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Abstract. A homogeneous space V of complex constrained vectors in C3, repre-
senting complex velocities is introduced. The corresponding representation of the
complex special orthogonal group of transformations acting on V is also examined.
The requirement for real vector magnitudes is addressed by imposing orthogonality
between the real and the imaginary parts of vectors and use of the non-conjugate
scalar product. We present the orthogonal transformations acting on V in terms of
the polar decomposition of complex orthogonal matrices. The group link problem
and the homogeneity of the space V are also discussed. Finally, we briefly consider
the convenience of the space V in theoretical calculations.
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1. Introduction

It is a common knowledge in the Lie group theory that the complex rotation group
SO(3,C) is isomorphic to the restricted Lorentz group SO+(1, 3). Due to this
isomorphism, the group SO(3,C) is sometimes an alternative choice to repre-
sent particular aspects of some physical theories ordinarily expressed in terms of
SO+(1, 3). In regard to physical applications, it is important to outline some of
the useful properties of the complex space C3 compared to commonly used four-
dimensional real space: it supports the use of vector product, the increased number
of vector components can be related to additional physical quantities and it offers a
possibility to discern some commonly intertwined physical concepts by employing
the real/imaginary separation. As examples of using SO(3,C) in physical appli-
cations one can see [1], [2], [10], [14] among others. It is noteworthy to remark
that the representation of the group SO(3,C) therein is adapted to the standard un-
constrained vectors in C3. When the SO(3,C) transformation is parameterized by
a vector of velocity, it is commonly taken to be a three-dimensional vector ~v with
real components. Even when the vector of velocity is actually a complex vector
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like in the bi-quaternion (quaternions with complex parameters) models of rela-
tivity [14], the corresponding representation of the group SO(3,C) has not been
specifically addressed.

In this paper, we introduce a homogenous space V of complex constrained vectors
in C3, representing complex velocities. The requirement for real vector magnitudes
is addressed by imposing orthogonality between the real and the imaginary parts
of vectors and adopting the non-conjugate scalar product. The standard alternative,
to use the conjugate scalar product, does not provide “hyperbolic” calculation of
vector magnitudes.

Our aim is to examine the representation of SO(3,C) transformations which act on
V . Apart from the existing approaches mentioned above which exploit the common
representation of SO(3,C), we adapt the representation of the group SO(3,C) to
agree with the prescribed constraints on the complex vectors in V . The standard
polar decomposition of complex orthogonal matrices on (real orthogonal)/(positive
definite Hermitian) corresponds to the rotation/boost decomposition of matrices
representing transformations acting on V . We focus our attention on boost rep-
resentation in V which correspondingly differs from the standard boost represen-
tation in SO(3,C) acting on C3. The homogeneity of the space V is examined
through the transitivity of the boost action. Additionally, we examine a group link
between vectors in V which contains a local boost action, where the boost pre-
serves the direction of the real part of the vector. An adaptation of V toward a
space of vector potentials and its simple geometrization is also briefly discussed.

2. The Space of Complex Constrained Vectors

We consider the ordinary non-conjugate scalar product · in C3 such that (C3, ·)
is complex inner space with weakened scalar product conditions. Of course, this
scalar product in general, does not provide real vector magnitudes.

Now, let us consider a subset V ⊂ C3 consisting of complex vectors v ∈ C3 of the
form

v = ~x+ i~y, ~x, ~y ∈ R3

with constraints ~x~y = 0 and v · v = c2, for constant c, 0 < c ∈ R. We will use
equivalent and physically more relevant description of the space V given by the
following definition.

Definition 1. The space V ⊂ C3 is defined by

V = {v = γv(c~n+ i~v) ; ‖~n‖ = 1, ~n~v = 0}

where γv = 1/
√

1− ~v2/c2 is the Lorentz factor.
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The magnitude of the vector v is calculated regarding the scalar product ·, i.e.,
v · v = c2. The scalar product · is obviously complex valued scalar product in V
where the orthogonality constraint ~n~v = 0 yields real vector magnitudes.

