
JGSP 39 (2015) 1–16

ON REFLECTIONS AND ROTATIONS IN MINKOWSKI 3-SPACE
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Abstract. In this paper, we investigate the reflections in Minkowski three-space by

three different approaches. Firstly, we define Lorentzian reflections with Lorentzian

inner product. Then, we examine Lorentzian reflections in view of Lorentzian

Householder matrices. Finally, we use pure split quaternions to derive Lorentzian

reflections. For each case, we find the matrix representation of Lorentzian reflec-

tions and characterize the plane of reflection by using this matrix representation.

Moreover, we prove that any Lorentzian orthogonal transformation can be repre-

sented by the composition of at most six reflections.
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1. Introduction

In the Euclidean space, a reflection is an isometry with a hyperplane as a set of

fixed points. This set is called the axis (in dimension two) or plane (in dimension

three) of reflection. The image of a figure by a reflection is its mirror image in

the axis or plane of reflection. A reflection along a subspace in R
n maintains the

perpendicular distance from this subspace and its orthogonal complement. And

orthogonal complement of this subspace separates the initial and reflected vectors.

Thus the components of the initial vector orthogonal to the subspace along which

the reflection occurs remain unchanged.

A reflection in R
n can be represented by an n × n symmetric orthogonal matrix

with determinant -1 and eigenvalues (1, 1, 1, ... 1, -1). The product of two such

matrices is a special orthogonal matrix which represents a rotation. Every rotation

is the result of reflecting in an even number of reflections in hyperplanes through

the origin. Thus, the reflections generate orthogonal groups and this result is known

as the Cartan–Dieudonné theorem. In [3], answers of the following two frequently

asked questions are handled:

Question 1. In how many ways can an orthogonal transformation in an n-dimensi-
onal Euclidean space be decomposed?
Question 2. What are the simple reflections that determine a given orthogonal
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transformation in R
n? Or, in particular “What Householder matrices determine a

given orthogonal matrix in R
n?”

Moreover, a constructive proof of the Cartan Theorem is provided with the relation-

ship of Pythagorean numbers by using Clifford algebras. Then, simple reflections

or rotations of canonical vectors are used to generate all Pythagorean vectors and a

method is developed to generate the generalized Pythagorean numbers in [4]. On

the other hand, some geometrical properties of the Phyagorean quadruples and the

rational decomposition of rotations are discussed in [1], and an algorithmic proof of

the Cartan-Dieudonné Theorem for spaces with arbitrary signature is given in [9].

Then, Clifford algebras is used to compute the factorization of a given orthogonal

transformation as a product of reflections with respect to hyperplanes.

In [6], rotational matrices in Minkowski three-space are generated with unit time-

like split quaternions. The geometry of Minkowski four space, which is also called

Minkowski space-time, is investigated in more depth in [5]. The eigenvalues and

eigenvector of a Lorentzian rotation matrix are examined in term of the coefficients

of the corresponding quaternion in [8]. Moreover, the characterizations of eigen-

values (complex or real) of a Lorentzian rotation matrix is also given according to

only first component of the corresponding unit timelike quaternion in [8].

This paper is concerned with the reflections and rotations in Minkowski three-

space. Firstly, we investigate the Lorentzian reflections by three different ap-

proaches. Firstly, we examine Lorentzian reflections with Lorentzian inner prod-

uct. Then, we express Lorentzian reflections in view of Lorentzian Householder

matrices. Finally, we use pure split quaternions to derive Lorentzian reflections.

For each case, we find the matrix representation of the Lorentzian reflections and

characterize the plane of reflection by using this matrix representation. Moreover,

we prove that any Lorentzian orthogonal transformation can be represented by the

composition of at most six reflections.

2. Preliminaries

In this part, a brief summary of Minkowski three-space and the split quaternions is

presented to provide the necessary background.

The Minkowski three-space is a Euclidean three-space, E3, equipped with Lorentzian

inner product

〈u,v〉
L
= −u1v1 + u2v2 + u3v3
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where u = (u1, u2, u3), v = (v1, v2, v3) ∈ E
3
1. The norm of the vector u ∈ E

3
1 is

defined by

‖u‖ =
√
|〈u,u〉

L
|.

