
JGSP 39 (2015) 17–31

ON MKDV EQUATIONS RELATED TO THE AFFINE KAC-MOODY
ALGEBRA A

(2)
5

VLADIMIR S. GERDJIKOV, DIMITAR M. MLADENOV, ALEKSANDER A.

STEFANOV AND STANISLAV K. VARBEV

Communicated by Boris Konopeltchenko

Abstract. We have derived a new system of mKdV-type equations which can be

related to the affine Lie algebra A
(2)
5 . This system of partial differential equations

is integrable via the inverse scattering method. It admits a Hamiltonian formulation
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1. Introduction

The general theory of the nonlinear evolution equations (NLEE) allowing Lax rep-

resentation is well developed [1, 3, 6, 9, 10, 21]. In this paper our aim is to derive

a set of modified Korteveg–de Vries (mKdV) equations related to three affine Lie

algebras using the procedure introduced by Mikhailov [20]. This means that the

equations can be written as the commutativity condition of two ordinary differen-

tial operators of the type

Lψ ≡ i
∂ψ

∂x
+ U(x, t, λ)ψ = 0

Mψ ≡ i
∂ψ

∂t
+ V (x, t, λ)ψ = ψΓ(λ)

(1)

where U(x, t, λ), V (x, t, λ) and Γ(λ) are some polynomials of λ to be defined

below. We request also that the Lax pair (1) possesses appropriate reduction group

[20], for example if the reduction group is Zh (h is a positive number) the reduction

condition is

C
(
U(x, t, λ)

)
= U(x, t, ωλ), C

(
V (x, t, λ)

)
= V (x, t, ωλ). (2)
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This work can be considered as a continuation of our recent publications [11–13].

Below we consider the three cases separately. The underlying Kac-Moody algebras

areB
(1)
2 , A

(2)
4 , A

(2)
5 and the groups of reductions are correspondingly Z4, Z5×Z2,

Z5 × Z2. For the first two cases the Hamiltonians are well known [5]. A key

motivation for choosing this particular algebras is that the derived equations will

have very simple and elegant form.

Section 2 contains a derivation of the mKdV equations related to B
(1)
2 . We start

with the Lax representation which is a subject to Z4-reduction group [20], find

the equations and derive the corresponding Hamiltonians. Then using the Lax

representation which is a subject to Z5 × Z2-reduction group [20] we derive the

system of mKdV equations related to A
(2)
4 and finally derive the corresponding

Hamiltonians. In the next Section 3 we make the same procedure but this time

the algebra is A
(2)
5 . Section 4 is devoted to the spectral properties of Lax operator

for each algebra. Finally we relate this to the famous Riemann-Hilbert problem

(RHP). We finish with some discussion and conclusion.

2. Preliminaries

2.1. Equations Related to B(1)
2

We assume that the reader is familiar with the theory of semisimple Lie algebras

[18] and affine Lie algebras [4]. The rank of B
(1)
2 is 2, its Coxeter number is h = 4

and its exponents are 1, 3. Thus the Coxeter automorphism (see [11]) introduces a

grading in B
(1)
2 as follows

B
(1)
2 =

3
⊕
k=0

g(k). (3)

The grading condition holds

[
g(k), g(l)

]
⊂ g(k+l) (4)

where k + l is taken modulo four.

A convenient basis compatible with the grading of B
(1)
2 algebra is [11]

g(0) ≡ span{E+
11, E

+
22}, g(1) ≡ span{E+

12, E
+
23, E

+
41}

g(2) ≡ span{E+
13, E

+
31}, g(3) ≡ span{E+

21, E
+
32, E

+
14}

(5)

where we use

E±
ij = Ei,j ∓ S1E

T
ijS

−1
1 = Ei,j ∓ (−1)i+jE6−j,6−i. (6)
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In this Section Eij is a 5× 5 matrix equal to (Eij)n,p = δinδjp and

S1 = E15 − E24 + E33 − E42 + E51, S2
1 = 11 (7)

provides the action of the external automorphism of A4 � sl(5) related to the

symmetry of its Dynkin diagram [18]. Obviously all E+
ij belong to the subalgebra

B2 � so(5) of A4.

