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APPLICATIONS OF LUSTERNIK-SCHNIRELMANN CATEGORY
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Communicated by Vasil V. Tsanov

Abstract. This paper explores some applications of Lusternik-Schnirelmann the-

ory and its recent offshoots. In particular, we show how the LS category of real

projective space leads to the Borsuk-Ulam theorem and the Brouwer fixed point

theorem. After the development of some LS categorical tools, we also show the

importance of LS category in understanding the Arnold conjecture on fixed points

of Hamiltonian diffeomorphisms. We then examine ways in which LS category fits

into the framework of differential geometry. In particular, we give a refinement

of Bochner’s theorem on the first Betti number of a non-negatively Ricci-curved

space and a Bochner-like corollary to a recent theorem of Kapovitch-Petrunin-

Tuschmann. Finally, we survey the new LS categorical notion of topological com-

plexity and its relation to the motion planning problem in robotics.
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1. Introduction to LS Category

1.1. Background

Definition 1. The Lusternik-Schnirelmann category of a space X , denoted catpXq,
is the smallest integer k so that X can be covered by pk`1q open sets U0, U1, . . . ,
Uk, each of which is contractible to a point in X . Such a covering is called a
categorical covering.

LS category is an important numerical invariant in algebraic topology, critical point

theory and symplectic geometry (see [4]). In this survey, which is written with non-

topologists in mind, we will describe diverse ways in which LS-categorical ideas

interact with other areas of Mathematics. Some of these areas are rather surprising

and rather far from the original motivations of Lusternik and Schnirelmann.

In the 1920’s three separate approaches arose that illuminated the relationship be-

tween the analysis and topology of smooth manifolds. In Europe, Georges de

Rham showed that the cohomology of differential forms could be identified with

the topologically defined singular cohomology. In the USA, Marston Morse cre-

ated his “Morse theory” that re-constructed a manifold from the (non-degenerate)

critical points of a smooth function on the manifold according to their indices.

In Russia, Lusternik and Schnirelmann were also interested in critical points of

smooth functions, but because they considered more general types than non-dege-

nerate ones, they concentrated on relating critical point structure to a new type of

homotopy invariant, now called LS category (or simply, category).

In order to describe various results associated with LS category, we will refer to

certain basic notions of homotopy theory. While we cannot review all these ideas
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here, let us simply mention a few important ones. Recall that two maps f, g : X Ñ
Y are homotopic if there is another map H : X ˆI Ñ Y with Hpx, 0q “ fpxq and

Hpx, 1q “ gpxq. We write f » g when f and g are homotopic. Two spaces X and

Y have the same homotopy type, written X » Y , if there are maps f : X Ñ Y ,

g : Y Ñ X such that f ˝ g » idY and g ˝ f » idX . The important point is that

spaces of the same homotopy type have the same algebraic invariants (homology,

cohomology, homotopy groups etc.) associated with them. In particular, a space

X is contractible if it has the homotopy type of a point ˚. A map f : X Ñ Y
is nullhomotopic if f » ˚, where ˚ refers to the constant map taking all of X
to a single point. Basic homotopical invariants of a space X are the homotopy
groups, denoted by πkpXq and defined as the homotopy classes of maps Sk Ñ X
(which preserve certain basepoints), where Sk is the k-sphere. Of course, the

most important homotopy group is π1pXq, the fundamental group of X . Other

invariants such as homology and cohomology are harder to define (but easier to

compute). Now let’s move on to category.

1.2. Basic Properties of LS Category

The first calculations of (and applications of) category use some rather simple prop-

erties that, nevertheless, require fairly sophisticated algebraic-topological notions.

Since we are interested in applications, we shall list these properties here without

proof. Later we shall see how to build on these properties to derive new estimates

of category. (The interested reader may consult [4] for proofs.)

Properties 2. The basic properties of LS category that we shall use are the follow-
ing psee [4] for instanceq.

1. Category is a homotopy type invariant. This means that spaces X and Y
with X » Y have catpXq “ catpY q.

2. The cup length of a space X is the largest integer k such that there exists
a product x1 ¨ ¨ ¨xk ­“ 0, with xi P H˚pX;Aq. Here we use the fact that
cohomology supports a product structure for a coefficient ring A. The co-
efficient ring A may vary and the cup length may be considered for any
coefficients. The fundamental relation between cup length and category is
cuppXq ď catpXq.

3. An upper bound for category is given by catpXq ď dimpXq (where, for
paracompact spaces more general than manifolds, dimpXq denotes the cov-
ering dimension of X). In fact, it is possible to show that, if πkpXq “ 0 for
0 ď k ď n ´ 1, then catpXq ď dimpXq{n.
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4. Fundamental Estimate. Combining the previous two results gives

cuppXq ď catpXq ď dimpXq
n

where πjpXq “ 0 for j “ 1, . . . , n ´ 1.

