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Abstract. The purpose of this paper is to give a coordinate free pre-metric formu-

lation of charge free electrodynamics, appropriate, in our view, for non-linearization

of Maxwell equations in order to obtain pre-metric description of spatially finite

electromagnetic field objects of photon-like nature. First we introduce some formal

relations from multilinear algebra and differential geometry to be used further. Then

we recall and appropriately modify the existing pre-metric formulation of linear

charge free electrodynamics in pre-relativistic and relativistic forms as preparation

to turn to corresponding pre-metric non-linearization. Then after some preliminary

examples and notes on non-linearization, we motivate our view for existence and

explicit formulation of time stable subsystems of the physical objects considered.

Section 5 presents the formal results of our approach on the pre-metric nonlinear

formulations in static case, in time-dependent case, and in space-time formulation.

In the Conclusion we give our general view on “why and how to non-linearize”.
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1. Introduction

We start with some general remarks concerning our view on physical systems and

the necessary physical motivations when a theoretical model is meant to be ap-

propriately constructed. Appropriate here means that, the description of structure

and behavior must be based on the natural assumption that physical world demon-

strates itself through relatively stable objects, being able to survive, or to be de-

stroyed, during mutual interactions. Our knowledge about physical world comes

namely from this mutual interaction, no matter weather this interaction is direct,

or indirect. We should not equalize the concepts of explanation and description,

our view is that theoretical physics must explain any description of natural ob-

jects and processes. So, physical motivations should lead to explanation of the

description model built. Every built model must give: first, corresponding math-

ematical structure of the physical system studied, which includes constituents +
subsystems, second, mathematical images of the physical characteristics by means

of which the system considered demonstrates existence and participation among

the other systems. For example, it is one thing to model natural flows by vec-

tor fields, and another thing to calculate the exchanged energy-momentum be-

tween these flows. We may conclude that mathematical models should rather give

equations of balance of corresponding quantities, than equations that equalize the

mathematical images of the interacting systems. For example, Poynting’s equation

div(E × B) = − 1
2c

∂
∂t(E

2 + B2) is a balance relation, while Maxwell equation
1
c
∂E
∂t = curl B equalizes differentiated mathematical images of initial constituents.

Any physical system has spatial structure and shows definite stability properties,

so, it can support its existence and compensate in definite degree the external dis-

turbances through appropriate shape changes and kinematical behavior without

losing identity. Shortly speaking, its time existence is a dynamical process be-

ing strongly connected with various and continuous internal and external stress-

energy-momentum exchange processes. All these processes are real phenomena

and any attempt for their description should be based on appropriate mathematical

structures. Of course, all real changes during existence of a physical system also

must be formally identified with appropriate mathematical objects. Clearly, if we

are going to describe formally a real physical system together with all admissible
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changes, the corresponding mathematical images of the system, including its rec-

ognizable subsystems and all real changes, must have tensor nature in order not be

possible to be removed by coordinate transformations.

All these moments suggest to pay respect due to modern differential geometry

as appropriate mathematical language. In fact, the more than a century intensive

interaction between differential geometry and theoretical and mathematical physics

proved to be exclusively useful, suggestive and creative process.

The plan of the paper is the following.

First we introduce some formal relations from multilinear algebra and differential

geometry to be used further. Then in Section 3 we start the pre-metric approach in

the linear charge free electrodynamics in pre-relativistic and relativistic forms as

preparation to turn to corresponding pre-metric non-linearization. Section 4 gives

some preliminary examples and notes on non-linearization, and motivates our view

for existence and explicit formulation of time stable subsystems of the physical

objects considered. Section 5 considers nonlinearization: pre-metric formulation

in the static case, in time-dependent case, and in space-time formulation. In the

Conclusions we give our general view on “why and how to non-linearize”.

In the next section, to facilitate the reader, we are going to introduce the objects

and relations to be used further in the paper. Our basic mathematical object will be

an oriented manifold (M,ω) with appropriate dimension. The orientation defined

by ω will allow to compute integral characteristics of the objects considered on one

hand, and to make use of the Poincare isomorphisms between p-vector fields and

(dimM − p)-exterior forms. The two basic operators to use will be, of course, the

interior product iTα, where T is a p-vector, α is a q-form, p � q, and the exterior

derivative d: Λp(M) → Λp+1(M).

2. Some Formal Relations

Let E and E∗ be two dual real finite dimensional vector spaces. The duality be-

tween E and E∗ allows to distinguish the following well known (anti)derivation.

Let h ∈ E, then we obtain the derivation i(h), or ih, in Λ(E∗) of degree (−1)
(sometimes called substitution/contraction/insertion operator, interior product, al-

gebraic flow) according to [13]

i(h)(x∗1 ∧ · · · ∧ x∗p) =
p∑

i=1

(−1)(i−1)〈x∗i, h〉x∗1 ∧ · · · ∧ x̂∗i ∧ · · · ∧ x∗p.

Clearly, if u∗ ∈ Λp(E∗) and v∗ ∈ Λ(E∗) then

i(h)(u∗ ∧ v∗) = (i(h)u∗) ∧ v∗ + (−1)pu∗ ∧ i(h)v∗.
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Also, we get

i(h)u∗(x1, . . . , xp−1) = u∗(h, x1, . . . , xp−1)

i(x) ◦ i(y) = −i(y) ◦ i(x).

This antiderivation can be extended immediately to a mapping i(h1 ∧ · · · ∧ hp):

Λm(E∗) → Λ(m−p)(E∗), m � p, according to the rule

i(h1 ∧ h2 ∧ · · · ∧ hp)u
∗ = i(hp) ◦ · · · ◦ i(h1)u∗.

Note that this extended mapping is not an antiderivation, except for p = 1.

Clearly, this interior product may be used in “opposite direction”, i.e., if u∗ is

one-form, then

i(u∗)(h1 ∧ h2 ∧ ... ∧ hp) = 〈u∗, h1〉(h2 ∧ ... ∧ hn)− 〈u∗, h2〉(h1 ∧ h3 ∧ ... ∧ hp)

+ ... + (−1)(p−1)〈u∗, hp〉(h1 ∧ h2 ∧ ... ∧ hp−1).

