

Definition 8. The euclidean move ψ(t) ∈ SE(n) which is given by a collection of
the simple euclidean moves {exp(tgi) ; gi ∈ se(n), t ∈ [0, 1]}i=1,...,`, i.e.,

ψ(t) = exp

(
t− tj−1
tj − tj−1

gj

)
egj−1 · · · eg2eg1

for t ∈ [tj−1, tj ] , where tj :=
j

`
, we call ψ(t) the piecewise euclidean move.

3. Mathematics of Caging

Let us consider the subspaceK ⊂ En whose codimension is two, i.e.,K is (n−2)-
subspace in En. K might be decomposed to p connected parts

K =

p∐
i=1

Ki.

Hereafter K is fixed.

Remark 9. The caging is to restrict some n-subspace in En using the other sub-
space K whose codimension is two, which is modeled after figures, wires in three
dimensional case. The subspace K is modeled by them. Thus from a practical
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viewpoint, we do not consider wild geometries such as the Hilbert curve but we
neither exclude them in this article. For such a wild object, some of the following
results might be trivial.

For given K, we let [M ]Kc be the subset of the configuration space [M ] whose
element is disjoint to K, i.e., [M ]Kc := {M ′ ∈ [M ] ; M ′ ⊂ Kc}, and MKc be the
family of [M ]Kc .

Definition 10. Let M and M ′ be congruent n-subspaces in Kc i.e., M and M ′

belongs to [M ]Kc ∈ MKc , and there exists g ∈ SE(n) satisfying Φg(M) = M ′.
If there is ψ ∈ C0([0, 1],SE(n)) such that its congruent family {Φψ(t)(M)}t∈[0,1]
satisfies the conditions

1. Φψ(0) = Id

2. Φψ(1) = Φg and

3. Φψ(t)(M)
⋂
K = ∅ for every t ∈ (0, 1)

we say that M and M ′ are Kc-congruent, denoted by M 'Kc M ′, and Φψ is a
Kc-congruent homotopy for M and M ′. If we cannot find ψ ∈ C0([0, 1],SE(n))
satisfying the above conditions, we say that M and M ′ are not Kc-congruent,
denoted by M 6'Kc M ′.

We note that the element [M ]Kc of MKc is the set of the congruent subspaces.

Definition 11. If every element M of [M ]Kc is Kc-congruent each other, we say
that [M ]Kc is a Kc-congruent set and we cannot cage [M ]Kc ∈MKc for K.

If we find a pair M and M ′ of [M ]Kc which are not Kc-congruent, we call [M ]Kc

a completeKc-caging set, and we say that we can completely cage [M ]Kc ∈MKc .

Proposition 12. The moduli of shapes MKc is decomposed to

MKc = M
(0)
Kc

∐
M

(1)
Kc

where M
(0)
Kc is the family of the Kc congruent sets of MKc and M

(1)
Kc is the family

of complete Kc-caging sets.

Proof: The decomposition is obvious from the definition. �
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Remark 13. If K of n = 3 case is a space-filling curve like the Hilbert curve such
that it is dense in En, MKc itself is the empty set though we are not concerned with
such a case. However it should be noted that if MKc is not empty, [M ]Kc ∈MKc

has a non-trivial geometrical structure generally. In fact, Fruchard and Zamfirescu
[6,21] considered the similar problem in which theK is a circle and [M ]Kc(⊂ [M ])
is of a convex object, though in general [M ] is not convex from a practical point of
view.

Now in order to find a path from M to M ′, we express the euclidean move ψ in
terms of the piecewise euclidean move in Definition 8.

Definition 14. Let M and M ′ be Kc-congruent such that Φg(M) = M ′ of g ∈
SE(n). If g is decomposed to the piecewise euclidean move, i.e.,

g = g` ◦ g`−1 ◦ · · · ◦ g2 ◦ g1

satisfying the conditions

1. For each gi, we have gi ∈ se(n) satisfying gi = exp(gi) and

2. each ψi ∈ C0([0, 1], SE(n)) given by ψi(t) = exp(tgi) for t ∈ [0, 1] is
Kc-congruent homotopy for Φgi−1◦···◦g2◦g1(M) and Φgi◦···◦g2◦g1(M)

we say that Φg is reduced to `-SE(n) action.

If Φg is reduced to `-SE(n) action but cannot be reduced to (`− 1)-SE(n) action,
we say that Φg is `-th type and M and M ′ are `-th Kc-congruent if Φg is `-th type.

Further if M and M ′ are congruent but not Kc-congruent, or cannot be `-th Kc-
congruent of finite `, we say that M and M ′ are∞-th Kc-congruent.