Notice that vector addition and multiplication with scalar inherited from C3 are not
closed operations in V and so, V is not a vector subspace of C3. V would not be
a vector space even if vector addition and multiplication by a scalar were closed
operations, introduced by using the corresponding boost transformations given in
the next section. In that case, the vector addition would be a non-commutative,
non-associative and also a non-distributive operation with regard to scalar mul-
tiplication. These observations are comparable to the four-vectors of velocity in
Minkowski space. However, in the latter, the time component depends on the space
components and thus the corresponding homogeneous space is three-dimensional,
while dim(V) = 4 (with respect to R) because of the conditions ~n~v = 0 and
‖~n‖ = 1 which reduce two dimensions down from six. The condition v · v = c2

does not reduce dimensionality since this condition follows from the previous ones
and the presence of the scalar γv. So, the homogeneous space V is not isomorphic
to the homogeneous space of four-vectors of velocity in Minkowski space because
of the difference in dimensionality. Actually, it is obvious that V can be naturally
mapped onto the homogeneous space of four-vectors of velocity by the surjection
γv(c~n+ i~v) 7→ γv(c,~v).

The various disadvantages of the scalar product · in V are compensated by the
“hyperbolic” calculation of the vector magnitudes. The standard alternative is to
use the conjugate scalar product which is common in complex spaces. However,
in such case, V could not be placed in parallel with the homogeneous space of
four-vectors of velocity in Minkowski space. Observe that using “imaginary” ~v in
the representation of the complex vectors in V corresponds to the diagonal metric
diag(1,−1,−1,−1) in the Minkowski space.

The vectors v = γv(c~n + i~v) in V allow the following physical interpretation.
The imaginary part γv~v can be interpreted as the relativistic velocity known from
the Minkowski space. The real part given by γvc~n could be associated with an ob-
server, where ~n, as a unit vector, could represent the direction of the observer’s time
velocity. In that case, ~n should be a dimensionless quantity (time/time). The trans-
formations presented in the next section vary the velocity given in the imaginary
part of vectors, but they also change the direction of the observer’s time velocity.
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3. Transformations in V

The SO(3,C) isomorphism with SO+(1, 3) means that there are corresponding
counterparts of the elements of SO+(1, 3) in SO(3,C). However, we are interested
in representation G of the group SO(3,C) acting on the space V .

It is well-known that a matrix A is complex orthogonal (A>A = I) if and only
if there is a real orthogonal matrix R and a real antisymmetric matrix S such that
A = ReiS , (see for example [6, p.487]). In this polar decomposition, the matrix eiS

is a positive definite Hermitian coninvolutory matrix. Of course, the rotation/boost
decomposition of the matrices in G should correspond to the polar decomposition
of orthogonal complex matrices. In light of this, we can simply recognize that
the rotations in G are reduced to the ordinary SO(3) rotations. Usually, they are
represented by the Rodrigues’ rotation formula

R~s,θ = cos θI + sin θ[~s]× + (1− cos θ)~s⊗ ~s

where I is the identity matrix, ~s is a unit vector in direction of the rotation axis, θ is
the angle of rotation and [~s]× is the cross product matrix of ~s (see e.g., [8, p.281]).
Let u = γu(c~m + i~u) and v = γv(c~n + i~v) be two vectors in V . Sometimes,
of particular interest will be the rotation that brings the unit vector ~m to the unit
vector ~n. We can choose the rotation axis to be orthogonal to both ~m and ~n and
the Rodrigues’ rotation formula adapted to this specific case takes the form

R~m
~n = ~m~nI + [~n× ~m]× +

1

1 + ~m~n
(~n× ~m)⊗ (~n× ~m).

Of course, the boosts are fundamental transformations in G, because unlike rota-
tions, they vary the magnitudes of the real and the imaginary parts of the vectors.

Definition 2. A boost Bv in G parameterized by a vector v = γv(c~n+ i~v) ∈ V is
represented by the following matrix

Bv = I + (γv − 1)~n⊗ ~n+
γ2
v

(1 + γv)c2
~v ⊗ ~v + i

γv
c

[~n× ~v]×. (1)

In orderBv to correspond to the polar decomposition of complex orthogonal matri-
ces, it should be orthogonal and positive definite Hermitian coninvolutory matrix.
There is a comparable situation in Minkowski space, where it is shown that rota-
tion/boost decomposition of SO+(1, 3) matrices is exactly the polar decomposition
of real orthogonal matrices [12, Ch.5]. The boost representation (1) could be put
in parallel to the Lorentz boost in general frame [5, p.197].
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Proposition 3. The boost Bv, as given by (1), is an orthogonal positive definite
Hermitian coninvolutory matrix.

