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Abstract. Solutions to the Helmholtz equation within an equilateral triangle which
solve either the Dirichlet or Neumann problem are investigated. This is done by in-
troducing a pair of differential operators, derived from symmetry considerations,
which demonstrate interesting relationships among these solutions. One of these
operators preserves the boundary condition while generating an orthogonal solution
and the other leads to a bijection between solutions of the Dirichlet and Neumann
problems.
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1. Introduction

The solutions to many important physical problems, such as electromagnetic waves
in waveguides [13], lasing modes in nanostructures [5], the electronic structure of
graphene [10] and the quantum eigenvalues and eigenfunctions for various poten-
tial energies [7] are obtained by solving the ubiquitous Helmholtz equation

∇2ψ + k2ψ = 0. (1)

Studying the solutions to this equation is both a very old problem and one which
continues to be an area of active research ([2], [14], [16]). In this paper, we discuss
the solutions to this equation when the region of interest is an equilateral triangle
and we consider two different boundary conditions: Dirichlet and Neumann. Al-
though the explicit solutions in these cases are well-known, ([5], [7], [8], [12], [3],
[4]) we present an alternative and more elegant framework for understanding them.
These insights follow from properties of two differential operators which exploit
the symmetry of the boundary.

The first operator we introduce, Θs, will preserve the boundary condition but trans-
forms the solution to an orthogonal one. For degenerate solutions this becomes a
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(graded) involution on the solution space, while non-degenerate solutions like the
ground state must transform to the trivial solution. Treating this as an additional
constraint, we are able to find a novel derivation of the ground state solution and
its harmonics.

In addition to insights for fixed boundary condition, one of the operators we intro-
duce transforms the boundary condition, giving new insight between the Dirich-
let and Neumann Problems. In particular, this provides a novel and constructive
demonstration of the fact that they have the same spectrum (see [4], [15]).

In Section 2 the Dirichlet and Neumann Problems are introduced and an important
known results is discussed. The aforementioned differential operators are intro-
duced in Section 3, and their properties are explored. In Section 5 these results are
reviewed with some concluding remarks.

2. Background and Elementary Results

Explicit solutions using elementary functions only exist for four two-dimensional
domains: the rectangle and the three special triangles ((π6 ,

π
3 ,

π
2 ), (π4 ,

π
4 ,

π
2 ), and

(π3 ,
π
3 ,

π
3 )) [13]. Thus, for regular polygons, only the triangle and square admit

explicit solutions. For other regular polygons it is known that the ground state
(lowest eigenvalue) solution is not analytic in a neighborhood of the vertices, and
only estimates are known for the energy of the ground state solution [1], [11].

While there are many beautiful results that hold for more general domains, we
will make the most use of a theorem attributed to Lamé, using the statement (and
referring the reader to the proof) given in reference [3]

Theorem 1 (Lamé) . Suppose that T (x, y) is a solution to the Helmholtz equation
which can be represented by the trigonometric series

T (x, y) =
∑
i

(
Ai sin(λix+ µiy + αi) +Bi cos(λix+ µiy + βi)

)
(2)

with λ2i + µ2i = k2. Then

1. T (x, y) is antisymmetric about any line along which it vanishes

2. T (x, y) is symmetric about any line along which its normal derivative, ∂T∂ν ,
vanishes.

The reason this result is so valuable to the current work is that it interprets a nodal
line as a line of anti-symmetry and an anti-nodal line as a line of symmetry. This
correspondence with symmetry will become central in our treatment.
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In particular, this is why we will focus on the Dirichlet and Neumann Problem.
For the Dirichlet Problem, a solution must vanish on the boundary. In light of
Theorem 1, this means that the solutions are antisymmetric across the boundary.
For the Neumann Problem, the solutions must have the normal derivative vanish
along the boundary. Once again, by Theorem 1, this means that the solutions are
symmetric across the boundary.

In addition to understanding the boundary conditions as either symmetric or anti-
symmetric, we can also decompose any solution into an even and odd part. For
concreteness, we will draw our triangle with vertices at the roots of unity. With
this choice made, we will now be able to conclude that a function which is even in
y is orthogonal to one which is odd in y.

3. Symmetric Differential Operators

Now that the boundary conditions have been reinterpreted as symmetry conditions
across the boundary, it is time to introduce the Differential Operators that will
transform these symmetries.