For deriving the equations we start with a Lax pair of the form (for details see [11])

L = i∂x +Q(x, t)− λJ

M = i∂t + V (0)(x, t) + λV (1)(x, t) + λ2V (2)(x, t)− λ3K
(8)

with

Q(x, t) =
i

2

(
u1(x, t)E

+
11 − u2(x, t)E

+
22

)
, J = E+

12 + E+
23 + E+

41

V (0)(x, t) = v
(0)
1 E+

11 + v
(0)
2 E+

22

V (1)(x, t) = v
(1)
1 E+

12 + v
(1)
2 E+

23 + v
(1)
3 E+

41

V (2)(x, t) = v
(2)
1 E+

13 + v
(2)
2 E+

31, K = 26(E+
21 + 2E+

32 + E+
14).

(9)

We require that [L,M ] = 0 for any λ. The condition [L,M ] = 0 leads to a set of

recurrent relations (see [1, 8, 16]) which allow us to determine V (k)(x, t) in terms

of the potential Q(x, t) and its x-derivatives.

After the transformation x �→ 2x and t→ 4t′ the equations become

∂u1
∂t

= 4
∂

∂x

(
−u31 + 3u22u1 − 4

∂2u1
∂x2

+ 6u1
∂u2
∂x

)

∂u2
∂t

= 4
∂

∂x

(
−u32 + 3u21u2 + 2

∂2u2
∂x2

− 6u1
∂u1
∂x

)
.

(10)

They can be written as Hamiltonian equations of motion

∂qi
∂t

=
∂

∂x

δH

δqi
(11)

with the Hamiltonian

H =−

∫ ∞

−∞
dx

(
u41+u

4
2−6u21u

2
2−8

(
∂u1
∂x

)2

+4

(
∂u2
∂x

)2

−12u21

(
∂u2
∂x

))
(12)

which coincides with the one in [5].
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2.2. Equations Related to A(2)
4

Similarly we treat theA
(2)
4 case. The rank of this algebra is two, its Coxeter number

is h = 10 and its exponents are 1, 3, 7, 9. Now the Coxeter automorphism is of

order 10 and introduces a grading in A
(2)
4 as follows

A
(2)
4 =

9
⊕
k=0

g(k). (13)

The grading condition holds

[
g(k), g(l)

]
⊂ g(k+l) (14)

where now k + l is taken mod10, [4, 5], see also [11].

A convenient basis compatible with the grading of B
(1)
2 algebra is [11]

g(0) ≡ span{E+
11, E

+
22}, g(1) ≡ span{E−

14, E
−
31, E

−
42}

g(2) ≡ span{E+
12, E

+
23}, g(3) ≡ span{E−

21, E
−
32, E

−
15}

g(4) ≡ span{E+
13, E

+
41}, g(5) ≡ span{E−

11 − E−
22, E

−
22 − E−

33}

g(6) ≡ span{E+
14, E

+
31}, g(7) ≡ span{E−

12, E
−
23, E

−
51}

g(8) ≡ span{E+
21, E

+
32}, g(9) ≡ span{E−

13, E
−
41, E

−
24}

(15)

where we have used the basis (6) generated by the same matrix S1 (7).

The relevant Lax pair is of the form (for details see [11])

L = i∂x +Q(x, t)− λJ

M = i∂t + V (0)(x, t) + λV (1)(x, t) + λ2V (2)(x, t)− λ3K
(16)

with

Q(x, t) = iu2(x, t)E
+
11 − iu1(x, t)E

+
22, J = E−

14 + E−
31 + E−

42

V (0)(x, t) = v
(0)
1 E+

11 + v
(0)
2 E+

22

V (1)(x, t) = v
(1)
1 E−

14 + v
(1)
2 E−

31 + v
(1)
3 E−

42

V (2)(x, t) = v
(2)
1 E+

12 + v
(2)
2 E+

23, K = 20(E−
21 − 2E−

32 + E−
15).

(17)

We continue analogously. The condition [L,M ] = 0 leads to a set of recurrent

relations (see [1, 8, 16]) which allow us to determine V (k)(x, t) in terms of the

potential Q(x, t) and its x-derivatives.