This mapping is extended to multivectors and exterior forms which are linear com-

binations: if Ψ = Ψ1 + Ψ2 + ... is an arbitrary multivector on E and Φ =
Φ1 + Φ2 + ... is an arbitrary exterior form on E∗ then iΨΦ is defined as exten-

sion by linearity, e.g.

i(Ψ1 +Ψ2)(Φ
1 +Φ2) = i(Ψ1)Φ

1 + i(Ψ1)Φ
2 + i(Ψ2)Φ

1 + i(Ψ2)Φ
2.

The above extension of the interior product allows to extend the Lie derivative of a

differential form Φ along a vector field X to a derivative of Φ along a multivector

field T [22], according to the formula

LT (Φ) = d ◦ iTΦ− (−1)deg(T )iT ◦ dΦ. (1)

If LT (Φ) = 0 this extension allows to consider T as a local symmetry of Φ.

The specialization of these interior products for the cases i(Φ)ω and i(β)ω∗, where

Φ is a multivector, ω∗ = ε1 ∧ ε2 ∧ ... ∧ εn is a volume form in E∗, β is a p-form,

and ω = e1 ∧ e2 ∧ ... ∧ en is the volume form in E, dual to ω∗: 〈ω∗, ω〉 = 1,

is well known [13] and used in multilinear algebra and differential topology under

the name of Poincare isomorphisms, or Poincare dualities. In fact, we note that

the two spaces Λp(E) ⊗ Λn(E∗) and Λn−p(E∗) have the same dimension, so,

every nonzero ω ∈ Λn(E∗) generates isomorphism Dp, between these two spaces

according to (u, ω) → i(u)ω, where u ∈ Λp(E) is a p-vector over E. In particular,

if {ei} and {εj} are dual bases, the corresponding basis elements

eν1 ∧ · · · ∧ eνp , ν1 < ν2 < ... < νp
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and

ενp+1 ∧ · · · ∧ ενn , νp+1 < νp+2 < ... < νn

are connected according to the rule

Dp(eν1 ∧ · · · ∧ eνp) = (−1)σενp+1 ∧ · · · ∧ ενn , σ =

p∑
i=1

(νi − i).

Also

Dp(ε
ν1 ∧ · · · ∧ ενp) = (−1)σeνp+1 ∧ · · · ∧ eνn

Dp(ε
νp+1 ∧ · · · ∧ ενn) = (−1)p(n−p)+σeν1 ∧ · · · ∧ eνp .

Clearly, we have

i(eν1 ∧ · · · ∧ eνp)D
p(eν1 ∧ · · · ∧ eνp) = 0.

Also, we note that in this way every subspace V p ⊂ E leads to defining three other

spaces

(V p)∗ ⊂ E∗, Dp(V p) ⊂ E∗, Dp((V
p)∗) ⊂ E

where

E = V p ⊕ (Dp(V p))∗, E∗ = (V p)∗ ⊕Dp(V p).

We remind that these isomorphisms depend on the chosen element ω ∈ Λn(E∗),
but further in this section we shall omit writing ω for clarity.

These last two formulas allow to make use of any isomorphism between E and E∗

for defining isomorphisms Λp(E) ∼= Λn−p(E), and Λp(E∗) ∼= Λn−p(E∗). For

these isomorphisms and their duals

Dp : Λp(E) → Λn−p(E∗), (Dp)∗ : Λn−p(E) → Λp(E∗)

Dp : Λ
p(E∗) → Λn−p(E), (Dp)

∗ : Λn−p(E∗) → Λp(E)

the following relations also hold

(Dp)
∗ = (Dp)−1 = (−1)p(n−p)Dn−p, (Dp)∗ = (Dp)

−1 = (−1)p(n−p)Dn−p

Dn−p ◦Dp = (−1)p(n−p)id , Dn−p ◦Dp = (−1)p(n−p)id

where id denotes the corresponding identity map. So, up to a sign factor, Dp and

Dn−p are inverse linear isomorphisms. When T ∈ Λ(E) and Ψ ∈ Λ(E∗) are

represented by exterior products, for example: T = u ∧ v, Ψ = α ∧ β, and their

degrees are not given, then we denote Dp → D and Dp → D, and the following

relations hold

D(T ) = iv ◦ iuω, D(Ψ) = iβ ◦ iαω∗.
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We extend now these insertion operators in different direction. Let E1 and E2

be two real vector spaces with corresponding bases ei, i = 1, 2, ..., dimE1 and

kj , j = 1, 2, ..., dimE2, T = ti ⊗ ei be a E1-valued q-vector, Φ = αj ⊗ kj be

a E2-valued p-form with q ≤ p, and ϕ : E1 × E2 → F be a bilinear map into the

vector space F . Now we define iϕTΦ ∈ Λp−q(M,F )[9]

iϕTΦ = itiα
j ⊗ ϕ(ei, kj), i = 1, 2, ..., dim(E1), j = 1, 2, ..., dim(E2). (2)

Also, if T1, T2 are two multivectors and α, β are two forms then (i⊗i)T1⊗T2(α⊗β)
is defined by

(i⊗ i)T1⊗T2(α⊗ β) = iT1α⊗ iT2β.

We can define now the ϕ-extended Lie derivative. Let M be a n-dimensional

manifold, Φ be a E1-valued differential p−form on M , T ∈ Xq(M,E2) be a E2-

valued q-multivector field on M , with q ≤ p and ϕ: E1 × E2 → F be a bilinear

map. The ϕ-extended Lie derivative

Lϕ
T : Λp(M,E1)× Xq(M,E2) → Λp−q+1(M,F )

is defined as follows [9, p.53]

Lϕ
T (Φ) = d ◦ iϕTΦ− (−1)deg(T ). deg(d)iϕT ◦ dΦ (3)

where d is the exterior derivative on M , so, deg(d) = 1. This definition suggests

to consider the tensor field T as a local ϕ-symmetry of the differential form Φ
when Lϕ

T (Φ) = 0.

3. Pre-Metric Formulation in the Linear Case

Since we are not going to use metric tensors in the cases considered, for more

information, including history, analysis and citations, on the so-called pre-metric
formulation of electrodynamics, not only in the charge free case, the reader may

find in [5].