Theorem 3. Let RPn denote real projective n-space. Then

catpRPnq “ n.

Proof: Recall that H˚pRPn;Z2q “ Z2rx1s{pxn`1
1 q, a truncated polynomial alge-

bra on a degree one generator x1. Hence, cuppRPnq “ n and we have, by the

Fundamental Estimate, Property 2 - 4

n “ cuppRPnq ď catpRPnq ď dimpRPnq “ n

so catpRPnq “ n. �

Example 4. Here are some simple LS category calculations pwhich belie the generic
difficulty of computationq.

1. catpSkq “ 1 for any k. This follows because a sphere can be covered by
(slightly fattened, so open) upper and lower hemispheres which are homeo-
morphic to disks and are thus contractible. Having two such sets means that
category is equal to one. pThe same proof shows that any space that is the
suspension of another space has category one.q

2. catpT kq “ k. This follows because a k-torus is a product of k circles,
T k “ S1 ˆ ¨ ¨ ¨ ˆ S1 and this means that the cohomology H˚pT k;Zq is an
exterior algebra on k generators. There is then a product of length k, so
cuppT kq “ k. Since dimpT kq “ k as well, the Fundamental Estimate gives
the result.

3. catpCPkq “ k. This follows because the cohomology of complex pro-
jective space is known to be H˚pCPk;Zq “ Zrx2s{pxk`1

2 q, a truncated
polynomial algebra on a degree two generator x2. Thus, cuppCPkq “ k.
Now, π1pCPkq “ 0, so the upper bound in the Fundamental Estimate is
dimpCPkq{2 “ 2k{2 “ k, so we obtain the result.

4. The cone on X , CX , is obtained by taking the product X ˆ I and crushing
X ˆ t1u to a point. The mapping cone of a map f : X Ñ Y is the quotient
space

Cf “ Y Yf CX “ Y 9YCX

px, 0q „ fpxq ¨
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Extend a categorical cover of Y by fattening the open sets a little past the
identifications px, 0q „ fpxq and add an open set in the cone that contracts
to the cone point. This gives a categorical covering of Cf with one set more
than the covering of Y . Thus, we have catpCfq ď catpY q ` 1.

2. A Classical Application

2.1. The Lusternik-Schnirelmann theorem

In this section, we will show that the calculation of the Lusternik-Schnirelmann

category of real projective spaces provides a direct path to proving a version of

the Borsuk-Ulam and Brouwer fixed point theorems. Lusternik and Schnirelmann

proved the following result.

Theorem 5 (Lusternik-Schnirelmann Theorem) If Sn is covered by open (or
closed) sets C1, . . . , Cn`1, then at least one Ci contains antipodal points.

Proof: Assume no Ci contains antipodal points. Take Sn Ă Bn`1 and let Ai Ă
Bn`1 be the closed set defined by connecting radial segments from the origin to

each point of Ci. Note that Ai contracts to the origin.

Figure 1. The radial extension Ai of a closed set Ci.

RPn`1 “ Bn`1{ „, where „ identifies points on the boundary Sn with their an-

tipodes. Note that Ai ãÑ RPn`1 is injective by the hypothesis. Also, Ai contracts

to a point in RPn`1 as well since there are no identifications on Ai. Since RPn`1

is covered by A1, . . . , An`1, then

catpRPn`1q ď n.
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This then contradicts Theorem 3. �

Notice that we have really said that if we know that catpRPnq “ n for every

n ą 0, then we know the Lusternik-Schnirelmann theorem for every n as well.

Surprisingly, there is a converse.

Proposition 6. If the Lusternik-Schnirelmann theorem holds for all n ą 0, then
catpRPnq “ n for every n ą 0 as well.

Proof: Suppose catpRPnq “ k for k ă n and let U0, . . . , Uk be a categorical cover

of RPn. Each inclusion ij : Uj ãÑ RPn is nullhomotopic, so the pullback covering

is trivial: ij̊ pSnq “ Uj ˆ t0, 1u Ñ Uj . Note that Uj ˆ t1u is the antipodal image

of Uj ˆ t0u. Let Vj “ Uj ˆ t0u Ă Sn for j “ 0, . . . , k and let W “ Sn ´ YjVj .

Note that W is a closed (and, hence, compact) set and that each Vj has the property

that it does not contain antipodal points.

We first claim that W does not contain antipodal points. Let x P W . By the

definition of W , because the Vj and their antipodal images cover Sn, x is in the

antipodal image of some Vj . But then, ´x P Vj , so ´x R W .

We need an open set ĂW to add to the set of Vj , so we now claim that there exists

some ε ą 0 such that

Wε “ tx P Sn ; dpx,W q ă εu
contains no antipodal points. Suppose not. Then we can take εi Ñ 0 with xi,´xi P
Wεi . There then exists a convergent subsequence xi Ñ y P W (since dpy,W q “
0). Now, we also have ´xi Ñ ´y and dp´xi,W q “ 0 since taking antipodes

is continuous. Hence, ´y P W also and this contradicts the fact that W does

not contain antipodal points. Therefore, take any ε which gives ĂW “ Wε not

containing antipodal points.