On MKdV Equations Related to the Affine Kac-Moody Algebra A
(2)

5
21

After the transformation x �→ 2x the equations are

∂u1
∂t

= −2
∂

∂x

(
3
∂2u2
∂x2

+
∂2u1
∂x2

+ (3u2 + 6u1)
∂u2
∂x

+ 3u22u1 − 2u31

)

∂u2
∂t

= −2
∂

∂x

(
4
∂2u2
∂x2

+ 3
∂2u1
∂x2

− (6u1 + 3u2)
∂u1
∂x

+ 3u21u2 − 2u32

)
.

(18)

The Hamiltonian formulation follows from (11) and we find for H [5]

H =

∫ ∞

−∞
dx

(
u41 + u42 − 3u21u

2
2 + 4

(
∂u2
∂x

)2

+

(
∂u1
∂x

)2

(19)

+3u22

(
∂u1
∂x

)
− 6u21

(
∂u2
∂x

)
+ 6

(
∂u1
∂x

)(
∂u2
∂x

))
.

3. Derivation of the Equations Related to A
(2)
5

Now we consider the twisted affine Kac-Moody algebraA
(2)
5 case. Its rank is three,

the Coxeter number is h = 10 and its exponents are 1, 3, 5, 7, 9, see [4, 5]. Then

the Coxeter automorphism is given by

C(X) = C2V (X)C−1
2 (20)

where V is the external automorphism of the algebra A5 � sl(6) generated by

the symmetry of its Dynkin diagram and C2 is an element of the Cartan subgroup

defined below. More precisely

V (X) = −S2X
TS−1

2 , S2 = E1,6 − E2,5 + E3,4 − E4,3 + E5,2 − E6,1. (21)

Note that in this Section the matrices Ekj are 6 × 6 matrices equal to (Ek,j)np =
δknδjp, besides S2

2 = −11.

In analogy with the previous Section we introduce

E±
ij = Ei,j ∓ S2E

T
ijS

−1
2 = Ei,j ∓ (−1)i+jE7−j,7−i (22)

which obviously satisfy

V (E+
ij ) = E+

ij , V (E−
ij ) = −E−

ij . (23)

It is easy to check that E+
ij provide a basis for the subalgebra sp(6) of A

(2)
5 . The

Cartan subgroup element C2 is defined by

C2 = diag (1, ω, ω2, ω3, ω4, 1). (24)
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The basis is as follows

g(0) ≡ span{E+
11, E

+
22, E

+
33}, g(1) ≡ span{E+

21, E
+
32, E

+
43, E

−
15}

g(2) ≡ span{E+
31, E

+
42, E

−
14}, g(3) ≡ span{E+

14, E
+
25, E

−
13, E

−
24}

g(4) ≡ span{E+
51, E

−
12, E

−
23}, g(5) ≡ span{E+

16, E
+
61, E

−
33 − E−

11, E
−
33 − E−

22}

g(6) ≡ span{E+
15, E

−
21, E

−
32}, g(7) ≡ span{E+

41, E
+
52, E

−
31, E

−
42} (25)

g(8) ≡ span{E+
13, E

+
24, E

−
41}, g(9) ≡ span{E+

12, E
+
23, E

+
34, E

−
51}.

The grading condition is like always

[
g(k), g(l)

]
⊂ g(k+l) (26)

where k + l is taken modulo 10.

We take a Lax pair of the form

L = i∂x +Q(x, t)− λJ

M = i∂t + V (0)(x, t) + λV (1)(x, t) + λ2V (2)(x, t)− λ3K
(27)

where

Q(x, t) ∈ g(0), V (k)(x, t) ∈ g(k), K ∈ g(3), J ∈ g(1). (28)

This means

Q(x, t) = i
3∑

j=1

qj(x, t)E
+
jj , J = E+

21 + E+
32 +

1

2
E+
43 +

1

2
E−
15

V (0)(x, t) =
3∑

j=1

v
(0)
j E+

jj

V (1)(x, t) = v
(1)
1 E+

21 + v
(1)
2 E+

32 +
1

2
v
(1)
3 E+

43 +
1

2
v
(1)
4 E−

15

V (2)(x, t) = −v
(2)
1 E+

31 − v
(2)
1 E+

42 −
1

2
v
(2)
3 E−

14, K = bJ3.