3.1. Pre-Relativistic Approach

Let X be a vector field on (R3, ω), where ω = dx ∧ dy ∧ dz is the usual volume

three-form on R
3. The usual interaction partners of any vector field X are the

differential forms α ∈ Λ(R3) on the same manifold since the generated by X flow

iXα across α may change α, i.e., iXα may be not zero: iXα 
= 0. In searching for

such a differential form partner, our vector field X finds only one that is specially
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indicated, the volume three-form ω. Now the following question arises: does this

flow iXω 
= 0 change from point to point? Formally this means whether the Lie

derivative LXω change from point to point along X , or not. For this Lie derivative

we obtain

LXω = d iXω + iXdω = d iXω = d(X1dy ∧ dz −X2dx ∧ dz +X3dx ∧ dy)

since dω = 0 by dimensional reasons. So, if this flow does not change from point

to point, i.e., LXω = 0, the two-form iXω must be closed: d iXω = 0. As is easily

verified, this means that the vector field X has zero divergence

d iXω =

(
∂X1

∂x
+

∂X2

∂y
+

∂X3

∂z

)
dx∧dy∧dz = (divX).ω = 0 → divX = 0.

We specially note that the two-form iXω is closed: d iXω = 0. Therefore, there

exists a class of one-forms α+ df such that, locally, we may write iXω = d(α+
df). We conclude

Every divergence-free vector field on (R3, ω) is naturally connected with some
differential one-forms.

Recalling now the two Maxwell equations div E = 0, div B = 0 we conclude also,

that these two vector fields (E,B) are intrinsically connected with corresponding

differential one-forms, and this connection does NOT require any metric tensor.

However, if the flows generated by E and B admit time-change although each of

them does not change the volume form ω? This question suggests to look more

carefully for other possible ways for mutual influence of the two flows generated

by E and B.

According to the above notations the two linearly independent vector fields (E,B)
appear together with their corresponding two-forms iEω and iBω. Moreover, the

equations div E = 0, div B = 0 require these two two-forms (iEω, iBω) to be

closed, and so - locally exact. We conclude that there must exist two one-forms α
and β satisfying the equations

iEω = dα, iBω = dβ, iEdα = 0, iBdβ = 0.

Another suggesting moment in this direction is the heavily used “curl” operator in

Maxwell equations. Making use of the mentioned Poincare isomorphisms between

p-forms and (n−p)-vectors on oriented manifolds, it is easily found that this “curl”
operator is strongly connected to the exterior derivative operator d, acting in the

graded algebra of differential forms. Explicitly, in the case of our manifold (R3, ω),
the restriction D of the Poincare isomorphism to differential two-forms of the kind
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dα, where α is arbitrary one-form, maps dα to a unique vector field of the kind

curl V
D(dα) = curlV or D(curl V) = dα

and the components of dα in the basis (dx ∧ dy, dx ∧ dz, dy ∧ dz) coincide with

the components of curl V in the basis
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
. Of course, most easily this

can be achieved if the components of α and the components of V are the same in

the corresponding dual bases (dx, dy, dz) ↔
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
.

Also, Poincare isomorphism generates two bivectors H̄ and K̄ according to

α = iH̄ω3, β = iK̄ω3.

All this suggests to look for realizable E ↔ B time-interaction making use of α
and β.

In Maxwell theory time is introduced as external to the coordinates (x, y, z) param-

eter, so, the time differentiation of tensor fields on R
3 does NOT change the tensor

nature of the object. It seems that iEω and iBω may have a chance to find their

corresponding “curl” partners paying appropriate respect to their own time deriva-

tives. This suggests to answer positively to the question do available non-zero time
derivatives of (E,B) find way for realization through the one-form partners. As

is well known, classical charge free electrodynamics, as represented by Maxwell

equations, gives a positive answer to this question. In our approach it looks as

follows.

The closed nature of iEω and iBω and the above consideration and notations allow

in the corresponding bases
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
and (dx∧ dy, dx∧ dz, dy ∧ dz) to write

down

D(curl E) = dα or D(dα) = curl E

and

D(curl B) = dβ or D(dβ) = curl B.

Now, in order to model mutual and time-realizable interaction between E and B
making help of α and β, Maxwell consistency condition requires

1

c

∂

∂t
iEω = dβ,

1

c

∂

∂t
iBω = −dα (4)

where c denotes an invariant constant velocity, characterizing the translational

propagation of the electromagnetic field object considered. Hence, equations (4)

formally introduce a kind of cross-connection between the divergence-free nature
of (E,B) and the external nature of their possible time dependence.
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So, the content of this positive answer physically means that time derivatives of

(E,B) interchange their one-form partners: a time change of E requires appropri-

ate local spatial change of the one-form partner β of B, and a time change of B
requires appropriate local spatial change of the one-form partner α of E. We note

that, from formal viewpoint, this partnership makes use of the invariant operator

exterior derivative, so the partnership is real, and the introduced cross-connection

of this reality with the corresponding time derivatives allows to consider the time

dependent electromagnetic field objects as real ones.

Recall now the concept of local helicity generated by any one-form η on R
3, it is

defined as the three-form η ∧ dη and carries information about the rotational prop-

erties of the flow generated by a divergence-free vector field X that is Euclidean

metric image of η : ηi = gijX
j , or Xi = gijηj , where g denotes the Euclidean

metric tensor on R
3. In fact, η ∧ dη = g(X, curlX)ω.

The above equations (4) determine time-partnership respectively between (E, β)
and between (B, α). This suggests to show appropriate respect to the correspond-

ing cross helicities, given by α ∧ dβ and β ∧ dα. From classical vector analysis

we have the relation

LE×Bω = (B.curl E− E.curl B)ω = div(E× B)ω.

The corresponding Poynting relation in Maxwell theory suggests now the follow-

ing. Since our field object will propagate in the three-space, then at the points

where the field functions are not zero at the moment t, generally speaking, there

must be expected time changes of the important local characteristics of the object

at these points. Trying to present these changes without making use of a metric,

we can make use of the above introduced cross helicities as follows

β ∧ dα− α ∧ dβ = −
(

∂

∂ξ

1

2
(〈α,E〉+ 〈β,B〉)

)
ω.