Θs =

(
∂3

∂y3
− 3

∂3

∂y∂x2

)
, Θb =

(
∂3

∂x3
− 3

∂3

∂y2∂x

)
. (3)

These operators are closely related, and can also be identified as follows:(
∂

∂x
+ i

∂

∂y

)3

= Θb − iΘs. (4)

To see how these operators transform the various symmetries we have discussed,
consider the following results. Recall that our boundary is symmetric in the x axis,
so any solution can be decomposed into solutions which are even or odd in y.

Theorem 2. Let f be a solution to either the Dirichlet or Neumann Problem which
is even (or odd) in y. Then Θsf is an orthogonal solution with the same eigenvalue
and boundary condition.

Proof: Note that the operator Θs has an odd number of partial derivatives with
respect to y, so the symmetry in y will switch making the transformed solution or-
thogonal to the given one. The linearity of∇2 and Θs, along with using Clairaut’s
Theorem to commute the partial derivatives, shows that Θsf has the same eigen-
value as f . The final thing to show is that the boundary conditions are satisfied.
We will do this by demonstrating an alternate formulation of Θs. Consider ∂3

∂y3
as
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the third directional derivative in the y-direction. Add to this the analogous third
directional derivatives parallel to the other two sides and an interesting relationship
emerges

(
∂

∂y

)3

+

(√
3

2

∂

∂x
− 1

2

∂

∂y

)3

+

(
−
√

3

2

∂

∂x
− 1

2

∂

∂y

)3

=
3

4
Θs. (5)

By Theorem 1, the symmetry of f across the boundary is equivalent to the bound-
ary condition (Dirichlet is Odd, Neumann is Even). Because of the symmetric way
in which Θs was constructed, expanding Θs in local coordinates we see that there
are an even number of partial derivatives with respect to the normal direction (ν),
so the symmetry (and therefore the boundary condition) is preserved. �

Note that it is possible that Θsf is trivial, which is necessarily the case when f is
non-degenerate. Additionally, since the triangle can be used to tessellate the plane
under reflections, each solution admits a family of solutions obtained through a
linear transformation of the coordinates. We will refer to these related solutions as
harmonics.

Corollary 3. For a solution f to either the Dirichlet or Neumann Problem, if
Θsf = 0 then f is either the ground state or one of its harmonics.

Proof: By Courant’s Nodal Line Theorem [6], we know that the ground state must
be non-degenerate. From Theorem 2 we must have that Θsf = 0. Furthermore,
since Θsf = 0 is a local condition, we would expect all the harmonics of the
ground state to vanish as well. Indeed, using this additional constraint, we can now
solve for the ground state and its harmonics directly. Let f be a non-degenerate
solution which satisfies the equations

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
f(x, y) = 0 (6)(

∂3

∂y3
− 3

∂3

∂y∂x2

)
f(x, y) = 0 (7)

when (x, y) ∈ int(∆). Using equation (6) we can eliminate partial derivatives with
respect to x from Equation (7) to obtain(

4
∂3

∂y3
+ 3k2

∂

∂y

)
f(x, y) = 0. (8)

Treating this as an ODE and assuming a linear combination of separable solutions,
one can use elementary techniques to find the general form of the solution. Fitting
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the boundary conditions yields a novel derivation of these special solutions which
agree with previously published solutions ([7], [3], [4]). �

The operator Θs has now been demonstrated to transform the symmetry in y, so
the resulting solution will be orthogonal to the given one. Next consider the other
symmetric differential operator, Θb.

Theorem 4. Let f be a solution to the Helmholtz equation.

1. If f is a solution to the Dirichlet Problem, then Θbf is a solution to the
Neumann Problem.

2. If f is a solution to the Neumann Problem, then Θbf is a solution to the
Dirichlet Problem.

Proof: This proof is analogous to the one for Theorem 2 except we must think of
Θb as being related to the sum of the third directional derivatives taken perpendicu-
lar to each side. This results in a change from one boundary condition to the other,
but otherwise preserves the eigenvalue and symmetry of the solution. �

While these theorems demonstrate that Θs and Θb have great potential to shed
light on these problems, we do not yet have confirmation that if we start with a
non-trivial solution, the transformed solution is also non-trivial. To the contrary,
we have seen in Corollary 3 there is a class of solutions which do become trivial.

In order to investigate this further, we will make use of the explicitly constructed
solutions to the Dirichlet and Neumann Problems as they are presented in refer-
ences [3] and [4]. For the Dirichlet Problem, we will denote the symmetric so-
lutions by Dm,n

1 and the anti-symmetric solutions by Dm,n
−1 . For the Neumann

Problem, we will denote the symmetric solutions by Nm,n
1 and the anti-symmetric

solutions by Nm,n
−1 . It is shown in these articles that these solutions are non-trivial

and degenerate for quantum numbers n > m > 0, and that the symmetric solutions
are non-zero for the additional case where m = n. Additionally

k2 =
4π2

27r2
(m2 +mn+ n2)

where r is the radius of the inscribed circle.
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Theorem 5. The following equations relate the solutions Dm,n
{1,−1} and Nm,n

{1,−1}.
For each equation, µ is either 1 or −1.