We should note that these components ψi’s are given as the rotations at certain
points or the translations from Lemma 5.

Proposition 15. For given an n-subspaceM ⊂ Kc, the configuration space [M ]Kc

of MKc is decomposed to

[M ]Kc =

∞∐
`=1

[M ]
(`)
Kc

where [M ]
(`)
Kc is the set of subspaces of the `-th Kc-congruence to M .

Now, we state the main theorem, which should be compared with Corollary 7.
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Theorem 16. In general Kc-congruent n-subspaces M and M ′ are not the first
Kc-congruent.

Proof: An example is illustrated in Fig. 1 of n = 2 case, in which dots mean K
and a N -shaped object corresponds to M . They are Kc-congruent to the outer one
but it is obvious that the N -shaped object (a) in Fig. 1 is not the first Kc-congruent
to (d).

(a) (b) (c) (d)

Figure 1. An example: The three dots mean K and a N -shaped object corre-
sponds to M and (a), (b), (c), and (d) show the piecewise euclidean moves of
the N -shaped object.

This example can be extended to M × Rn−2 and K × Rn−2. �

Remark 17. The decomposition to M
(0)
Kc and M

(1)
Kc is related to the link problem

and the knot theory [10]. Thus Kc-congruence is a profound problem. Some of
kinds of caging are surely based on the braid group in the knot theory when the
fundamental group π1(M) of [M ] is not trivial.

As mentioned in the Introduction from the practical viewpoint, we are concerned
with the `-th Kc-congruence rather than the Kc-congruence itself. Theorem 16
means that for a Kc-congruent configuration [M ]Kc , there might be M ∈ [M ]Kc

so that we cannot move M to M ′ ∈ [M ]Kc by the simple euclidean move. It
reminds us of parking in a small garage and the wire puzzle. It is also closely
related to the probabilistic treatment of connected path in [M ]Kc [5, 11].

Let us consider M and M ′ are `-th Kc-congruent, M 'Kc M ′. If ` is not small, it
is not easy to find the Kc-congruent homotopy Φψ such that Φψ(1)(M) = M ′.

In the some situations, the i-th simple euclidean move in a piecewise euclidean
move is restricted, and thus, countable in a certain sense, but ` is not small. To find
the piecewise euclidean moves connecting M and M ′ is basically difficult because
of the combinatorial explosion. It is the origin of the difficulty of the wire puzzle.
In other words, caging problem is connected with the difficulty of combinatorial
problem.
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This fact implies that if we want to restrict some geometrical objects [M ] ∈M by
using the figures or something in a daily life, we do not need a complete caging in
Definition 11 but we have to find whether it is not small ` of `-th Kc-congruence.

In other words, roughly speaking, there is the degree of the difficulty to take M
in the inside of K to the outside of K, though the inside and the outside are not
rigorous mathematically. We need not discriminate between the higher type of
Kc-congruence and a complete Kc-caging set in a daily life.

Though it is very difficult to introduce the measure of the path space in general, we
could measure the difficulty of caging and the probabilistic treatment of connected
path in [M ]Kc [5, 11].

Further this problem is related to a geometrical problem known as the Kakeya
problem [4].

In order to express the practical caging, we introduce another concept.

Definition 18. For given positive integer `0, if we find n-subspaces M and M ′ in
Kc such that M and M ′ are congruent but not `-th Kc-congruent for ` < `0, we
say that K dissociates M and M ′ by `0-th caging.

Remark 19. Practically, for a given geometrical object [M ] ∈ M, it is very im-
portant to find a configuration K which dissociates M and M ′ by `0-th caging.

More practically, the first caging is much more important than higher `-th caging
case because the concerned shape [M ] is not so complicate. Even for the first
caging, it is not easy to find whether it is the first caging or not because the di-
mension of SE(n) is six if n = 3. Determination of the first caging means the
determination of topological property of SE(n). For example, if we reduce the
determination of continuous space to finite problem by expressing concerned area
andK in terms of the voxels for 100 points per one-dimension, we have to deal with
1006 data, which is huge and one can not deal with it practically in this stage. Thus
in order to avoid the problems, there are several attempts and proposals including
the C-closure method. The second named author has investigated the problem us-
ing the C-closure concept [19]. In another way, intuitive geometrical features such
as loop shape [15] and double fork and neck [18] help us derive sufficient condi-
tions for caging constraint. In the computations, since the representation of the
euclidean move and especially rotation is crucial, it is important to use the recent
results [8, 13] for the study.
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