We form now the following (1, 1) tensor

T = α⊗ E + β ⊗ B− 1

2
(〈α,E〉+ 〈β,B〉)id TR3 .

Obviously, this tensor represents a metric-free analogue of Maxwell stress tensor.

A more careful look at T naturally sets the question “weather the two vector fields

E and B, which are constituents of T, define eigen directions of T at every point”.

The corresponding to this question equations read

iET = λ1.E, iBT = λ2.B.
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Since E and B are linearly independent, it is elementary to see that these two

relations hold only if

〈α,B〉 = 0, 〈β,E〉 = 0.

So, we have two more algebraic equations connecting (E,B) with (α, β).

Finally, the mutually dependent vector fields (E,B) define the bi-vector E∧B, and

a natural algebraic characteristic of the assumed dependence between (E,B) and

(α, β) appears to be the flow of of E∧B across the two-form α∧β. In view of the

above last relations for this flow we obtain

iE∧B(α ∧ β) = iB ◦ iE(α ∧ β) = 〈α,E〉〈β,B〉 − 〈α,B〉〈β,E〉 = 〈α,E〉〈β,B〉.
We may assume now the following way to relate this nonlinear flow with the linear

flow of E across α, given by 〈α,E〉, and of B across β, given by 〈β,B〉

iE∧B(α ∧ β) =

(〈α,E〉+ 〈β,B〉
2

)2

.

From these last two algebraic relations it will follow

〈α,E〉2 − 2〈α,E〉.〈β,B〉+ 〈β,B〉2 = (〈α,E〉 − 〈β,B)2 = 0

i.e., 〈α,E〉 = 〈β,B〉.

Remark 1. Considering the flow of E ∧ B across ω we get the one-form

θ = iE∧Bω.

Since iE∧B = iB ◦ iE, we get iEθ = iBθ = 0, therefore this one-form θ may
carry information about the integrability of the two-dimensional distribution Γ on
R
3 defined by E and B. It seems reasonable to admit that in some cases Γ may be

integrable which formally means that θ must satisfy the equation

dθ ∧ θ = 0

for example, when time stable and spatially finite solutions are under considera-
tion. In the considered linear case it is hard to believe that such solutions exist at
all, but let it be in sight.

In this way we have 11 equations for the 12 components of E,B, α, β. They read

LEω = 0, LBω = 0,
∂

∂ξ
iEω = dβ,

∂

∂ξ
iBω = −dα (5)

iET = λ1.E, iBT = λ2.B, 〈α,E〉 = 〈β,B〉, ξ = ct. (6)
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Note that equations (5) reduce to Maxwell equations if Ei = αi and Bi = βi,
i = 1, 2, 3, which is a particular case of our equations.

The above equations (5), (6) do not use any metric, so, this approach may represent

the nonrelativistic view on so called pre-metric formulation of charge free Maxwell

equations.

3.2. Relativistic Approach

The relativistic approach to electrodynamic phenomena is based on the assumption

that electromagnetic field objects propagate in free space with constant speed c,

where “constant” means “the same with respect to any reference frame”, i.e., with

respect to any free mass body. This brought the necessity to introduce the notion

that time-measuring depends on the reference frame with respect to which the time-

measuring system does not move. In this way the fourth coordinate ξ = ct, t is

the measured time interval, was introduced, the three-space R
3 was extended to

R
4, and the three-space volume form ω3 = dx ∧ dy ∧ dz was extended to four-

spacetime volume form ω

ω = ω3 ∧ dξ = dx ∧ dy ∧ dz ∧ dξ, dξ = cdt.

The above mentioned Maxwell consistency condition suggests the following exten-
sion of the two two-forms iEω3 and iBω3 to two spacetime two-forms

F = iBω3 + α ∧ dξ = B3 dx ∧ dy −B2 dx ∧ dz +B1 dy ∧ dz

+α1 dx ∧ dξ + α2 dy ∧ dξ + α3 dz ∧ dξ

G = iEω3 − β ∧ dξ = E3 dx ∧ dy − E2 dx ∧ dz + E1 dy ∧ dz

−β1 dx ∧ dξ − β2 dy ∧ dξ − β3 dz ∧ dξ.

Making use now of the new volume four-form ω, the corresponding bi-vector fields

F̄ and Ḡ are defined by

F = iḠ ω, G = −iF̄ ω.

Explicitly

F̄ = β3
∂

∂x
∧ ∂

∂y
−β2

∂

∂x
∧ ∂

∂z
+β1

∂

∂y
∧ ∂

∂z
−E1 ∂

∂x
∧ ∂

∂ξ
−E2 ∂

∂y
∧ ∂

∂ξ
−E3 ∂

∂z
∧ ∂

∂ξ

Ḡ = α3
∂

∂x
∧ ∂

∂y
−α2

∂

∂x
∧ ∂

∂z
+α1

∂

∂y
∧ ∂

∂z
+B1 ∂

∂x
∧ ∂

∂ξ
+B2 ∂

∂y
∧ ∂

∂ξ
+B3 ∂

∂z
∧ ∂

∂ξ
·
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The following relations hold

〈F, F̄ 〉 = 〈β,B〉 − 〈α,E〉, 〈G, Ḡ〉 = 〈α,E〉 − 〈β,B〉
〈F, Ḡ〉 = 2〈α,B〉, 〈G, F̄ 〉 = 2〈β,E〉

so, 〈F, F̄ 〉 = −〈G, Ḡ〉.
Now, since dω = 0, the mentioned extension of the Lie derivative (1) gives the

equations

LF̄ω = diF̄ω = −dG = 0, LḠω = diḠω = dF = 0 (7)

which reproduce equations (5) in a relativistic metric-free way, i.e., the two two-

forms F,G are closed: dF = 0, dG = 0. In other words, the flows of the bi-

vectors F̄ and Ḡ do NOT change the volume four-form ω.

But let us not forget that in our approach Ei 
= αi and Bi 
= βi in general, so,

equations (7) give maximum eight scalar equations for twelve scalar functions

(Ei, Bi, αi, βi) , while in the Maxwell approach this system is overdetermined

- eight scalar equations for the six scalar functions (Ei, Bi).