Lorentzian inner product characterizes the elements u = (u1, u2, u3) of E
3
1 as

follows:

if εu = 〈u,u〉
L
> 0 or u = 0 then u is called spacelike

if εu = 〈u,u〉
L
< 0 then u is called timelike

if εu = 〈u,u〉
L
= 0 and u �= 0 then u is called lightlike or null.

Proposition 1. Let u and v be two non null vectors in E
3
1 such that εu = εv. Then

the following properties are satisfied:

i) (u− v) ⊥L (u+ v)

ii) At least one of the vectors (u− v) and (u+ v) is a non null vector.

Proof: Suppose that u and v are two non null vectors in E
3
1 such that εu = εv.

i)

〈u+ v,u− v〉
L
= εu + 〈u,v〉

L
− 〈u,v〉

L
− εv = 0.

This means that (u− v) ⊥L (u+ v).

ii) We know that

εu+v = 〈u+ v,u+ v〉
L
= 2(εu + 〈u,v〉

L
)

εu−v = 〈u− v,u− v〉
L
= 2(εu − 〈u,v〉

L
).

Using these relations, we have

εu+v + εu−v = 4εu = 4εv �= 0.

Thus, we get (u− v) or (u+ v) is a non null vector. �

For any R ∈ M3×3(R), if 〈Ru, Ru〉
L

= 〈u,u〉
L

for all vectors u ∈ E
3
1, then

R is called a semi orthogonal matrix. That is, semi orthogonal matrices preserve

the length of vectors in the Minkowski three-space and columns (or rows) of a

semi orthogonal matrix form an orthonormal base of E3
1. Moreover, R is a semi

orthogonal matrix if and only if I∗RtI∗ = R−1 where Rt is transpose of the

matrix R and

I∗ =

⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ .
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So, R is a semi orthogonal matrix if and only if RtI∗R = I∗. Taking the deter-

minant of both sides of this equation gives det (R) = ±1. If detR = 1, then R is

called Lorentzian rotation matrix in E
3
1. The set of the Lorentzian rotation matrices

of E3
1 can be expressed as follows

SO (1, 2) = {R ∈ M3×3 (R) ; R
tI∗R = I∗, detR = 1}.

On the other hand, for any A ∈ M3×3(R), if A satisfies the equality I∗AtI∗ = A,
then A is called a semi symmetric matrix in Minkowski three-space. In general, a

semi symmetric matrix A can be in the following form

A =

⎡
⎣ a11 a12 a13
−a12 a22 a23
−a13 a23 a33

⎤
⎦ .

Notice that, the above matrix A satisfies the equality I∗AtI∗ = A. If detA = −1,
then A is called Lorentzian reflection matrix in E

3
1.

The set of split quaternions, which was introduced by James Cockle in 1849 [2],

can be represented as quadrupoles

Ĥ = {q = q0 + q1i + q2j + q3k ; q0, q1, q2, q3 ∈ R}.

Here the imaginary units satisfy the following relations

i2 = −1, j2 = k2 = ijk = 1

ij = −ji = k, jk = −kj = −i, ki = −ik = j.

Unlike quaternion algebra, the set of split quaternions contains zero divisors, nilpo-

tent elements and nontrivial idempotents [7]. For any q = q0+q1i+q2j+q3k ∈ Ĥ,

we define scalar part of q as Sq = q0, vector part of q as Vq = q1i + q2j + q3k
and conjugate of q as q = Sq − Vq = q0 − q1i − q2j − q3k. If Sq = 0, then q is

called pure split quaternion. And any pure split quaternion q = q1i + q2j + q3k
can be represented as q = (q1, q2, q3). Furthermore, any pure split quaternion can

be considered as a vector in E
3
1. That is the set of pure split quaternions is iden-

tified with Minkowski three-space. The sum and product of two split quaternions

p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k are defined as

p+ q = Sp + Sq + Vp + Vq

= (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k

pq = SpSq + 〈Vp, Vq〉L + SpVq + SqVp + Vp ×L Vq

= (p0q0 − p1q1 + p2q2 + p3q3) + (p1q0 + p0q1 − p2q3 + p3q2)i

+ (p0q2 + p2q0 − p1q3 + p3q1)j + (p0q3 + p3q0 − p2q1 + p1q2)k
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respectively. Here ×L denotes the Lorentzian vector product defined as follows

Vp ×L Vq =

∣∣∣∣∣∣
−i j k
p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣ .

The term Iq = qq = qq = q20 + q21 − q22 − q23 characterizes any split quaternion

q. The split quaternion q is called spacelike, timelike or null, if Iq < 0, Iq > 0 or

Iq = 0, respectively. And the norm of q is defined as

Nq =
√
|Iq| =

√∣∣q20 + q21 − q22 − q23
∣∣.

If Nq = 1, then q is called unit split quaternion. If Iq �= 0, then q−1 =
q

Iq
[7, 8].

3. Lorentzian Reflections

In this part, we investigate the reflections in Minkowski three-space by three differ-

ent approach. Firstly, we define Lorentzian reflections with Lorentzian inner prod-

uct. Then, we examine Lorentzian reflections in view of Lorentzian Householder

matrices. Finally, we use pure split quaternions to derive Lorentzian reflections.

3.1. Reflections by Lorentzian Inner Product

Let us define a simple reflection in Minkowski three-space by using Lorentzian in-

ner product. Consider the orthogonal complement (plane) of the vector x, defined

by

x
⊥ =

{
y ∈ E

3
1 ; 〈x,y〉

L
= 0

}
.

For any nonzero and collinear vectors x and y in E
3
1. The projection of a vector y

onto x
⊥ is y − rx where r ∈ R is chosen such that y − rx ∈ x

⊥. That is

〈y − rx,x〉
L
= 0 =⇒ r =

〈x,y〉
L

εx

where x is non null and εx = 〈x,x〉
L
. In this way, the reflection of y through the

plane x
⊥ is called a simple reflection and is given by

ϕx(y) = y − 2rx = y − 2
〈x,y〉

L

εx
x.
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It is essential to note that if y ∈ x
⊥, then ϕx(y) = y. This means ϕx acts as iden-

tity map on the plane x
⊥. Now, let us show that the inverse of a simple reflection

is areflection as well, that is for any y ∈ E
3
1, we have

ϕx(ϕx(y)) = ϕx(y − 2rx) = y − 2rx− 2
〈x,y − 2rx〉

L

εx
x

= y − 2rx− 2
〈x,y〉

L
− 2r 〈x,x〉

L

εx
x = y − 2rx− 2rx+ 4rx = y.

Moreover, ϕx is an orthogonal transformation. Since

‖ϕx(y)‖
2 = 〈y − 2rx,y − 2rx〉

L
= 〈y,y〉

L
− 4r 〈x,y〉

L
+ 4r2 〈x,x〉

L

= 〈y,y〉
L
−

4r

εx
(〈x,y〉

L
)2 +

4r

εx
(〈x,x〉

L
)2 = 〈y,y〉

L
= ‖y‖2 .

Theorem 2. For any two non null vectors u and v in E
3
1, such that u �= v and

εu = εv, there exists a unique Lorentzian reflection or rotation such that ϕ(u) =
v.

Proof: Let u and v be two non null different vectors in E
3
1 such that εu = εv.

Consider the map ϕ : E3
1 → E

3
1 defined as

ϕ (x) =

⎧⎨
⎩

ϕu(x) if v = −u

ϕu−v(x) if v �= −u and (u− v) is non null

−ϕu+v(x) if v �= −u and (u− v) is null.
(1)

If v = −u, then

ϕ(u) = ϕu(u) = u− 2
〈u,u〉

L

〈u,u〉
L

u = u− 2u = −u = v.

If v �= −u and (u− v) is a non null vector, then

ϕ(u) = ϕu−v(u) = u− 2
〈u,u− v〉

L

〈u− v,u− v〉
L

(u− v)

= u− 2
〈u,u〉

L
− 〈u,v〉

L

2(〈u,u〉
L
− 〈u,v〉

L
)
(u− v) = u− (u− v) = v.