Now tVjuj“k
j“0 Y ĂW is a cover of Sn with k`2 ď n`1 sets. Because none of these

sets contain antipodal points, by adding empty sets if necessary, we obtain n ` 1
sets covering Sn each of which does not contain antipodal points. This contradicts

the Lusternik-Schnirelmann theorem. �

2.2. Antipodal Maps

A map f : Sn Ñ Sn´1 is an antipodal map if fp´xq “ ´fpxq for all x P Sn. We

have the following consequence of the Lusternik-Schnirelmann theorem.

Theorem 7. There are no antipodal maps f : Sn Ñ Sn´1.
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Proof: Suppose an antipodal map f : Sn Ñ Sn´1 exists. Represent Sn´1 as the

boundary of an n-simplex and let the faces be denoted F1, F2, . . . , Fn`1. Note that

no Fj contains antipodal points (when projected radially onto Sn´1). Let Gj “
f´1pFjq, j “ 1, . . . , n`1. The set tGju covers Sn. Theorem 5 then says that there

is some Gj containing antipodal points, x, ´x. Then fpxq, fp´xq “ ´fpxq P Fj

is a contradiction. �

Theorem 7 is a version of the Borsuk-Ulam theorem and it is known that the LS

theorem is, in fact, equivalent to the various versions of the Borsuk-Ulam theorem.

Here we only prove the implication given in Theorem 7 since this is all we will need

to prove the Brouwer fixed point theorem below. (For the interested reader, there

is a generalization of these results from spheres to manifolds with involution [14].)

2.3. The Brouwer Fixed Point Theorem

As in almost every proof of the Brouwer theorem, we begin with the following

result.

Lemma 8. If f : Dn Ñ Dn does not have a fixed point, then there is a retraction
of the disk Dn onto its boundary Sn´1. That is, there is a map r : Dn Ñ Sn´1

such that r ˝ iSn´1 “ idSn´1 , where iSn´1 : Sn´1 Ñ Dn is the inclusion of the
boundary.

Proof: Define a retraction by

rpxq “ x ´ fpxq
}x ´ fpxq} ¨

Because fpxq ­“ x for all x P Dn, the map r is well-defined and continuous. Note

that rpxq “ x if x P Sn´1. �

Theorem 9. Every map f : Dn Ñ Dn has a fixed point.

Proof: Suppose f has no fixed points and let r : Dn Ñ Sn´1 be the retraction of

the lemma. Define g : Sn Ñ Sn´1 by

gpx1, . . . , xn`1q “
#
rpx1, . . . , xn`1q if xn`1 ě 0

´rp´x1, . . . ,´xn`1q if xn`1 ď 0.

Then gp´xq “ ´gpxq, so g is antipodal. This contradicts Theorem 7. �
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3. A Reformulation of Category and New Invariants

We have seen that the definition of LS category and the simple cuplength-dimension

estimate is sufficient to obtain classical results such as the Brouwer fixed point the-

orem. In order to apply category further, however, it is necessary to provide a

homotopically more friendly, but more complicated equivalent definition due to T.

Ganea. For details, see [4, Chapter 1].

3.1. Reformulation of Category

Let PX “ tγ : I Ñ X ; γp0q “ x0u be the contractible space of based paths

with path fibration p0 : PX Ñ X given by γ ÞÑ γp1q. We inductively construct a

diagram of fibrations

ΩX Ñ F1pXq Ñ ¨ ¨ ¨ FkpXq ¨ ¨ ¨
Ó Ó ¨ ¨ ¨ Ó

PX Ñ G1pXq Ñ ¨ ¨ ¨ GkpXq ¨ ¨ ¨
p0 Ó p1 Ó ¨ ¨ ¨ pk Ó
X

1XÑ X
1XÑ ¨ ¨ ¨ X ¨ ¨ ¨

where Gj`1pXq “ GjpXq Y CpFjpXqq » GjpXq{FjpXq is the mapping cone

of the previous fibre inclusion. For instance, consider the first fibration ΩX Ñ
PX Ñ X . Take the mapping cone on the fibre inclusion ΩX Ñ PX to obtain

G1pXq. There is still a map to X and topology has a way of making a homotopi-

cally equivalent fibration G1pXq Ñ X . Iterate this process to obtain the diagram

above. Through a rather long sequence of equivalences, we end up with the fol-

lowing characterization of LS category.

Theorem 10 (Definition-Theorem) catpXq ď n if and only if there is a phomotopyq
section s : X Ñ GnpXq. That is, in the diagram above, pn ˝ s » 1X .

Note that, in cohomology, we have s˚ ˝ pn̊ “ 1H˚ , so pn̊ is injective. Also, it can

be shown that each fibre FnpXq is a join of copies of the loop space ΩpXq
FnpXq “ ˚n`1ΩpXq.