Let X be an arbitrary vector field on R
4 and θ be an arbitrary one-form on R

4.

We can form iXF = XσFσνdx
ν and iθF̄ = θσF̄

σν ∂
∂xν . The (1,1)-stress-energy-

momentum tensor T(F,G) now is defined as bilinear map in the following way

T(X, θ) = −1

2

(〈iXF, iθF̄ 〉+ 〈iXG, iθḠ〉) . (8)

Equivalently, if C2
2 is the contraction operator with respect to the second member,

then we have

T = −1

2

(
C2
2 (F ⊗ F̄ ) + C2

2 (G⊗ Ḡ)
)
.

In this way we get a relativistic pre-metric view on Maxwell charge-free equations,

as well as, on more general equations, containing as a particular class of solutions

all Maxwell solutions, and this is done without Minkowski pseudometric, or Hodge

“∗” (detailed comments see in [5]).

4. Preliminary Notes on Non-Linearization

Nonlinearizations of Maxwell charge free electrodynamics the reader may find in

[1-5, 6-9, 11, 12, 14-21]. Passing to nonlinear field equations we begin with two

appropriate examples [9, p.370-371, 10].

The examples consider the nonlinear equations defining the so called autoparallel
time-like and null vector fields with respect to a given connection, restricting to
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the simple case of Levi-Civita connection Γ = (Γσ
μν) on Minkowski space-time

(R4, η).

Recalling the definition of autoparallel vector field: ∇XX = 0, or iX∇X = 0, it

is interesting to note that this nonlinear system of equations admits (3+1)-soliton-

like, even spatially finite, solutions on Minkowski space-time.

In fact, in canonical coordinates (x1, x2, x3, x4) = (x, y, z, ξ = ct) we have Γσ
μν =

0, and let uμ = (0, 0,±v
cf, f) be the components of the time-like vector field

u, η(u, u) > 0, where 0 < v = const < c, and c is the velocity of light, so v
c < 1

and η(u, u) =
(
1− v2

c2

)
f2 > 0. Then every function f of the kind

f(x, y, z, ξ) = f
(
x, y, h.(z ∓ v

c
ξ)
)
, h = const, e.g. h =

1√
1− v2

c2

defines a solution.

If η(u, u) = 0 then the equations are equivalent to uμ(dη̃(u))μν = 0, where d
is the exterior derivative. In fact, since the connection used is Riemannian, we

have 0 = ∇μ
1
2(u

νuν) = uν∇μuν , so the relation uν∇νuμ − uν∇μuν = 0 holds

and is obviously equal to uμ(du)μν = 0. The soliton-like solution is defined by

uμ = (0, 0,±f, f) where the function f is of the form

f(x, y, z, ξ) = f(x, y, z ∓ ξ).

Clearly, for every autoparallel vector field u (or one-form u) there exists a canoni-

cal coordinate system on the Minkowski space-time, in which u takes such a simple

form: uμ = (0, 0, kf, f), k = const. The dependence of f on the three spatial co-

ordinates (x, y, z) is arbitrary , so it is allowed to be chosen soliton-like and, even,

spatially finite.

So, although the trajectories of these autoparallel vector fields are straight lines and

in this sense are naturally considered as appropriate description of free point-like

objects, the field nature of these vector fields deserves corresponding attention and

respect as a generator of (3+1)-spatially finite solutions. Moreover, these equations

suggest one possible way to find appropriate nonlinearization in other more com-

plex cases: having the mathematical image Φ of the physical object of interest and

its change ∇Φ, compute the flow F of Φ across ∇Φ, and put this flow equal to

zero. This means that the change ∇Φ is admissible for Φ, i.e., the physical object

considered appropriately changes under the action of external fields of different

nature in order to survive, and to stay recognizable as the same. Of course, if the

object considered consists of several interacting subsystems, then the external and

the mutual among the subsystems interaction has to be correspondingly identified
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and formally represented in order to get the right entire and complete picture of the

object’s appearance and behaviour.

In the frame of such approach we are going to non-linearize the charge free equa-

tions (7) in a pre-metric way, trying to build spatially finite image of a photon-like

object, consisting of two interacting subsystems, and the constituents of these two

subsystems to be formally represented by already introduced four fields (E,B;α, β).

Our first step to non-linearization considers the case, of course, of non-zero diver-
gences of E and B, i.e., diEω3 
= 0, diBω3 
= 0, in general, and available local
interaction between the flows generated by the two vector fields (E,B), not ignor-

ing, of course, the participation of their one-form companions (α, β). Note that, in

the linear case, the basic constituents of the situation were these four objects, and

no definite local time-stable subsystems created by them were defined and used.

Our view on available intrinsic interaction, i.e., local stress-energy-momentum ex-
change, inside an electromagnetic field object is based on the following presump-

tion.

Existence of recognizable time-stable subsystems of the object considered, which
subsystems are able to carry and exchange stress-energy-momentum, is required.

Therefore, our first step should be to formally identify and further recognize such

subsystems. Our approach is based on the hypothesis that the subsystems are just

two. As formal constituents of these two subsystems we choose the mathemati-

cal objects (E,B;α, β), where, as we mentioned, (E,B) are allowed now to have

NON-zero divergences, so, in general, iEdα 
= 0, iBdβ 
= 0, iEdβ 
= 0 and

iBdα 
= 0.

5. Pre-Metric Formulation in the Non-Linear Case

5.1. Static Case

In this case in order to follow the above given view, we consider defined on R
3

vector-valued objects, in terms of which the mathematical images of two sub-
systems will be created. Since we assume the subsystems to be two, our objects

will take values in a two-dimensional real vector space denoted further by V , and

equipped with a basis (e1, e2).

The first subsystem (Ω, Ω̄) consists of the following two V -valued objects

Ω = α⊗ e1 + β ⊗ e2, Ω̄ = E⊗ e1 + B⊗ e2. (9)

Recalling now that the two one-forms (α, β) have their bi-vector ω3-images H̄ and

K̄ according to α = iH̄ω3, β = iK̄ω3, we define the second subsystem (Σ, Σ̄) as
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follows

Σ = −iBω3 ⊗ e1 + iEω3 ⊗ e2, Σ̄ = −K̄ ⊗ e1 + H̄ ⊗ e2. (10)

Note that while Ω is V -valued one-form, Σ is V -valued two-form. Correspond-

ingly, Ω̄ is V -valued vector field, and Σ̄ is V -valued bi-vector field.