ΘsD
m,n
µ =

4π3µ
√

3

243r3
[(n−m)(2m+ n)(2n+m)]Dm,n

−µ (9)

ΘsN
m,n
µ =

4π3µ
√

3

243r3
[(n−m)(2m+ n)(2n+m)]Nm,n

−µ (10)

ΘbD
m,n
µ =

4π3

27r3
[m(m+ n)n]Nm,n

µ (11)

ΘbN
m,n
µ = − 4π3

27r3
[m(m+ n)n]Dm,n

µ . (12)

As such, any non-trivial solution transformed under the operators Θs and Θb re-
main non-trivial except under Θs when m = n. These exceptional cases are cov-
ered by Corollary 3.

Proof: Theorem 2 and Theorem 4 give us everything here except the coefficients.
These are obtained through direct computation. We also make use of Theorem 8.1
from both [3] and [4]. �

This theorem shows that Θb gives an explicit one-to-one correspondence between
solutions to the Dirichlet Problem and Neumann Problem. Considering Θs as an
operator from the solution space to itself, we have identified the kernel of this op-
erator (in Corollary 3) as the ground state solution along with its harmonics. When
the kernel is factored out, we are left with a graded involution on the remaining
solutions which provides additional structure to the solution space.

4. Additional Comments

In this sections we explore the natural origin of the operators Θs and Θb, as well as
a discussion about whether or not analogous operators may exist for other domains.

4.1. Origin of these Operators

In the context of the symmetry considerations above, it may be strange to some
that the use of Representation Theory has not been deployed. Indeed, considering
the action of the dihedral group D6 of order six on the vector space of solutions
to either the Dirichlet or Neumann Problem is rather useful. It is well known that
there are three irreducible representations: two one dimensional ones (the trivial
and sign representations), and a two dimensional representation. This two dimen-
sional irreducible representation is clearly a place where solutions are degenerate.
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However, we have gone beyond this and shown that all solutions from the sign
representation are also degenerate, a fact which representation theory alone does
not anticipate.

It is also worth noting that the operators Θs and Θb are actually representations of
the group D6. When acting on the ring R[ ∂∂x ,

∂
∂y ], Θs is the lowest order repre-

sentative of the sign representation. It is also interesting to note that the Lapalce
Operator is the lowest non-trivial representative of the trivial representation, and
that Θb is the second lowest non-trivial representative of the trivial representation.
As such, we can see the operators Θs and Θb are unique in this respect.

4.2. Other Domains

The success of the operators Θs and Θb for the equilateral triangle relied heavily
on various unique aspects of the equilateral triangle, and as such any analogous
operators for other domains do not likely exist.

Imagining another domain where this might work we would first need a polygo-
nal boundary in order to use Theorem 1. Secondly, the symmetry of the operator
needed to match the symmetry of the domain so that Theorem 1 could be deployed
to understand the transformed solution, which requires the domain to be a regular
polygon. Further, in order to change the symmetry and create (non-zero) solutions,
this symmetry must be odd. Even if we restrict ourselves to regular odd polygons,
the question of analyticity still presents a problem. This was a necessary piece
when verifying properties of the transformed boundary. To put to rest any hope
that this could still work, it has been well established through precise numerical
techniques that solutions of the sign representation in the regular polygon are often
(and possibly always) non-degenerate and that the Neumann and Dirichlet Condi-
tions do not admit solutions with equal energy [9].

5. Conclusion

In this paper, we used these differential operators to exploit the internal and bound-
ary symmetry of a solution to the Helmholtz equation within the equilateral trian-
gle. Doing so provided unique insight within both the Dirichlet and Neumann
Problems. Here, the differential operator Θs transformed a given solution to an
orthogonal one. Then we showed that this transformed solution is only zero for the
ground state and its harmonics, but otherwise was shown to be non-trivial.
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Alternatively, the operator Θb transformed only the boundary condition but other-
wise preserved the symmetry of the solution. It was shown that all non-trivial so-
lutions transformed by Θb remained non-trivial, thereby constructing a one-to-one
correspondence between the Dirichlet and Neumann Problem for the equilateral
triangle.

This pair of operators exist for reasons unique to the Equilateral triangle, and give
new understanding to the well-known solutions.
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