If v �= −u and (u− v) is a null vector, then

ϕ(u) = −ϕu+v(u) = −u+ 2
〈u,u+ v〉

L

〈u+ v,u+ v〉
L

(u+ v)

= −u+ 2
〈u,u〉

L
+ 〈u,v〉

L

2(〈u,u〉
L
+ 〈u,v〉

L
)
(u+ v) = −u+ (u+ v) = v.
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By above discussions and construction of the map ϕ, the simple reflection or rota-

tion is unique such that ϕ(u) = v.

�

Remark 3. The case u = v is special. Any plane that contains the vector a
determines a simple reflection that satisfies ϕ(u) = u. Therefore, in general, there
are infinitely many different simple reflections that leave u fixed. For this reason,
in the remainder of this paper, for the case u = v we will take ϕ as the identity
operator instead of taking a simple reflection.

Theorem 4. The matrix representation of Lorentzian reflection ϕx through the hy-
perplane x

⊥ is obtained as follows

ϕx =
1

εx

⎡
⎣ x21 + x22 + x23 −2x1x2 −2x1x3

2x1x2 −x21 − x22 + x23 −2x2x3
2x1x3 −2x2x3 −x21 + x22 − x23

⎤
⎦

where x = (x1, x2, x3).

Proof: Let {e1, e2, e3} be the standard basis of E3
1 and x = (x1, x2, x3). Then we

have

ϕx(e1) = e1 − 2
〈x, e1〉L

εx
x = (1 + 2

x21
εx

, 2x1
x2
εx

, 2x1
x3
εx

)

ϕx(e2) = e2 − 2
〈x, e2〉L

εx
x = (−2x1

x2
εx

, 1− 2
x22
εx

,−2x2
x3
εx

)

ϕx(e2) = e3 − 2
〈x, e3〉L

εx
x = (−2x1

x3
εx

,−2x2
x3
εx

, 1− 2
x23
εx

).

So we get the matrix representation of the Lorentzian reflection as started above.

�

Notice that the matrix ϕx has determinant −1 and satisfies the relation I∗ϕxI
∗ =

ϕt
x

. And the Lorentzian reflection ϕx through the hyperplane x
⊥ has the set of

eigenvalues {−1, 1, 1} with the corresponding eigenvectors

{(x1, x2, x3), (x2, x1, 0), (x3, 0, x1)}.

In other words, the plane of reflection can be determined by the eigenvector of the

Lorentzian reflection matrix corresponding to the eigenvalue −1.



8 Melek Erdoğdu and Mustafa Özdemİr

3.2. Reflections by Lorentzian Householder Transformation

Let I be 3 × 3 identity matrix and I∗ = diag{−1, 1, 1}. The Lorentzian House-

holder transformation associated with the non null vector x =(x1, x2, x3) ∈ E
3
1 is

defined as

Hx = I −
2

εx
xx

tI∗ ≡ ϕx.

It can be easily seen that Lorentzian Householder transformation Hx has the fol-

lowing properties:

• it is semi symmetric: I∗HxI
∗ = Ht

• it is semi orthogonal: I∗H−1
x

I∗ = Ht

• hence it is involutory: H2
x
= I.

Moreover, Hx has the set of eigenvalues {−1, 1, 1} with the corresponding eigen-

vectors {(x1, x2, x3), (x2, x1, 0), (x3, 0, x1)}, respectively. The determinant of

Hx is −1, since the determinant of a matrix is the product of its eigenvalues.

Therefore, Lorentzian Householder transformation Hx represents the Lorentzian

reflection where the hyperplane of the reflection is x
⊥. The reflection of a point

u ∈E3
1 about this hyperplane is

Hx(u) = u−
2

εx
xx

tI∗u.

Theorem 5. For any two non null vectors u and v in E
3
1, such that u �= v and εu =

εv, there exists a unique Lorentzian Householder transformation or composition
of two Householder transformation H such that H(u) = v.

Proof: Let u and v be two non null different vectors in E
3
1 such that εu = εv.