In this static situation, i.e., there are no running processes, any admissible stress-

energy exchange between the two subsystems should be realized as dynamical
stress equilibrium, i.e., it must have the following special property: any exchange

must be simultaneous and in equal quantities, otherwise the required static situa-

tion will be disturbed. Formally this means that any local stress-energy loss/gain
of (Ω, Ω̄) is simultaneously compensated by corresponding local stress-energy

gain/loss of (Σ, Σ̄), and vice versa. We could say that our two subsystems demon-

strate stable local stress equilibrium. These preliminary remarks suggest: such

stress-equilibrium situations need NOT available nonzero interaction stress-energy,

which corresponds to the Maxwell stress-energy tensor which does not contain in-

teraction stress-energy between the two constituents E and B: the full stress-energy

is the sum of the stress-energy carried by the two constituents

M i
j(E,B) = M i

j(E) +M i
j(B) =

(
EiEj − 1

2
E2δij

)
+
(
BiBj − 1

2
B2δij

)
=

1

2

(
EiEj + (iEω3)

ik (iEω3)kj +BiBj + (iBω3)
ik (iBω3)kj

)
.

The corresponding equations, defining local stress equilibrium, must represent the

following picture: each subsystem keeps locally its stress-energy and the possible

changes are mutually compensated. Assuming that these changes are real, their

corresponding formal expressions should have tensor nature, so, the most appro-

priate formal expressions seem to be given by dΩ and dΣ. The corresponding

flows should also pay respect to the vector-valued nature of the formal images of

the object’s subsystems. These specificities of the stress-energy exchange sug-

gest: the stress-energy balance between the two subsystems to make use of the

“∨”-extension (2) of the interior product as follows

i∨̄ΩdΩ = −i∨̄ΣdΣ. (11)

Our view is that equation (11) adequately corresponds to the fact that there is NO

interaction stress in M i
j(E,B): the whole stress should be carried by (Ω, Ω̄) and

(Σ, Σ̄), and the hidden “dynamical” aspect of this equilibrium is adequately rep-

resented by the “∨”-extension of the interior product. Recalling that diXω3 =
(divX)ω3 and the above notations: α = iH̄ω3 and β = iK̄ω3 from (11) we obtain

dΩ = dα⊗ e1 + dβ ⊗ e2, dΣ = −diBω3 ⊗ e1 + diEω3 ⊗ e2
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i∨̄ΩdΩ = iEdα⊗ e1 ∨ e1 + iBdβ ⊗ e2 ∨ e2 + (iEdβ + iBdα)⊗ e1 ∨ e2

i∨̄ΣdΣ = βdiv(B)⊗ e1 ∨ e1 + αdiv(E)⊗ e2 ∨ e2 − (βdivE + αdivE)⊗ e1 ∨ e2.

Hence, the balance relation (11) leads to the following three-vector, or, maximum,

nine-scalar equations

iEdα+ div(B)β = 0, iBdβ + div(E)α = 0

iEdβ + iBdα− div(E)β − div(B)α = 0.

The nonzero values of div E, div B, iEdα, iBdβ, iEdβ and iBdα provide possi-

ble interaction between the two subsystems formally represented by (Ω, Ω̄) and

(Σ, Σ̄), so, the two subsystems acquire status of interacting subsystems of a larger

stress-balanced system, i.e., being in the state of dynamical equilibrium.

5.2. Time Dependent Case

First we note that introducing time is considered here as a quantitative comparing

of the courses of two physically independent processes, the one of which we call

referent, e.g., the progress of appropriate watch, then the other one attains signifi-

cance of parameterized process.

Hence, we have to specially note that the time parameter t used in this subsection

we continue to consider as external to the spatial coordinates (x, y, z) parame-

ter, and the corresponding referent process must NOT influence the parameterized

process. The main formal consequence of this consideration is, as we mentioned

earlier, that time-derivatives do not change the tensor nature of the t-differentiated

object.

Naturally, from physical viewpoint, any observed time change of the above dis-

cussed stress balance in the static case should presume corresponding influence,

leading to its violation, and, of course, to violation of its formal representation -

relation (11). Physically it may be expected the electromagnetic field object de-

scribed to survive through some kind of time “pulsating” at the space points, or

through a propagation as a whole in the three-space, or, both. So: the local static
balance should be replaced by an appropriate intrinsically compatible local dy-
namical and time dependent balance. Hence, in order to survive, our object must

be able to generate appropriate spatial changes inside any spatial area that it occu-

pies at any moment of its existence.

To this time-dependence of the behaviour of our electromagnetic field object we

are going to give formal description by means of finding appropriate change of the

static balance equation (11).
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Equation (11) formally postulates equivalence between two vector valued one-

forms, so, any introduced influence object, representing how the new time-dependent

balance would look like, is expected, formally, also to be vector valued one-form,

containing appropriately first order (ξ = ct) - derivative(s) and valued in the same

vector space. This allows a natural return to the static balance equation through

setting this new object equal to zero.

Also, since the available spatial differential operators in (11) are just of first order,

it seems natural the corresponding formal influence object to contain time deriva-

tives of not higher than first order. Clearly, in view of the flow nature of the objects

across their own spatially differentiated objects in the static relation (11), the in-

fluence object is expected to express formally also a flow, but a flow across time
differentiated object. Moreover, it should be expected also this time dependence to

generate direct mutual influence between the two now time-dependent subsystems.