Proof: It is easy to directly obtain <(Bv)=(Bv) = =(Bv)<(Bv) and so

BvBv̄ =

(
I + (γv − 1)~n⊗ ~n+

γ2
v

(1 + γv)c2
~v ⊗ ~v

)2

+
(γv
c

[~n× ~v]×
)2

=I= Bv̄Bv.

This givesBv̄ = B−1
v , but we also haveBv̄ = B>v , soBv is orthogonal. Obviously,

B̄v = B>v , so B̄>v = Bv and BvB̄v = I , that is, Bv is a Hermitian coninvolutory
matrix. From the straightforward calculation of Bvu where u = γu(c~m+i~u) ∈ V,

Bvu = c

(
γu ~m+ (γu(γv − 1)~m~n+

γuγv
c2

~u~v)~n+ (
γv

2γu
(1 + γv)c2

~m~v − γvγu
c2

~n~u)~v

)
(2)

+i

(
γu~u+ (γu(γv − 1)~n~u− γvγu ~m~v)~n+ (

γv
2γu

(1 + γv)c2
~u~v + γvγu ~m~n)~v

)
it can be obtained that ū(Bvu) > 0. Namely,

ū(Bvu) = (γu
√
γv − 1 ~n~u− γuγv√

1 + γv
~m~v)2 + (cγu

√
γv − 1 ~m~n+

γuγv√
c(1 + γv)

~u~v)2

+γ2u(c2 + ~u2) + 2γ2uγv(1−
√
γv − 1

γv + 1
)((~m~n)(~u~v)− (~m~v)(~n~u)).

Now, if (~m~n)(~u~v) − (~m~v)(~n~u) > 0, then obviously ū(Bvu) > 0. On the other

hand, if (~m~n)(~u~v)− (~m~v)(~n~u) < 0, we use the fact that γv(1−
√

γv−1
γv+1) < 1 and

(~m~n)(~u~v)− (~m~v)(~n~u) = (~m× ~u)(~n× ~v) > −‖~u‖‖~v‖, and obtain

γ2
u(c2 + ~u2) + 2γ2

uγv(1−
√
γv − 1

γv + 1
)((~m~n)(~u~v)− (~m~v)(~n~u))

> γ2
u(~v2 + ~u2)− 2γ2

u‖~u‖‖~v‖ = γ2
u(‖~u‖ − ‖~v‖)2 > 0. (3)

�

The action of the matrix Bv on vectors in V is comparable with the characteristic
manner of boost action in Minkowski space. Namely, if Bv acts on a “zero” vector
c~n, the result is v, Bvc~n = v, and if it acts on a vector u = γu(c~n + i~u) with the
same real part direction as v, the result is

x = Bvu = γuγvc(1 +
~u~v

c2
)~n+ i(γv~u+ γuγv~v +

γ2
uγv

(1 + γu)c2
(~u~v)~v)

where =(x)/(<(x)~n) is actually the relativistic velocity addition. Also, it is easy
to confirm that two boosts, in general case, do not commute, BuBv 6= BvBu, even
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in cases when they are generated from vectors with a common direction of their
real parts. The product BuBv is not a Hermitian matrix generally, thus, a product
of boosts does not give a boost.

Given a complex matrix Bv representing a boost in V , there is no simple formula
to extract the vector v parameterizing Bv. However, one way to obtain the vector
v is to consider a system of equations using convenient matrix elements. The sum
of diagonal elements in Bv straightforwardly gives the solution for γv. Then, the
imaginary parts of the matrix elements in the upper right (or the lower left) triangle
give the components of ~n × ~v. So, one can express the components of ~v linearly
in the components of ~n using the equality (~n × ~v) × ~n = ~v which follows from
the constraints. Finally, the components of ~v can be substituted in the real parts of
elements in the upper right (or the lower left) triangle and the diagonal elements,
in order to obtain a system of equations which gives the components of the vector
~n.