(29)

The condition [L,M ] = 0 leads to a set of recurrent relations (see [1, 8, 16])

which allow us to determine V (k)(x, t) in terms of the potential Q(x, t) and its

x-derivatives. For V (2)(x, t) we find, skipping the details, the result

v
(2)
1 = −ib(q1 + q2 + q3), v

(2)
2 = −ibq2, v

(2)
3 = −ib(q1 − q2 − q3).
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For V (1)(x, t) we find

v
(1)
1 = 2b

(
q1q2 −

∂q1
∂x

)
+ f

v
(1)
2 = b

(
q23 − q21 + q1q2 + q2q3 +

∂

∂x
(q3 + q2 − q1)

)
+ f

v
(1)
3 = b

(
q23 − q22 − q21 + q1q2 +

∂

∂x
(q3 + 2q2 − q1)

)
+ f

v
(1)
4 = f

(30)

where f(x, t) is some arbitrary function. Using a well known technique from the

theory of recursion operators [1, 9, 16] we find from the equations for V (0)(x, t)
also f(x, t)

f =
b

5

(
2q22 + 2q21 − 3q23 − 5q1q2 +

∂

∂x
(5q1 − 4q2 − 3q3)

)
(31)

and

v
(0)
1 =

ib

5

(
−5

∂2q1
∂x2

+ 3q1
∂

∂x
(3q2 + q3)− 2q31 + 3q1(q

2
2 + q23)

)

v
(0)
2 =

ib

5

(
∂2

∂x2
(4q2 + 3q3) + 3q2

∂q3
∂x

− 9q1
∂q1
∂x

+ 6q3
∂q3
∂x

− 2q32 + 3q2(q
2
1 + q23)

)

v
(0)
3 =

ib

5

(
∂2

∂x2
(q3 + 3q2)− 6q3

∂q2
∂x

− 3q1
∂q1
∂x

− 3q2
∂q2
∂x

− 2q33 + 3q3(q
2
1 + q22)

)
.

And finally, the λ-independent terms in the Lax representation provide the equa-
tions

α
∂q1
∂t

=
∂

∂x

(
−5

∂2q1
∂x2

+ 3q1
∂

∂x
(3q2 + q3)− 2q31 + 3q1(q

2
2 + q23

)

α
∂q2
∂t

=
∂

∂x

(
∂2

∂x2
(4q2 + 3q3) + 3q2

∂q3
∂x

− 9q1
∂q1
∂x

+ 6q3
∂q3
∂x

− 2q32 + 3q2(q
2
1 + q23)

)

α
∂q3
∂t

=
∂

∂x

(
∂2

∂x2
(q3 + 3q2)− 6q3

∂q2
∂x

− 3q1
∂q1
∂x

− 3q2
∂q2
∂x

− 2q33 + 3q3(q
2
1 + q22)

)

where α =
5

b
·

We find for the corresponding Hamiltonian (11)

H =
1

α

∫
∞

−∞

dx

(
−1

2

3∑
i=1

q4i +
3

2

3∑
i=1

3∑
j=1

i<j

q2i q
2
j +

5

2

(
∂q1
∂x

)2

− 2

(
∂q2
∂x

)2

− 1

2

(
∂q3
∂x

)2

(32)

+
∂q2
∂x

(
9

2
q21 − 3q23

)
+

3

2

∂q3
∂x

(q21 + q22)− 3

(
∂q2
∂x

)(
∂q3
∂x

))
.
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4. On the Spectral Properties of the Lax Operators

4.1. General Theory

Here we will outline the general approach of constructing the fundamental analytic

solutions (FAS) of the Lax operators L with deep reductions [2,7,14–16]. Next we

will detail these results for the three different Lax operators considered above.

Our first remark is about the fact, that after a simple similarity transformation,

which diagonalizes the relevant matrix J , each of the above Lax operators will

take the form

L̃ ≡ i
∂χ̃

∂x
+ (Q̃(x, t)− λJ̃)χ̃(x, t, λ) = 0 (33)

where J̃ is a diagonal matrix with complex eigenvalues.