Finally, since time derivation must not change the tensor nature of the differenti-

ated object, and since Ω is one-form, then the two-form Σ is the natural candidate

to be ξ-differentiated, and the “∨”-flow of Ω̄ across the ξ-differentiated Σ will give

vector valued one-form, which naturally appears as appropriate formal measure of

the local stress-energy time exchange. So, we may write

i∨̄ΩdΩ + i∨̄ΣdΣ = i∨̄Ω
∂

∂ξ
Σ. (12)

This equation (12) gives the following three vector equations

iEdα+ (div B)β = −i( ∂B
∂ξ

∧E
)ω3

iBdβ + (div E)α = i( ∂E
∂ξ

∧B
)ω3

iEdβ + iBdα− (div E)β − (div B)α = i( ∂E
∂ξ

∧E
)ω3 − i( ∂B

∂ξ
∧B

)ω3.

5.3. Space-Time Representation

In the frame of the space-time view on physical processes the introduced vari-

able ξ = ct is no more independent on the choice of physical frames with respect

to which we introduce spatial coordinates and write down time-dependent formal

relations. Now ξ is considered as appropriate coordinate, it generates local coordi-

nate base vector ∂
∂ξ and corresponding co-vector (or one-form) dξ, 〈dξ, ∂

∂ξ 〉 = 1.

So, the three-volume ω3 = dx ∧ dy ∧ dz naturally extends to the four-volume

ω = dx ∧ dy ∧ dz ∧ dξ on R
4. Our purpose now is to find appropriate four-

dimensional balance law, suggested by the previous balance laws formally given

by equations (11) and (12).
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Recall our two basic objects: the vector valued differential one-form Ω = α⊗e1+
β ⊗ e2 and the vector valued differential two-form Σ = −iBω3 ⊗ e1 + iEω3 ⊗ e2,

been defined entirely in terms of objects previously introduced on R
3. We want

now these objects to depend on ξ as they depend on the spatial coordinates, so to

be appropriately extended to objects on R
4.

Now, the fourth dimension ξ generates the coordinate one-form dξ, so, the vector

valued one-form Ω turns to dξ for help to extend to a two-form on R
4, which is

done in the simplest way: Ω → Ω ∧ dξ. We are in position now to consider the

difference Ω ∧ dξ − Σ

Ω ∧ dξ − Σ = (α ∧ dξ)⊗ e1 + (β ∧ dξ)⊗ e2 + iBω3 ⊗ e1 − iEω3 ⊗ e2

= (iBω3 + α ∧ dξ)⊗ e1 − (iEω3 − β ∧ dξ)⊗ e2.

In this way we get two V -valued differential two-forms on R
4 naturally recognized

by the basis vectors (e1, e2) of the external vector spase V

F = iBω3 + α ∧ dξ and G = iEω3 − β ∧ dξ.

These two two-forms we consider further as vector components of one V -valued

two-form J
J = F ⊗ e1 +G⊗ e2.

In order to define corresponding flow, as we did it in previous subsections, we

have to construct J̄. The corresponding two-vectors F̄ and Ḡ are easily introduced

making use of the isomorphism between two-forms and two-vectors defined by the

volume four-form ω = dx ∧ dy ∧ dz ∧ dξ according to

G = −iF̄ω, F = iḠω : → J̄ = F̄ ⊗ e1 + Ḡ⊗ e2.

Making use of the mentioned ϕ-extension of the interior product (Section 1), we

turn now to the corresponding balance law, it reeds

i∨̄JdJ = 0 (13)

i.e., the “∨”-flow of J̄ across the change dJ of J does NOT lead to losses. It has to

be noted, that this balance law is written down without making use of(pseudo)metric,

the volume form ω serves sufficiently well. We obtain

i∨̄JdJ = i∨(F̄⊗e1+Ḡ⊗e2)
(dF ⊗ e1 + dG⊗ e2)

= iF̄dF ⊗ e1 ∨ e1 + iḠdG⊗ e2 ∨ e2 + (iF̄dG+ iḠdF )⊗ e1 ∨ e2 = 0.

So, equation (13) is equivalent to the following three equations

iF̄dF = 0, iḠdG = 0, iF̄dG+ iḠdF = 0. (14)
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We have here maximum 12 equations for the 12 components of (F,G).

We give now another form to equations (14) making use of the Poincare iso-

morphisms D and D, recalling: Dn−p ◦ Dp = (−1)p(n−p)id and Dn−p ◦ Dp =

(−1)p(n−p)id , also, the divergence operator δp = (−1)pDn−p+1 ◦d◦Dp. Clearly,

δp maps p-vector fields to (p− 1)-vector fields. Since in our case

G = −iF̄ω = −DF̄ , F = iḠω = DḠ

where F̄ and Ḡ are bi-vector fields, then δF̄ and δḠ will be just vector fields. In

this way we obtain

D(F̄ ∧ δḠ) = iδḠD(F̄ ) = iδḠ(iF̄ω) = iδḠ(−G) = D(δḠ ∧ F̄ ) = iF̄DδḠ

= iF̄D
1(−1)2D3 dD

2Ḡ = iF̄ (−id )dD2 Ḡ = −iF̄d(iḠω) = −iF̄dF.

So, iδḠG = iF̄dF . In the same way following the same line of transformations,

from D(F̄ ∧ δF̄ ), D(Ḡ ∧ δF̄ ), D(Ḡ ∧ δḠ) we obtain consecutively

iδF̄F = iḠdG, iδF̄G = −iF̄dG, iδḠF = −iḠdF.

Hence, equations (14) are equivalent to

iδḠG = 0, iδF̄F = 0, iδF̄G+ iδḠF = 0. (15)

Note that, from algebraic viewpoint, each of the two equations iδḠG = 0, iδF̄F =
0, represents a homogeneous algebraic system of equations for the components of

δḠ and δF̄ , which components in the both cases are just four. Since the nonlinear

solutions would require δḠ 
= 0 and δF̄ 
= 0, a nonzero nonlinear solution would

be possible only if det||(Fμν)|| = 0 and det||(Gμν)|| = 0, i.e., when 〈α,B〉 =
〈β,E〉 = 0, or, F ∧ F = 0, G ∧ G = 0. In the Minkowski metric case this

corresponds to Fμν(∗F )μν = 0, which means Euclidean orthogonality of E and B,
E.B = 0.

Summing up the above three equations (15) we obtain

i(δF̄+δḠ)(F +G) = 0

and since in the nonlinear case (δF̄ +δḠ) 
= 0 in general, we end up with equation

det|(F +G)μν | = 0, i.e.,

(F+G)∧(F+G) = F∧F+2F∧G+G∧G = 2F∧G = 2(〈α,E〉−〈β,B〉) = 0.