Consider the map H : E3
1 → E

3
1 defined as

H (x) =

⎧⎨
⎩

Hu(x) if v = −u

Hu−v(x) if v �= −u and (u− v) is non null

−Hu+v(x) if v �= −u and (u− v) is null.
(2)

Then, if v = −u, then

H(u) = Hu(u) = u−
2

εu
uu

tI∗u = u−
2

εu
u(εu) = −u = v.
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If v �= −u and (u− v) is a non null vector, then we get

H(u) = Hu−v(u) = u−
2

εu−v

(u− v)(u− v)tI∗u

= u−
2 〈u,u〉

L
− 〈u,v〉

L

2(〈u,u〉
L
− 〈u,v〉

L
)
(u− v) = u− (u− v) = v

by using the identities utI∗u = v
tI∗v =εu=εv and u

tI∗v = v
tI∗u = 〈u,v〉

L
.

If v �= −u and (u− v) is a null vector, then we obtain

H(u) = −Hu+v(u) = −u+
2

εu+v

(u+ v)(u+ v)tI∗u

= −u+
2(〈u,u〉

L
+ 〈u,v〉

L
)

2(〈u,u〉
L
+ 〈u,v〉

L
)
(u+ v) = −u+ (u+ v) = v.

By above discussions and construction of the map H, the Lorentzian Householder

transformation H is unique such that H(u) = v. �

3.3. Lorentzian Reflections by Pure Split Quaternions

Let us define a simple reflection in Minkowski three-space by pure split quaternion.

The set of pure split quaternions is denoted by

ImĤ = {q = q1i + q2j + q3k ∈ H}.

Since ImĤ is identified with Minkowski three-space, then any x = x1i + x2j +

x3k ∈ImĤ can be considered as a vector x = (x1, x2, x3) ∈ E
3
1. Now, consider

the linear transformation

φx : ImĤ → ImĤ, u → φx(u) = −
1

x2
xux

where x is a non null pure split quaternion. Let i = (1, 0, 0), j = (0, 1, 0), k =
(0, 0, 1) be the standard basis of E3

1. Then we have

φx(i) =
1

x2
(
(x21 + x22 + x23)i + (2x1x2)j + (2x1x3)k

)
φx(j) =

1

x2
(
(−2x1x2)i + (−x21 − x22 + x23)j + (−2x2x3)k)

)
φx(k) =

1

x2
(
(−2x1x3)i + (2x2x3)j + (−x21 + x22 − x23)k)

)
.

The matrix representation of the transformation φx is obtained as follows

φx =
1

x2

⎡
⎣ x21 + x22 + x23 −2x1x2 −2x1x3

2x1x2 −x21 − x22 + x23 −2x2x3
2x1x3 −2x2x3 −x21 + x22 − x23

⎤
⎦ .
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We can easily see that the linear transformation φx satisfies the relations φt
xI

∗φx =
I∗ and detφx = −1. And φx has the set of eigenvalues {−1, 1, 1} with the corre-

sponding eigenvectors {(x1, x2, x3), (x2, x1, 0), (x3, 0, x1)}, respectively. There-

fore, the linear transformation φx represents the Lorentzian reflection where the

hyperplane of the reflection is x⊥.

Theorem 6. For any two non null pure split quaternions u and v, such that u �= v
and u2 = v2, there exists a unique Lorentzian reflection or rotation φ such that
φ(u) = v.

Proof: Let u and v be two non null pure split quaternions such that u2 = v2.

Consider the map φ : ImĤ → ImĤ defined as

φ (x) =

⎧⎨
⎩

φu(x) if v = −u
φu−v(x) if v �= −u and (u− v) is non null

−φu+v(x) if v �= −u and (u− v) is null.
(2)

If v = −u, then we get

φ (u) = φu (u) = −
1

u2
uuu = −u = v.

If v �= −u and (u− v) is a non null vector, then we get

φ (u) = φu−v (u) = −
1

(u− v)2
(u− v)u(u− v) =

(2v2 − uv − vu)

(2v2 − uv − vu)
v = v

by using the identities u2 = v2 and 2v2 − uv − vu ∈ R. If v �= −u and (u − v)
is a null vector, then we obtain

φ (u) = φu+v (u) = −
1

(u+ v)2
(u+ v)u(u+ v) =

(2v2 + uv + vu)

(2v2 + uv + vu)
v = v.