The main ingredient needed for solving the direct and the inverse scattering prob-

lem of L̃ are the Jost solutions.

It is well known that the Lax operators of the form (33) with generic complex-

valued J allow Jost solutions only for potentials on compact support [2]. An im-

portant theorem proved by Beals and Coifman [2] states that any smooth potential

Q̃(x, t) can be approximated with an arbitrary precision by a potential on finite

support. Then one can introduce the Jost solutions by

lim
x→−∞

φ̃−(x, t, λ)e
iJλx = 11, lim

x→∞
φ̃+(x, t, λ)e

iJλx = 11. (34)

Then the scattering matrix is introduced by

T (λ, t) =
̂̃
φ+(x, t, λ)φ̃−(x, t, λ) (35)

where by “hat” we denote matrix inverse.

The next step of [2] was to prove that one can construct piece-wise FAS χ̃ν(x, t, λ)
which allows analytic extension in a certain sector Ων in the complex λ-plane.

These results were generalized to any simple Lie algebra in [7, 14]. The result

is that sector Ων has as boundaries the rays starting from the origin lν−1 and lν ,

see the Figures below. The rays lν are determined by the solution of the linear

equations

�λα(J̃) = 0. (36)

In what follows we will outline the construction of FAS for the operator L which

is defined by

L ≡ i
∂ξ

∂x
+ Q̃(x, t)ξ(x, t, λ)− λ[J̃ , ξ(x, t, λ)] = 0. (37)
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Obviously the fundamental solutions of L̃ and L are related by

ξ±(x, t, λ) = φ̃±(x, t, λ)e
iλJ̃x. (38)

The Jost solutions ξ±(x, t, λ) must satisfy Volterra type integral equations

ξ+(x, t, λ) = 11 + i

∫ x

∞
dy e−iλJ̃(x−y)Q(y, t)ξ+(y, t, λ)e

iλJ̃(x−y)

ξ−(x, t, λ) = 11 + i

∫ x

∞
dy e−iλJ̃(x−y)Q(y, t)ξ−(y, t, λ)e

iλJ̃(x−y).

(39)

Let us now formulate the basic properties of ξν(x, t, λ) – the FAS of L:

1. The continuous spectrum of L fills up the rays lν .

2. Due to the Zh symmetry the rays lν close angles equal to π/2h or π/h
depending on the choice of the algebra.

3. To each ray lν we associate a subset of roots δν of g which satisfy the con-

dition (36). Thus to each ray lν we associate a subalgebra gν ⊂ g generated

by Eα, E−α, Hα for α ∈ δν .

4. In each of the sectors Ων we can calculate the limits for x→ ±∞ along the

lines lν , more specifically

lim
x→−∞

e−iλJxξν(x, t, λ)e
iλJx = S+

ν (t, λ), λ ∈ lνe
+i0

lim
x→∞

e−iλJxξν(x, t, λ)e
iλJx = T−

ν (t, λ)D+
ν (λ)

(40)

and

lim
x→−∞

e−iλJxξν(x, t, λ)e
iλJx = S−

ν+1(t, λ), λ ∈ lν+1e
−i0

lim
x→−∞

e−iλJxξν(x, t, λ)e
iλJx = T+

ν+1(t, λ)D
−
ν+1(λ)

(41)

where S±
ν , T±

ν and D±
ν are given by

S±
ν (λ, t) = exp

( ∑
α∈δν

s±α (λ, t)E±α

)
, D±

ν (λ) = exp
( ∑

α∈δν

d±ν,αHα

)

(42)
T±
ν (λ, t) = exp

( ∑
α∈δν

t±ν,α(λ, t)E±α

)
.

Obviously they take values in the subgroup Gν whose Lie algebra gν has as

positive roots the subset of roots related to lν , see the Table 1.
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5. The time-dependence of S±
ν , T±

ν and D±
ν is determined by the M operator

as

i
∂S±

ν

∂t
− λ3[K,S±

ν (λ, t)] = 0, i
∂D±

ν

∂t
= 0

i
∂T±

ν

∂t
− λ3[K,T±

ν (λ, t)] = 0

(43)

where K determines the leading term of the M -operator.