Since taking joins increases connectivity (i.e., homotopy groups vanish up to higher

and higher degrees with increasing n), the long exact sequence for the homotopy

groups of a fibration gives isomorphisms between the homotopy groups of X and

GkpXq through higher and higher degrees. This means that the GnpXq become

more and more like X as n increases.
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Now, we need one other definition that will be important later. This is the category
of a map.

Definition 11. For f : Y Ñ X , catpfq ď n if and only if there is a map s : Y Ñ
GnpXq such that pn ˝ s » f .

Properties 12. There are several properties of the reformulation diagram that will
be important for us later.

1. G1pXq » ΣΩpXq, where ΣY denotes the suspension of the space Y . The
suspension of Y crosses the set with an interval to get Y ˆI and then crushes
the top and bottom. pIn fact, the basepoint interval must be smashed as well,
but that is a technicality.q So ΣY looks like two cones on Y attached at the
Y end. Now, the result follows since

G1pXq “ G0pXq Y CpΩXq » ˚ Y CpΩXq

and attaching the cone CpΩXq to a point crushes ΩX and gives the suspen-
sion of ΩpXq.

2. If X “ Kpπ, 1q pi.e., all higher homotopy groups vanish, πjpXq “ 0 for
j ą 1q, then G1pXq » _S1. This follows because πkpΩpXqq – πk`1pXq
for all k ě 0, so πkpΩpXqq “ 0 for all k ě 1 and π0pΩpXqq is in bijection
with π1pXq “ π. So, up to homotopy, ΩpXq is a set of discrete points. But
then what is the suspension? The discrete set of points gives a set of disjoint
intervals and these are then all smashed to a point at the top and bottom.
The result, homotopically, is a set of circles all touching at a single point
pi.e., a wedge of circlesq _S1.

3. If X “ Kpπ, 1q, then GkpXq is homotopy k-dimensional. The proof here is
much the same using the properties of the join. For instance, we have seen
that G1pXq » _S1. But F1pXq “ ΩpXq ˚ΩpXq is the join of a discrete set
of points with itself and this also is a wedge of circles. The mapping cone of
F1pXq ãÑ G1pXq then attaches two-cells to G1pXq to obtain G2pXq which
is then homotopy two-dimensional.

4. catpfq ď catpXq. This is immediate from the definitions. It is also true
that catpfq ď catpY q since f induces Gkpfq : GkpY q Ñ GkpXq with pXk ˝
Gkpfq “ f ˝ pYk .
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5. If we have a commutative diagram

Y
f ��

g
���

��
��

��
� X

Z
h

����������

then catpfq ď mintcatpgq, catphqu. This follows from Definition 11 once
we note that a map q : A Ñ B induces maps GkpAq Ñ GkpBq compatible
with the projections to A and B respectively.

3.2. Category Weight

One advantage of the reformulation of category is that it allows us to define new

approximating invariants. Here is one that is due (independently) to Jeff Strom [25]

and Yuli Rudyak [22] (building on an earlier notion of Fadell and Husseini).

Definition 13. Let u P H˚pX;Aq, where A is any coefficient group. The category

weight of u, denoted wgtpuq, is the maximum k such that pk̊´1puq “ 0, where
pk̊´1 : H

˚pX;Aq Ñ H˚pGk´1pXq;Aq is the map induced on cohomology by
pk´1 : Gk´1pXq Ñ X .

Properties 14. Here are some properties of category weight.

1. wgtpuq ď catpXq. This follows because the existence of a section s of pn
implies that pn̊ is injective in cohomology.

2. wgtpuvq ě wgtpuq ` wgtpvq. This is a harder property whose proof uses
an alternative definition of category weight.

3. If X “ Kpπ, 1q and u P HdpXq, then wgtpuq ě d. Let consider the case
d “ 2. We know G1pXq » ΣΩX » _S1 by Property 12, so p1̊puq “ 0 since
H2p_S1q “ 0. The case d ą 2 follows similarly using Property 12 - 3.

4. If f : X Ñ Y , u P H˚pY q and f˚puq ­“ 0, then wgtpf˚puqq ě wgtpuq.
This follows by naturality: f gives natural maps GkpXq Ñ GkpY q for all
k.

5. If f : X Ñ Y is a map and f˚puq ­“ 0, then catpfq ě wgtpuq. Look at the
diagram for catpfq “ k.

GkpY q
s Õ Ó pk

X
fÝÑ Y



Applications of Lusternik-Schnirelmann Category and its Generalizations 69

We assume that f˚puq ­“ 0, so the commutativity of the diagram then gives
pk̊puq ­“ 0. The definition of category weight then says that wgtpuq ď k.

3.3. Sectional Category

The notion of category can be extended in the following way (see [4] for instance).

Recall that a fibration may be thought of as the algebraic topologist’s fibre bundle.