By above discussions and construction of the map φ, the Lorentzian reflection or

rotation φ is unique such that φ(u) = v. �

4. Lorentzian Rotations and Cartan-Dieudonné Theorem

Theorem 7. Product of two Lorentzian reflection matrices is a Lorentzian rotation
matrix.

Proof: Let ϕx and ϕy be two Lorentzian reflection matrices with the planes of

reflection x⊥ and y
⊥, respectively. Since detϕx = detϕy − 1, then R = ϕxϕy
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must have determinant 1. Now, we only need to show that RtI∗R = I∗. By using

the identities ϕt
x
I∗ = I∗ϕx, ϕ

t
y
I∗ = I∗ϕy, ϕ−1

x
= ϕx and ϕ−1

y
= ϕy, we may

write

RtI∗R = (ϕxϕy)
tI∗(ϕxϕy) = ϕy

t(ϕt
x
I∗)ϕxϕy

= (ϕy
tI∗)(ϕxϕx)ϕy = I∗ϕyϕy = I∗.

�

Theorem 8. For any two non null vectors u and v in E
3
1, such that u �= v and

εu = εv, there exists a unique rotation or reflection such that R(u) = v.

Proof: Let u and v be two non null different vectors in E
3
1 such that εu = εv.

Consider the map R : E3
1 → E

3
1 defined as

R (x) =

⎧⎨
⎩

−ϕv(ϕu(x)) if v = −u

−ϕv(ϕu−v(x)) if v �= −u and (u− v) is non null

ϕv(ϕu+v(x)) if v �= −u and (u− v) is null.

If v = −u, then

ϕu(u) = u− 2
〈u,u〉

L

〈u,u〉
L

u = u− 2u = −u = v

and

R(u) = −ϕv(ϕu(u)) = −ϕv(v) = −v + 2
〈v,v〉

L

〈v,v〉
L

v = v.

If v �= −u and (u− v) is a non null vector, then

ϕu−v(u) = u− 2
〈u,u− v〉

L

〈u− v,u− v〉
L

(u− v)

= u− 2
〈u,u〉

L
− 〈u,v〉

L

2(〈u,u〉
L
− 〈u,v〉

L
)
(u− v) = u− (u− v) = v

and

R(u) = −ϕv(ϕu−v(u)) = −ϕv(v) = v

and if v �= −u and (u− v) is a null vector, then

ϕu+v(u) = u− 2
〈u,u+ v〉

L

〈u+ v,u+ v〉
L

(u+ v)

= u− 2
〈u,u〉

L
+ 〈u,v〉

L

2(〈u,u〉
L
+ 〈u,v〉

L
)
(u+ v) = u− (u+ v) = −v
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and

R(u) =ϕv(ϕu+v(u)) = ϕv(−v) = v

By above discussions and construction of the map R, the Lorentzian rotation is

unique such that R(u) = v.

�

Theorem 9. Any orthogonal transformation of E3
1 can be written as a decomposi-

tion of at most six Lorentzian reflections.

Proof: We will apply Theorem 2 recurrently at each step. Let R : E3
1 → E

3
1 be an

orthogonal transformation and let {e1, e2, e3} be an orthogonal basis for E3
1.

Step 1: First consider v = e1 and u = R(e1). Since R is an orthogonal transfor-

mation, we have εu = εv. If R(e1) �= e1, according to Theorem 2, there exists a

simple reflection

ϕ1 (x) =

⎧⎨
⎩

ϕe1
(x) if R(e1) = −e1

ϕR(e1)−e1
(x) if R(e1) �= −e1 and R(e1)− e1 is non null

−ϕR(e1)+e1
(x) if R(e1) �= −e1 and R(e1)− e1 is null

where x1 = R(e1) − e1, that satisfies ϕ1 (R(e1)) = e1. Since ϕ1 ◦ R is an

orthogonal transformation, for i = 2, 3 we have that ϕ1 (R(ei)) is orthogonal to

ϕ1 (R(e1)) = e1. Therefore

ϕ1 (R(ei)) ∈ Span {e2, e3}.

If it turns out that R(e1) = e1, then, according to Remark 3 we take ϕ1 as the

identity operator. We will do the same in the corresponding case of subsequent

steps of the procedure.