6. The asymptotics S±
0 , T±

0 and D±
0 and S±

1 , T±
1 and D±

1 can be considered as

independent. All the others are obtained from them by the Zh symmetry

S±
2ν(λ) = Cν(S±

0 (λω
ν), S±

2ν+1(λ) = Cν(S±
1 (λω

ν)

T±
2ν(λ) = Cν(T±

0 (λων), T±
2ν+1(λ) = Cν(T±

1 (λων)

D±
2ν(λ) = Cν(D±

0 (λω
ν), D±

2ν+1(λ) = Cν(D±
1 (λω

ν).

(44)

As a consequence of the above properties we prove the following lemma, which

generalizes the results of Zakharov and Shabat [22] for this type of algebras.

Lemma 1. 1. The FAS ξν(x, t, λ) of L are solutions of the RHP

ξν+1(x, t, λ) = ξν(x, t, λ)Gν(x, λ), Gν(x, λ) = e−iλJxŜ−
ν+1S

+
ν+1e

iλJx

which allows canonical normalization

lim
λ→∞

ξν(x, t, λ) = 11. (45)

2. The corresponding potential Q̃(x, t) is reconstructed from ξν(x, t, λ) by

Q̃(x, t) = lim
λ→∞

λ
(
J̃ − ξν(x, t, λ)J̃ ξ̂ν(x, t, λ)

)
(46)

where ξν(x, t, λ) is the unique regular solution of the RHP (1), [7, 15, 21].

Proof: 1) follows easily from equations (40), (41) and from the fact, that the FAS

is determined uniquely by its asymptotic for x→ ±∞.

2) follows from the fact that ξν(x, t, λ) is a fundamental solution of L. Multi-

ply equation (37) by ξ̂ν(x, t, λ) on the right, take the limit λ → ∞ and use the

canonical normalization (45).

�

We will formulate the specific properties for the three algebras independently.
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Figure 1. The continuous spectrum and the analyticity sectors of the FAS

for the Lax operators: the case of B
(1)
2 – left panel; the case of A

(2)
4 – right

panel.

Table 1. Subsets of positive roots related to the lines lν ∪ lν+4, ν = 0, . . . , 3

for the algebra B
(1)
2 .

l0 ∪ l4 l1 ∪ l5 l2 ∪ l6 l3 ∪ l7
e1 e1 − e2 e2 e1 + e2

4.2. B(1)
2

Here h = 4 and J̃ =
√
2 diag (1, i, 0,−i,−1). The rays lν are defined by lν :

arg λ = νπ/4, thus they close angles π/4. The sectors Ων , ν = 0, . . . , 7 are

shown on Figure 1, left panel. The set of roots δν related to each lν are given in

Table 1.

4.3. A(2)
4

Similarly for A
(2)
4 we have h = 10 and J̃ = diag (ω, ω3,−1, ω−3, ω−1) with ω =

exp(2πi/10). The rays lν are defined by lν : arg λ = (2ν + 1)π/10, ν = 0, . . . , 9,
thus they close angles π/5. The sectors Ων , ν = 0, . . . , 9 are shown in Fig. 1, right

panel. The set of roots δν related to each lν are given in Table 2.

Table 2. Subsets of positive roots related to the lines lν ∪ lν+5 ν = 0, . . . , 4

for the algebra A
(2)
4 .

l0 ∪ l5 l1 ∪ l6 l2 ∪ l7 l3 ∪ l8 l4 ∪ l9
e1 − e2, e3 − e5 e2 − e5, e3 − e4 e1 − e5, e2 − e4 e1 − e4, e2 − e3 e1 − e3, e4 − e5
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Figure 2. The continuous spectrum and the analyticity sectors of the FAS for

the Lax operators for the case of A
(2)
5 .