Definition 15. Suppose F Ñ E
pÑ B is a fibration. Then the sectional category of

p, denoted secatppq, is the least integer n such that there exists an open covering,
U0, . . . , Un, of B and, for each Ui, a map si : Ui Ñ E having p ˝ si “ inclUi .
pThat is, si is a local section of pq.

Note that, in the reformulation fibration ΩpXq Ñ G0pXq “ PX
p0Ñ X , the

total space PX is contractible. Therefore, if we have an open set U Ă X in the

definition of sectional category, then because it factors through PX , the inclusion

U ãÑ X is nullhomotopic. That is, U contracts to a point in X . Hence, catpXq ď
secatpp0q. Since a basic property is that sectional category is always bounded

above by the category of the base space (see (1) below), we actually have catpXq “
secatpp0q. This is what we mean by extending the notion of category.

Properties 16. Consider a fibration F Ñ E
pÑ B. Here are some properties of

secatppq.

1. secatppq ď catpBq. This follows since if U ãÑ B is nullhomotopic, then the
Homotopy Lifting Property gives a local section of p over U .

2. If E is contractible, then secatppq “ catpBq. (This is the case we discussed
above for G0pXq.)

3. If there are x1, . . . , xk P rH˚pB;Rq pany coefficient ring Rq with

p˚x1 “ . . . “ p˚xk “ 0 and x1 Y ¨ ¨ ¨ Y xk ‰ 0,

then secatppq ě k. This is an analogue of the cuplength estimate for ordi-
nary category.

4. Suppose F
iÑ E

pÑ B arises as a pullback of a fibration pp : pE Ñ pB wherepE is contractible psuch as for a principal bundleq.

E
rf ��

p

��

pE
pp
��

B
f �� pB
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Then secatppq “ catpfq. This says, for example, that the sectional category
of principal bundles is precisely the category of the classifying map.

5. Consider the following map of fibrations

E
rf ��

p

��

pE
pp
��

B
f �� pB

(1) If The diagram is a pullback, then secatppq ď secatpppq. This follows
because an open set pU Ă pB with a local section ps : pU Ñ pE has an open
inverse image U “ f´1p pUq Ă B and a map ps˝f : U Ñ pE with pp˝ps˝f “ f .
The pullback property then gives a map s : U Ñ E with p ˝ s “ inclU .

(2) If the diagram simply commutes pi.e., is not necessarily a pullbackq andpB “ B with f “ idB , then secatppq ě secatpppq. This follows because an
open set U Ă B having a local section s : U Ñ E automatically has a local
section pf ˝ s : U Ñ pE for pp since pp ˝ pf “ p.

There is a type of sectional category that will important to us later when we discuss

differential geometric applications (see [19] for instance).

Definition 17. The one-category of a space X , denoted cat1pXq, is the least in-
teger n so that X may be covered by open sets U0, . . . , Un having the property
that, for each Ui, there is a local section si : Ui Ñ rX , where p : rX Ñ X is
the universal cover (so p ˝ si is homotopic to the inclusion Ui ãÑ X). Thus,
cat1pXq “ secatpp : rX Ñ Xq.

Before we can list properties of cat1, we need to remind the reader about a certain

construction. Assume X is a CW complex. That is, X is inductively constructed

by attaching cells in a certain allowed fashion. Now, if π2pXq ­“ 0, then we may

attach more 3-cells to X to obtain X2 with π2pX2q “ 0. Similarly, we may attach

4-cells to obtain X3 with π3pX3q “ 0. Continuing in this manner produces a

Kpπ, 1q with π “ π1pXq and an inclusion j1 : X ãÑ Kpπ, 1q that induces an

isomorphism on fundamental groups. This map j1 classifies the universal cover of

X , denoted rX Ñ X , in the sense that it is the pullback over j1 of the path fibration

PKpπ, 1q Ñ Kpπ, 1q.

Properties 18. Here are some properties of cat1 that we will need later.
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1. cat1pXq “ 0 if X is simply connected. This is clear from the definition or
from the next property.

2. cat1pXq “ catpj1 : X Ñ Kpπ1X, 1qq. This follows because the universal
cover rX Ñ X is a pullback by the classifying map j1 of the path fibration
PKpπ1X, 1qq Ñ Kpπ1X, 1qq. Since PKpπ1X, 1qq is contractible, Prop-

erty 16 (4) applies.

3. If π1pXq “ π, Bπ “ Kpπ, 1q and k is the maximum degree for which
j1̊ : H

kpBπ;Aq Ñ HkpX;Aq is non-trivial (for any local coefficients A),
then

k ď cat1pXq ď catpBπq “ dimpBπq.
Moreover, if X “ Kpπ, 1q, then cat1pXq “ dimpBπq (for dimpBπq ą 3).
This follows by Property 14.