The two cases δF̄ = δḠ 
= 0 and δF̄ = −δḠ 
= 0 also require 〈α,E〉 = 〈β,B〉.
In the Minkowski metric case this is equivalent to FμνF

μν = 0, which in the

Euclidean metric terms means E2 = B2. Hence, in terms of Minkowski spacetime
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we can say: all nonlinear solutions require null nature of the bi-vector fields F̄ and

Ḡ, as well as null nature of the two-forms F = DḠ and G = −DF̄ .

Finally, we may say that all nonlinear solutions of (14) require i∨̄
J
J = 0, which

leads to L∨̄
J
J = 0.

The energy-momentum tensor looks the same as in the linear relativistic case (8).

Here we may approach the conservation aspects as follows. It should be clear that

the object considered has dynamical structure and propagates as a whole, so, the

local conservation aspects must be considered with respect to corresponding vec-

tor fields X , determining the corresponding internal processes and propagation as

a whole. Therefore, in order to find the corresponding to such a vector field X
conserved quantity, the stress-energy tensor (8) must be appropriately “projected”

along this vector field X . Hence, the quantity under consideration should locally

look like P = Xσ
T
μ
σ

∂
∂xμ · Since this vector field P must locally express corre-

sponding dynamical equilibrium with the media volume where our object exists

and propagates, the coordinate free mathematical image of such a property should

require the corresponding Lie derivative of the four-volume form ω with respect P
to be zero: LPω = 0. Now, since dω = 0, for this Lie derivative we obtain

LPω = diPω + iPdω = diPω = dD(P) = 0. (16)

The so obtained three-form D(P) is closed, and the corresponding to X locally

conserved quantity is explicitly represented, by restricting this three-form to the

three-space, we can integrate over the occupied by the object three-volume in order

to compute the integral value of this quantity, carried by the electromagnetic object

considered. Of course, this final equation (16) may be considered also as equation

for the vector field X when the solution entering the tensor T is explicitly used, so,

different solutions are not forbidden, in general, to have different local symmetries.

It deserves now noting the following. In this relativistic formulation, where classi-

cal absolute time becomes relative, the speed of light becomes absolute constant,

and general reference frames and arbitrary coordinates are allowed and used, we

may not stick rigidly to the traditional interpretation of the components of F and

G, i.e., each of the new constituents F and G has six components and that is all,

getting back to (E,B;α, β) will require special frames and coordinates.

The equations obtained suggest some connection with the concepts of absolute
and relative integral invariants of a vector field X on a manifold M introduced and

used by Cartan [4]. These are differential forms α ∈ Λ(M) satisfying respectively

the relations i(X)α = 0, i(X)dα = 0, leading to LXα = 0, and just i(X)dα = 0.

Our relations may be considered as corresponding extensions

a vector field → vector valued multivector field
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a differential form → vector valued differential form

and these extensions allow the mentioned in Section 2 extension of the Lie deriva-

tive of a differential form along multivector fields. The new moment in our ex-

tension is that we consider vector valued multivectors along which vector valued

forms to be differentiated with respect to some bilinear map ϕ: V ×V → W , where

W is appropriately determined vector space, and ϕ = ∨ in our case, which corre-

sponds to the specific kind of interaction between the two subsystems: absence of

non-zero interaction stress-energy.

In general, we note that, the triple (V,W ;ϕ) determines appropriate interaction

between the subsystems of the field object considered, which subsystems in our

considerations are formally represented by (F, F̄ ) and (G, Ḡ), without excluding

lower level interaction between their constituents (F, Ḡ,G, F̄ ).

6. Conclusions

From the general point of view, getting knowledge about the internal compatibility

and external stability of a physical object is being done by measuring the corre-

sponding to these physical appearances appropriate physical quantities. Such phys-

ical quantities may vary in admissible, or not admissible degree: in the first case

we talk about admissible changes, and in the second case we talk about changes

leading to destruction of the object. Formally, this is usually verified by calcu-

lating the flow of the formal image of the (sub)system considered through its ap-

propriately modelled change, as it is seen, e.g., in equations (11), (12), (13), i.e.,

by means of finding corresponding differential self flows of the subsystems, e.g.,

iF̄dF , and differential mutual flows, e.g., iF̄dG. Since every measuring process

requires stress-energy-momentum transferring between the object studied and the

measuring system, the role of finding corresponding tensor representatives of these

change-objects and of the corresponding flows is of serious importance. Therefore,

having adequate stress-energy-momentum tensor T for the considered case, the

clearly individualized nonlinear tensor members of its appropriate projections on

the corresponding vector fields X should represent qualitatively and quantitatively

important aspects of the intrinsic and extrinsic dynamical nature of the object con-

sidered. As for the volume form ω, it can always be locally represented as exterior

product of the coordinate one-forms (dx1, ..., dxn) which seems in good corre-

spondence with theoretical viewpoint for spatially finite nature of the majority of

physical objects.



22 Stoil Donev and Maria Tashkova

The existing knowledge about the structure and internal dynamics of free elec-

tromagnetic field objects made us assume the notion for two partner-fields inter-
nal structure. Each of these two partner-fields (F, F̄ ) and (G, Ḡ) has by con-

struction, at most, six independent scalar components, and each partner-field is

able to carry local stress-energy-momentum, allowing appropriate local energy-

“intercommunication”. The two subsystems realize local mutual energy exchange

without available interaction energy. Moreover, they strictly respect each other:

the exchange is simultaneous and in equal quantities, so, each of the two partner-

fields keeps its identity and recognizability. The corresponding internal dynamical

structure is quite appropriate for the translational-rotational aspects of the object’s

space-time propagation with the fundamental velocity. All Maxwell solutions are

duly respected. As it was shown [9], in the corresponding Minkowski space-time

consideration the new nonlinear solutions, i.e., those satisfying dF 
= 0, d∗F 
= 0,

are time-stable, they admit FINITE SPATIAL SUPPORT, and demonstrate compat-
ible translational-rotational dynamical structure.
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