Table 3. Subsets of positive roots related to the lines lν ∪ lν+10, ν = 0, . . . , 9

for the algebra A
(2)
5 .

l0 ∪ l10 l1 ∪ l11 l2 ∪ l12 l3 ∪ l13 l4 ∪ l14
e1 − e6 e1 − e3, e4 − e5 e3 − e6 e1 − e2, e3 − e5 e5 − e6

l5 ∪ l15 l6 ∪ l16 l7 ∪ l17 l8 ∪ l18 l9 ∪ l19
e2 − e5, e3 − e4 e2 − e6 e1 − e5, e2 − e4 e4 − e6 e1 − e4, e2 − e3

4.4. A(2)
5

For A
(2)
5 we also have h = 10 but now J̃ = diag (ω, ω3,−1, ω−3, ω−1) with ω =

exp(2πi/10). The rays lν now are defined by lν : arg λ = νπ/10, ν = 0, . . . , 19,
thus they close angles π/10. The sectors Ων , ν = 0, . . . , 19 are shown on Fig. 2.

The set of roots δν related to each lν are given in Table 3.

We end this Section by the following lemma

Lemma 2. Each of the subalgebras gν related to the ray lν is a direct sum of sl(2)
subalgebras.

Proof: Let us prove our lemma for the algebra A
(2)
5 . First we consider the sub-

algebras g0 and g1 related to the rays l0 and l1. From Table 3 we find that the

algebra g0 is generated by Eα, E−α and Hα, where α takes the values e1 − e4,

e2 − e3 and e5 − e6. These three roots are mutually orthogonal, which means that

g0 ≡ sl(2) ⊕ sl(2) ⊕ sl(2). Similarly, the algebra g1 is generated by Eβ , E−β

and Hβ , where β takes the values e1 − e3 and e4 − e6, which are orthogonal to

each other. Therefore g1 ≡ sl(2)⊕ sl(2). Next we use the Zr+1 symmetry, which
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in particular means that the set of the roots δν related to the ray lν by the Coxeter

transformation C as follows

δ2ν = Cν(δ0), δ2ν+1 = Cν(δ1). (47)

It remains to use the fact that the Coxeter transformation is an orthogonal transfor-

mation of the space of roots, so it obviously preserves the angles between any two

roots.

The other cases are proved analogously. �

5. Discussion and Conclusion

We have derived several systems of equations which are related to the affine Kac-

Moody algebrasB
(1)
2 , A

(2)
4 andA

(2)
5 respectively. They admit a Lax representation

and can be solved using Inverse scattering method. We also outlined the spectral

properties of their Lax operators and formulated the corresponding RHP. This can

be used to derive their soliton solutions via the dressing Zakharov-Shabat method.

Lemma 2 can be used to prove the complete integrability of these mKdV equa-

tions. One can also develop the spectral theory of the relevant recursion operators

following the ideas of [7, 16, 17, 19] which can be used as a ground for uniform

deriving of all fundamental properties of the NLEE.

Acknowledgments

The work is partially supported by the ICTP – SEENET-MTP project PRJ-09. One

of us (VSG) is grateful to professor A. Sorin for useful discussions during his visit

to JINR, Dubna, Russia under project 01-3-1116-2014/2018.

References

[1] Ablowitz M., Kaup D., Newell A. and Segur H., The Inverse Scattering Trans-
form – Fourier Analysis for Nonlinear Problems, Studies in Appl. Math. 53
(1974) 249-315.

[2] Beals R. and Coifman R., Inverse Scattering and Evolution Equations, Com-

mun. Pure Appl. Math. 38 (1985) 29-42.

[3] Calogero F. and Degasperis A., Spectral Transform and Solitons vol. I, North

Holland, Amsterdam 1982.



30 Vladimir Gerdjikov, Dimitar Mladenov, Aleksander Stefanov and Stanislav Varbev

[4] Carter R., Lie Algebras of Finite and Affine Type, Cambridge University Press,

Cambridge 2005.

[5] Drinfel’d V. and Sokolov V., Lie Algebras and Equations of Korteweg - de
Vries Type, Sov. J. Math. 30 (1985) 1975-2036.

[6] Faddeev L. and Takhtadjan L., Hamiltonian Methods in the Theory of Soli-
tons, Springer, Berlin 1987.

[7] Gerdjikov V., Algebraic and Analytic Aspects of N -wave Type Equations,

Contemporary Mathematics 301 (2002) 35-68.

[8] Gerdjikov V., Derivative Nonlinear Schrödinger Equations with ZN and DN -
Reductions, Romanian Journal of Physics 58 (2013) 573-582.