4. Theorem pEilenberg-Ganeaq. cat1pXq ď n if and only if there exists an
n-dimensional complex L such that there is a map f : X Ñ L inducing an
isomorphism

f˚ : π1pXq –Ñ π1pLq.
In one direction this follows because cat1pXq “ catpj1 : X Ñ Kpπ1X, 1qq
and GkpKpπ1X, 1qq is homotopy k-dimensional (see Property 12). In the
other direction, for an L as in the condition, there is a commutative triangle

X
j1 ��

g
���

��
��

��
� Kpπ1X, 1qq

L
h

������������

where all maps induce isomorphisms on fundamental groups. But then, by
Property 12, we have

catpj1q ď mintcatpgq, catphqu ď mintdimpXq, dimpLqu ď dimpLq.

Both of the next two properties are, more or less, general properties of
category-like invariants palthough the second does not hold for topological
complexityq. For cat1, see [18, 19].

5. cat1pX ˆ Y q ď cat1pXq ` cat1pY q.

6. If p : X Ñ X is any covering space projection, then cat1pXq ď cat1pXq.
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Example 19. We have cat1pTn ˆ Xq “ n if X is simply connected. To see this,
we use Property 18. First, note that j1 : Tn ˆX Ñ Tn is the classifying map since
Tn “ KpZn, 1q. But then, because the map on cohomology is injective, we have
n ď cat1pTn ˆ Xq. But we also have cat1pTn ˆ Xq ď cat1pTnq ˆ cat1pXq
and cat1pXq “ 0. Further, because Tn “ KpZn, 1q, we know cat1pTnq “
dimpTnq “ n. Thus, we have the result.

Example 20. We also have the interesting result that π1pXq is free if and only if
cat1pXq “ 1. This follows from Property 18 using the fact that Kpπ1pXq, 1q has
the homotopy type of a wedge of circles pand so is homotopy one-dimensionalq.

Now that we have some categorical tools, let us look at various applications of

category.

4. Critical Points

4.1. The LS Theorem

The original motivation of Lusternik and Schnirelmann for the introduction of cat-

egory was the study of critical points of a smooth function on a manifold.

Theorem 21 (Lusternik-Schnirelmann Critical Point Theorem) . Let M be a
smooth compact manifold and let CritpMq denote the minimum number of critical
points for any smooth function on M . Then

1 ` catpMq ď CritpMq ď 1 ` dimpMq.

In fact, the second inequality is a later result of F. Takens. Furthermore, the first in-

equality holds in an infinite-dimensional Banach manifold context as well. See [4]

for details and for the proof of the Lusternik-Schnirelmann Critical Point theorem.

Example 22. Let the torus T 2 be represented by the unit square Sq “ r0, 1s ˆ
r0, 1s with p0, yq „ p1, yq and px, 0q „ px, 1q for all x, y. Define a function
G : Sq Ñ R:

Gpx, yq “ sinpπxq sinpπyq sinpπpx ` yqq.
G has 3 critical points at p1{3, 1{3q, p2{3, 2{3q and p0, 0q, so by Theorem 21 and
catpT 2q “ 2 we see that it is optimal. pThe Hessian at p0, 0q is the zero matrix, so
we will see below that G is not a Morse function.q See Figure 2 for a graph of G
over Sq. Note that the corners of the square are identified to one critical point.
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Figure 2. Plot of Gpx, yq on the square Sq.

Before we leave this section, we mention a result that foreshadows the connection

we shall see later between critical points and flows. (Recall that x P M is a rest
point for a flow Ψ if Ψpx, tq “ x for all t.)

Theorem 23 (LS Theorem for Flows) If X is a compact metric space with a gradient-
like flow Ψ on it and f : X Ñ Y is a map, then

1 ` catpfq ď RestpΨq
where RestpΨq denotes the number of rest points of Ψ.

The idea is the following. If Ψ were actually a gradient flow, then we would have
9Ψpxq “ ∇fpxq for some function f , so it is clear that the critical points of f

correspond to points where the flow stagnates, that is, rest points of Ψ. It can be

shown that a gradient-like flow has the same property.

At the time Theorem 21 appeared, a competing theory had been invented that also

related critical points to topology. Of course, this was Morse theory. Let’s review

some simple aspects of it now in order to compare with LS theory.

4.2. Morse Theory

The main result of Morse theory is the following.

Theorem 24. If f : M Ñ R is a Morse function, then M has the homotopy type
of a space constructed by attaching a cell of dimension k for each critical point of
index k.

Recall that f : M Ñ R is a Morse function if, in local coordinates around each

critical point, the Hessian of f is invertible. The critical point is then said to be

non-degenerate. Since the Hessian is a symmetric matrix, it is diagonalizable with
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real eigenvalues and the number of negative eigenvalues is the index of the critical

point.