Step 2: Now consider v = e2 and u = ϕ1(R(e2)). If ϕ1(R(e2)) �= e2 then,

application of Theorem 2 again yields the simple reflection

ϕ2 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕe2
(x) if ϕ1(R(e2)) = −e2

ϕϕ1(R(e2))−e2
(x)

if ϕ1(R(e2)) �= −e2 and

ϕ1(R(e2))− e2 is non null

−ϕϕ1(R(e2))+e2
(x)

if ϕ1(R(e2)) �= −e2 and

ϕ1(R(e2))− e2 is non null

where x2 = ϕ1(R(e2))−e2, that satisfies ϕ2(ϕ1 (R(e2))) = e2. Since ϕ1◦R is an

orthogonal transformation, we have ϕ1 (R(e1)) = e1 is orthogonal to ϕ1 (R(e2)) .
Hence e1 ∈ x

⊥
2 then ϕ2(e1) = e1. Therefore, we have

ϕ2(ϕ1 (R(ei))) = ei for i = 1, 2, ϕ2(ϕ1 (R(e3))) ∈ Span {e3}.
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Step 3: Now consider v = e3 and u = ϕ2(ϕ1 (R(e3))). If ϕ2(ϕ1 (R(e3))) �= e3

then, application of Theorem 2 again yields the simple reflection

ϕ3 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕe3
(x) if ϕ2(ϕ1 (R(e3))) = −e3

ϕϕ2(ϕ1(R(e3)))−e3
(x)

if ϕ2(ϕ1 (R(e3))) �= −e3 and

ϕ2(ϕ1 (R(e3)))− e3 is non null

−ϕϕ2(ϕ1(R(e3)))+e3
(x)

if ϕ2(ϕ1 (R(e3))) �= −e3 and

ϕ2(ϕ1 (R(e3)))− e3 is non null

where x3 = ϕ2(ϕ1 (R(e3))) − e3. By the very construction of ϕ3, we have

ϕ3(ϕ2(ϕ1 (R(e3)))) = e3. Since ϕ2 ◦ ϕ1 ◦ R is an orthogonal transformation,

ϕ2(ϕ1 (R(e1))) and is ϕ2(ϕ1 (R(e2))) are orthogonal to ϕ2(ϕ1 (R(e3))). Hence

e1, e2 ∈ x
⊥
3 then ϕ3(e1) = e1 and ϕ3(e2) = e2. Therefore, we have

ϕ3(ϕ2(ϕ1 (R(ei)))) = ei, i = 1, 2, 3.

Thus we have also

ϕ3 ◦ ϕ2 ◦ ϕ1 ◦R = I3.

Consequently, the orthogonal transformation R can be expressed as the following

product of three simple Lorentzian reflections

R = ϕ−1
1 ◦ ϕ−1

2 ◦ ϕ−1
3 = ϕ1 ◦ ϕ2 ◦ ϕ3.

�

Remark 10. If the number of reflections that decompose a given orthogonal trans-
formation is even (odd) then the transformation is a Lorentzian rotation (reflec-
tion).

Applications

Example 11. Let us find the Lorentzian reflection matrix with the plane of reflec-
tion

x
⊥ = {(y1, y2, y3) ∈ E

3
1 ; y1 − y2 + 2y3 = 0}.

Here x = (−1,−1, 2). By using Theorem 2, we find

ϕx =

⎡
⎣ 3/2 −1/2 1
1/2 1/2 1
−1 1 −1

⎤
⎦ .
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Example 12. Let us find the plane of reflection for the Lorentzian reflection matrix

ϕ =

⎡
⎣ 3/2 −1 −1/2

1 −1 −1
1/2 −1 1/2

⎤
⎦ .

By long and tedious calculations, we find the eigenvector of ϕ corresponding to
the eigenvalue −1 as x = (1, 2, 1). So the plane of reflection is found as

x
⊥ = {(y1, y2, y3) ∈ E

3
1 ; − y1 + 2y2 + y3 = 0}.