It is interesting to compare the boost representation (1) acting on V with the stan-
dard boost representation in SO(3,C) acting on C3. In the local isomorphism
SO+(1, 3) → SO(3,C) the vector parameterizing the boost is actually a real vec-
tor ~v, and the corresponding boost representation in SO(3,C) acting on C3 takes
the form

B~v = γvI +
γ2
v

(1 + γv)c2
~v ⊗ ~v + i

γv
c

[~v]×. (4)

Compare (4) with our boost representation given by (1) where the boost is param-
eterized by a complex vector v. Observe that in (2), the <(Bvu) is a linear combi-
nation of ~m,~n,~v while the =(Bvu) is a linear combination of ~u, ~n,~v. Compared
to B~vu, the presence of ~n in Bvu obviously results in more “organized” boosting
of the real and the imaginary part of u.

4. G-Links Between Vectors in V

Let u and v be vectors in V . Then, a G-link between u and v is a transformation T
in G that carries u to v, i.e., Tu = v. We will show that G acts on V transitively,
namely, for each pair of vectors u, v ∈ V there is a G-link.

Proposition 4. V is a homogeneous space.

Proof. Let u and v be two vectors in V . Since the scalar product is non-conjugate,
analogously to the boost link in Minkowski space (see e.g. [3], [13], [11, Ch.11]),



On Complex Homogeneous Space of Vectors with Constraints 7

the standard boost G-link from u to v is given by

Bu
v = I − 2

(u+ v)2
(u+ v)⊗ (u+ v) +

2

c2
v ⊗ u, (u+ v)2 6= 0 (5)

where the addition of vectors is inherited from C3.

Since (u + v) · u = c2 + u · v and (u + v)2 = 2(c2 + u · v), one can obtain
orthogonality and Bu

vu = v using direct calculations.

The boost definition in V given by (1) can be examined more generally in light of
the group link problem. Namely, given a spaceX with a groupG acting transitively
on X , the problem is to determine a transformation T xy ∈ G such that T xy x = y
for a given pair x, y ∈ X . The transformation T xy ∈ G for which T xx = I ∈ G
is called a boost [7, p.805]. So, this condition could be used to define a boost in
the homogenous space X . In our case, one can easily show that in (5), Bu

u = I ,
and so Bu

v is a boost. However, it is not a common approach to represent the boost
through a boost G-link Bu

v since such representation is in a basis containing the
vector u, while in the standard boost representation (1) the boost matrix refers only
to a vector v determined in a basis containing a “zero” vector. Thus, to obtain
a standard boost representation we can simply put u = c~n in (5) which gives
Bc~n
v = Bv. Thus, the boost Bv given by (1) is a boost G-link (5) between a “zero”

vector and v.

Let us determine the stabilizer of a point in V . Since the action of G is transitive,
one can determine the stabilizer of a point using any convenient element in V .
The stabilizer of one of “zero” elements, say c~n ∈ V , obviously excludes boosts.
Therefore, it is composed of rotations that keep the vector ~n in place, i.e., rotations
around the axis defined by ~n. So, the stabilizer of a point is isomorphic to SO(2).

In some applications of particular interest can be a boost that performs a local
action. It means that the boost will keep the direction of the real part of an arriving
vector fixed. Let Bv be a boost parameterized by v = γv(c~n+ i~v) and

V~p = {γw(c~p+ i~w) ∈ V ; ~p is fixed} ⊂ V

is a set of vectors with the fixed direction ~p of their real parts. In order to preserve
the direction of the real part of arriving vectors from V~p, we perform similarity
transformation of the boost Bv using the corresponding rotation matrix R~p~n (rota-
tion from ~p to ~n).

Definition 5. The local boost action (Bv)~p : V~p → V~p is represented by the fol-
lowing matrix

(Bv)~p = (R~p~n)−1BvR
~p
~n.
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The matrix (Bv)~p is obviously orthogonal. It is easy to show that u · v > 0 for
u, v ∈ V~p, which implies that (Bv)~p is a positive definite matrix on vectors in V~p.
It is also Hermitian matrix since Bv is Hermitian, and R~p~n and its inverse R~n~p are
unitary matrices. Finally, (Bv)~p obviously transforms vectors from V~p to V~p by
keeping the directions of their real parts.

Now, it is of interest to represent a boost G-link (5) in a way that the local boost
action is explicitly expressed. So, we will define a G-link T uv between u and v
which is based on the local boost action. Whenever ‖~u‖ 6= ‖~v‖, T uv must contain
a local boost action and when ~m 6= ~n it must also contain a rotation.