Example 25. Consider a torus T 2 with parametrization

xpu, vq “ pr sinpuq, pR ` r cospuqq cospvq, pR ` r cospuqq sinpvqq.
Define a “height function” h : T 2 Ñ R on the torus by taking the z-coordinate,

hpxpu, vqq “ pR ` r cospuqq sinpvq.
The critical points of hpu, vq are at p0, π{2q, p0,´π{2q, pπ, 0q, pπ, πq with respec-
tive Hessian matricesˆ´r 0

0 ´pR ` rq
˙
,

ˆ
r 0
0 R ` r

˙
,

ˆ
r 0
0 ´R ` r

˙
,

ˆ´r 0
0 R ´ r

˙
.

These are seen in Figure 3.

Figure 3. A vertical torus for a vertical height function.

By looking at the eigenvalues, we see that the first critical point is a maximum, the
second a minimum and the last two saddles. Theorem 24 says that we begin with
the minimum — a point because the index is zero. As we move up the height of the
torus, we next come upon a saddle, so we attach a one-cell to the point minimum.
We thus obtain a circle. The next critical point is also a saddle, so another one-cell
is attached. We obtain a wedge of two circles. The maximum has index two, so we
attach a two-cell to the wedge of circles that then gives the torus.

Of course, Morse theory is much more powerful than what we have intimated.

In particular, by fattening the cells, we can actually assemble handles to obtain
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the homeomorphism type of the manifold. However, just from Theorem 24 we

get some interesting information. The cellular homology of a cell-complex X
is found by taking, for each k, the real vector space generated by the k-cells,

CkpXq, and then defining a boundary homomorphism Bk : CkpXq Ñ Ck´1pXq
with the property that Bk´1 ˝ Bk “ 0. Homology is then given by HkpX;Rq “
kerpBkq{impBk`1q. It is then clear from Theorem 24 that we have the following.

Corollary 26. If ci is the number of critical points of index i of a Morse function,
then for all i ě 0, dimpH ipM ;Rqq ď ci.

Example 27. From Corollary 26, we see that a Morse function on the torus T 2

has at least four critical points. This follows because we can compute homology:

dimpH0pT 2;Rqq “ 1, dimpH1pT 2;Rqq “ 2, and dimpH2pT 2;Rqq “ 1.

Comparing Example 22 with Example 27, we see the essential difference between

the Lusternik-Schnirelmann and Morse theories and, especially, the corresponding

lower bound estimates.

In Section 2 we saw how LS category impinges on fixed point theory. In this

section, we have seen the consequences of LS category for critical point theory.

Now we will explore a subject where LS category is the conduit for a relation

between numbers of fixed and critical points.

4.3. LS Category in Symplectic Geometry

In Poincaré’s study of celestial mechanics it became clear that a useful approach

to finding closed orbits is to identify a Poincaré section and then look for periodic

(or fixed) points of the associated diffeomorphism. Just before he died, Poincaré

conjectured the following result.

Theorem 28 (Poincaré’s Last Geometric Theorem) If ψ : A Ñ A is an area
preserving diffeomorphism of the annulus A which rotates the inner and outer
boundary circles in opposite directions, then ψ has at least two fixed points.

Theorem 28 was proven by George Birkhoff using techniques that were very par-

ticular to dimension 2. Note that catpAq “ 1 since A » S1, so the number of

fixed points appears to be the lower bound of Theorem 21. In [1, Appendix 9],

V. Arnold discussed extensions of the theorem to the torus T 2. He first noted that

there are area preserving diffeomorphisms of T 2 without fixed points. For instance,

translations of R2

X “ x ` c1, Y “ y ` c2
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descend to the quotient T 2 “ R
2{Z2 as area preserving diffeomorphisms without

fixed points. However, Arnold showed that certain hypotheses on toral diffeomor-

phisms allowed analogues of Theorem 28 to be proved.

Theorem 29. Suppose ψ : T 2 Ñ T 2 is a diffeomorphism that satisfies the follow-
ing:

• ψ is homologous to the identity: that is, if we write ψpx, yq “ pX,Y q, then
X “ x ` ppx, yq and Y “ y ` qpx, yq with p, q periodic and

ş
T 2 p “ 0 “ş

T 2 q pp and q are said to preserve the center of gravityq
• ψ is area preserving: that is, dX ^ dY “ dx ^ dy

• ψ is “close” to the identity.

Then ψ has at least 3 pgeometrically distinctq fixed points.

Proof: It can be shown from the hypotheses that there exists a periodic generating

function F px, Y q : R2 Ñ R with p “ BF {BY , q “ ´BF {Bx with detFxY ­“ 0.

Note that, since F is periodic, we may consider it to be a smooth function on a

torus T 2. Then

ψpx, yq “
ˆ
x ` BF

BY , y ´ BF
Bx

˙
.

But now we see that the fixed points of ψ correspond exactly to the critical points

of F . By Theorem 21, we know that F must have at least 3 critical points. Hence,

ψ has at least three fixed points. �

The conditions of Theorem 29 translate into higher dimensions in the following

way.