Example 13. Consider the spacelike vectors u = (−1, 1,−1) and v = (7, 5,−5)
such that u �= v and εu = εv = 1. By Theorem 8 there exists a unique Lorentzian
reflection R : E3

1 → E
3
1 such that R(u) = v. Since if v �= −u and u − v =

(−8,−4, 4) is non null, then the Lorentzian rotation R is defined as

R(x)=− ϕv(ϕu−v(x)).

By long and tedious calculations, we find the eigenvalues of the rotation matrix as
follows

R(x) = (−17x1 − 12x2 + 12x3,−12x1 − 8x2 + 9x3, 12x1 + 9x2 − 8x3).

The matrix representation of R is

R{e1,e2,e3} =

⎡
⎣−17 −12 12
−12 −8 9
12 9 −8

⎤
⎦ .

It is easily seen that R(u) = v.

Example 14. Consider the following orthogonal transformation

R(x1, x2, x3) = (
9

4
x1 − 2x2 +

1

4
x3, x2 − x1 − x3, 2x2 −

7

4
x1 +

1

4
x3)

which has matrix representation as

R{e1,e2,e3} =

⎡
⎣ 9/4 −2 1/4

−1 1 −1
−7/4 2 1/4

⎤
⎦ .

Here {e1, e2, e3} is the standard basis for E3
1.

Step 1: First consider v = e1 = (1, 0, 0) and u = R(e1) = (9/4,−1,−7/4).
Since R(e1) �= e1, then there exists a simple Lorentzian reflection ϕ1 such that
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ϕ1(R(e1)) = e1 according to Theorem 2. And R(e1) �= −e1 and R(e1) − e1 =
(5/4,−1,−7/4) is non null. By Theorem 10, the simple Lorentzian reflection ϕ1

is defined as well because there exists a simple reflection

ϕ1 (x) = ϕR(e1)−e1
(x) = ϕ(5/4,−1,−7/4)(x)

= (
9

4
x1 + x2 +

7

4
x3,−x1 +

1

5
x2 −

7

5
x3,−

7

4
x1 −

7

5
x2 −

29

20
x3)

with matrix representation

ϕ1{e1,e2,e3} =

⎡
⎣ 9/4 1 7/4

−1 1/5 −7/5
−7/4 −7/5 −29/20

⎤
⎦ .

Here ϕ1 (R(e2)) = (0,−3/5,−4/5) and ϕ1 (R(e3)) = (0,−4/5, 3/5). That is

ϕ1 (R(ei)) ∈ Span {e2, e3}, i = 2, 3.

Step 2: Now consider v = e2 = (0, 1, 0) and u = ϕ1(R(e2)) = (0,−3/5,−4/5).
Since ϕ1(R(e2)) �= e2 then there exists a simple Lorentzian reflection ϕ2 such that
ϕ2(ϕ1(R(e2))) = e2 according to Theorem 2. We know that ϕ1(R(e2)) �= −e2

and ϕ1(R(e2)) − e2 = (0,−8/5,−4/5) is non null. Application of Theorem 8

yields that the simple reflection ϕ2 is defined as follows

ϕ2 (x)=ϕϕ1(R(e2))−e2
(x)=ϕ(0,−8/5,−4/5)(x)=(x1,−

3

5
x2 −

4

5
x3,−

4

5
x2 +

3

5
x3).

Here the matrix representation of the Lorentzian reflection is obtained as

ϕ2{e1,e2,e3} =

⎡
⎣ 1 0 0
0 −3/5 −4/5
0 −4/5 3/5

⎤
⎦ .

Moreover, we get

ϕ2(ϕ1 (R(ei))) = ei, i = 1, 2, 3.

Thus, the orthogonal transformation R can be expressed as decomposition of two
simple Lorentzian reflections

R = ϕ1 ◦ ϕ2

that is

R =

⎡
⎣ 9/4 −2 1/4

−1 1 −1
−7/4 2 1/4

⎤
⎦ =

⎡
⎣ 9/4 1 7/4

−1 1/5 −7/5
−7/4 −7/5 −29/20

⎤
⎦
⎡
⎣ 1 0 0
0 −3/5 −4/5
0 −4/5 3/5

⎤
⎦ .

Consequently, R is a Lorentzian rotation.
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