Proposition 6. A boost G-link between u and v expressed by a local boost action
can be given by the following transformation

T uv = R~m
~n (Bu

R~n
~m
v
)~m = R~m

~n B
u
R~n

~m
v
, (u+R~n~mv)2 6= 0 (6)

where the transformation Bu
R~n

~m
v

is given by the formula

Bu
R~n

~m
v

= I − 2

(u+R~n~mv)2
(u+R~n~mv)⊗ (u+R~n~mv) +

2

c2
R~n~mv ⊗ u. (7)

Proof: Firstly, observe that (Bu
R~n

~m
v
)~m = Bu

R~n
~m
v

since the boost Bu
R~n

~m
v

is generated

by a vector with the direction ~m of its real part. Thus, the rotation matrices in
the corresponding similarity transformation are reduced to I . By straightforward
calculations it is easy to confirm that (7) is orthogonal and also it is simple to
check that the equality Bu

R~n
~m
v
u = R~n~mv is valid. Actually, according to (5), the

equation (7) represents a boost G-link between u and R~n~mv. Now, T uv is obviously
an orthogonal transformation and T uv u = v. Finally, since T uu = I , it follows that
T uv is a boost. �

The local boost action corresponds to the boost action in the group SO(1, 2) which
is known to have applications in different branches of physics including classical,
relativistic and particle mechanics.

5. Discussion

It is a straightforward task to extend the homogeneous space of velocities V by
including a scalar potential ϕ obtaining a homogeneous space P ⊂ C3 of vector
potentials. Let the space P ⊂ C3 of vector potentials be defined by

P = {p = − 1

c2
iϕv ; ϕ = ϕ(~r), v ∈ V}
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where ϕ is a smooth function of position representing a scalar potential.

The vector potential p corresponds to the concept of four-potential used in electro-
magnetism, gravitation [4] and some other field theories. Observe that the repre-
sentation of SO(3,C) acting on P remains G since ϕ is a scalar field.

Now, we address the simplest case when the vectors in P have a static orthogonal
component. Thus, let P~n = {p = ϕ

c2
γv(~v − ic~n)} ⊂ P is a set of vectors in

P with a fixed direction ~n of their orthogonal components and G(1, 2) ⊂ G is
a representation of the subgroup SO(1, 2) ⊂ SO(3,C) acting on P~n. Since P~n
is a homogeneous space, there is an identification P~n ∼ G(1, 2)/Gp(1, 2) where
Gp(1, 2) is the stabilizer of an element p ∈ P~n. Now, the transport of the vector
q ∈ P~n can be naturally based on α = [∇× p]× (cross product matrix of the curl
of p), where without loss of generality, for some ϕ we can choose p to correspond
to a “zero” vector in P~n, i.e., p = −iϕc ~n. Notice that the antisymmetric matrix α
is an element of the Lie algebra at p.

The idea is to define the transport of q by an adjoint representation ω = Bq
pαB

p
q of

α, where Bp
q is a boost link between p and q. The matrix ω can be considered as a

connection form on the space P~n and could be used to derive equations of motion.
The existence of boostsBq

p andBp
q around α is an indicator of the interdependence

between mass and velocity. In electromagnetism they vanish since the particle
charge is independent of velocity. The similar idea, although in Minkowski space,
is already exploited elsewhere [9]. Indeed, as a future research, it is of interest
to examine the behavior of ω in the theoretical calculations of some relativistic
effects.

6. Conclusion

We examined a representation G of the group SO(3,C) applied to the homoge-
neous space V of complex constrained vectors in C3, representing complex ve-
locities. The rotation/boost decomposition of the matrices in G corresponds to the
polar decomposition of complex orthogonal matrices on (real orthogonal)/(positive
definite Hermitian). Real vector magnitudes in V are provided by orthogonality be-
tween the real and the imaginary parts of vectors and employing the non-conjugate
scalar product. The discussion is mainly focused on the boosts and their action on
the space V . We discuss the boost link in V and give a group link representation
where the involved boost preserves the direction of the real part of vectors. Due
to the correspondence with boost in SO(1, 2), the local boost action can be used
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as a transformation related to object motion in various physical applications. Fi-
nally, we briefly discuss a simple modification of the space V in order to obtain its
geometrization which can be convenient in theoretical calculations.
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