[9] Gerdjikov V., Generalised Fourier Transforms for the Soliton Equations.
Gauge Covariant Formulation, Inverse Problems 2 (1986) 51-74.

[10] Gerdjikov V. and Kulish P., The Generating Operator for the n × n Linear
System, Physica D 3 (1981) 549-564.

[11] Gerdjikov V., Mladenov D., Stefanov A. and Varbev S., MKdV-Type of Equa-

tions Related to B(1)
2 and A(2)

4 Algebra, In: Nonlinear Mathematical Physics

and Natural Hazards, Springer Proceedings in Physics 163, B. Aneva and M.

Kouteva-Guentcheva (Eds), Springer, Berlin 2014, pp 59-69.

[12] Gerdjikov V., Mladenov D., Stefanov A. and Varbev S., MKdV-Type of Equa-
tions Related to sl(N,C) Algebra, In: Mathematics in Industry, A. Slavova

(Ed), Cambridge Scholar Publishing, Cambridge 2014, pp 335-344.

[13] Gerdjikov V., Mladenov D., Stefanov A. and Varbev S., On a One-Parameter
Family of mKdV Equations Related to the so(8) Lie Algebra, In: Mathemat-

ics in Industry, A. Slavova (Ed), Cambridge Scholar Publishing, Cambridge

2014, pp 345-354.

[14] Gerdjikov V. and Yanovski A., CBC Systems with Mikhailov Reductions by
Coxeter Automorphism. I, Spectral Theory of the Recursion Operators, Stud-

ies in Applied Mathematics (In press) (2014), doi: 10.1111/sapm.12065.

[15] Gerdjikov V. and Yanovski A., Completeness of the Eigenfunctions for the
Caudrey-Beals-Coifman System, J. Math. Phys. 35 (1994) 3687-3725.

[16] Gerdjikov V. and Yanovski A., On Soliton Equations with Zh and Dh Reduc-
tions: Conservation Laws and Generating Operators, J. Geom. Symmetry

Phys. 31 (2013) 57-92.

[17] Gürses M., Karasu A. and Sokolov V., On Construction of Recursion Opera-
tors from Lax Representation, J. Math. Phys. 40 (1999) 6473-6490.

[18] Helgasson S., Differential Geometry, Lie Groups and Symmetric Spaces, Aca-

demic Press, New York 1978.



On MKdV Equations Related to the Affine Kac-Moody Algebra A
(2)

5
31

[19] Konopelchenko B., Hamiltonian Structure of the Integrable Equations Under

Matrix ZN -Reduction, Lett. Math. Phys. 6 (1982) 309-314.

[20] Mikhailov A., The Reduction Problem and the Inverse Scattering Problem,

Physica D 3 (1981) 73-117.

[21] Novikov S., Manakov S., Pitaevskii L. and Zakharov V., Theory of Solitons:

The Inverse Scattering Method, Plenum, New York 1984.

[22] Zakharov V. and Shabat A., Exact Theory of Two-Dimensional Self-Focusing
and One-Dimensional Self-Modulation of Waves in Nonlinear Media, Soviet

Physics-JETP 34 (1972) 62-69.

Received 15 May 2015

Vladimir S. Gerdjikov

Institute of Nuclear Research and Nuclear Energy

Bulgarian Academy of Sciences

72 Tzarigradsko chaussee

Sofia 1784, BULGARIA

E-mail address: gerjikov@inrne.bas.bg

Dimitar M. Mladenov

Theoretical Physics Department, Faculty of Physics

Sofia University “St. Kliment Ohridski”

5 James Bourchier Blvd, 1164 Sofia, BULGARIA

E-mail address:dimitar.mladenov@phys.uni-sofia.bg

Aleksander A. Stefanov

Theoretical Physics Department, Faculty of Physics

Sofia University “St. Kliment Ohridski”

5 James Bourchier Blvd, 1164 Sofia, BULGARIA

E-mail address: astefanov@phys.uni-sofia.bg

Stanislav K. Varbev

Theoretical Physics Department, Faculty of Physics

Sofia University “St. Kliment Ohridski”

5 James Bourchier Blvd, 1164 Sofia, BULGARIA

E-mail address: stanislavvarbev@phys.uni-sofia.bg