Definition 30. A manifold pM2n, ωq is symplectic if ω is a closed two-form such
that ωn is a volume form on M . pThis is equivalent to saying that the form is non-
degenerate.q A diffeomorphism f : M Ñ M is a symplectomorphism if f˚ω “ ω.

Note that, if the manifold is closed, then ωn gives a non-trivial cohomology class

(which we will also denote by ωn) in the top degree cohomology H2npM ;Rq – R.

Thus, cuppMq ě n, so catpMq ě n. Also note that, for two-manifolds, the

symplectic form and the area form are the same, so a diffeomorphism is area-

preserving if and only if it is a symplectomorphism.

Example 31. The following are examples of symplectic manifolds.
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1. R
2n with coordinates px1, . . . , xn, y1, . . . , ynq and ω “ řn

i“1 dxi ^ dyi

2. C
n – R

2n

3. T 2n, cotangent bundles T ˚pMq, Kähler manifolds, orientable surfaces.

4. A nilmanifold M “ N{π is the quotient of a nilpotent Lie group N by a
finitely generated co-compact discrete torsionfree subgroup π. For instance
the set of 3 ˆ 3 upper triangular real matrices with one’s on the diagonal
forms a nilpotent Lie group pcalled the Heisenberg groupq which is diffeo-
morphic to R

3 pbut with a different multiplicationq. A torsionfree subgroup is
given by the matrices with integral entries and the resulting quotient H is a
closed three-manifold called the Heisenberg manifold. If M “ HˆS1, then
M is a four-dimensional symplectic manifold called the Kodaira-Thurston

manifold. This was the first example of a symplectic non-Kähler manifold.
For more on symplectic nilmanifolds, see [9] for example. Note that, since
every nilpotent Lie group is diffeomorphic to some R

n, then every nilmani-
fold is a Kpπ, 1q.

Symplectic geometry is the natural framework for Hamiltonian mechanics. Take a

(time-dependent, say) Hamiltonian H : M ˆR Ñ R. In coordinate-free language,

each function Ht has an associated vector field Xt with iXtω “ dHt. The time-

dependent vector field Xt has integral curves (in local coordinates) pqptq, pptqq
with associated flow Φ: M ˆ R Ñ M ; Φppq, pq, tq “ pqptq, pptqq, where we have

pqp0q, pp0qq “ pq, pq. The equality iXtω “ dHt gives Hamilton’s Equations for

the flow

9qiptq “ BHpt,Φptqq
Bpi , 9piptq “ ´BHpt,Φptqq

Bqi ¨

Definition 32. The time-one map φ “ Φ1 “ Φp´, 1q of the flow determined by a
time-dependent Hamiltonian is called a Hamiltonian diffeomorphism.

Hamiltonian diffeomorphisms are the generalization of toral diffeomorphisms that

preserve the center of gravity. An important characterization of Hamiltonian dif-

feomorphisms is that they precisely form the commutator subgroup of the group

of symplectomorphisms. The generalization of Theorem 29 is now the following

(see [1, Appendix 9]).

Conjecture 33 (The Arnold Conjecture) . If φ : M Ñ M is a Hamiltonian dif-
feomorphism on a closed symplectic manifold pM,ωq and Fixpφq stands for the
number of fixed points of φ, then

Fixpφq ě CritpMq.
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In the Conjecture, the Hamiltonian diffeomorphism can be replaced by a one-

periodic flow and the fixed points can be replaced by the one-periodic solutions

of the associated Hamilton equations. See [12] for details. These are critical points

of the following action functional on (contractible) loops u in M (i.e., contractible

u : S1 Ñ M ):

AHpuq “ ´
ż
D2

ru˚ω ´
ż
S1

Htpuptqqdt
where ru : D2 Ñ M is an extension to D2 of the loop u : S1 Ñ M using u’s con-

tractibility. The important thing to notice is that the functional is not well defined!

Different extensions to the disk can give different results – unless ω|π2pMq “ 0
– and this was Floer’s approach to the problem. Geometrically, this condition is

saying that ż
S2

g˚ω “ 0

for all g : S2 Ñ M . Pasting ru and pu together along S1 gives a map g : S2 Ñ M
with

0 “
ż
S2

g˚ω “
ż
D2

ru˚ω ´
ż
D2

pu˚ω

showing that AH is then well-defined. So we restrict ourselves to symplectic mani-

folds pM,ωq with ω|π2pMq “ 0 and call these symplectically aspherical manifolds.

Floer was able to then prove a weakened version of the Arnold Conjecture.

Theorem 34. If φ : M Ñ M is a Hamiltonian diffeomorphism on a symplectically
aspherical manifold, then

Fixpφq ě 1 ` cupZ2
pMq.

We say that this result is a weakened form of Conjecture 33 by virtue of Prop-

erty 2 and Theorem 21. Since Floer’s work there have been several proofs of the

weakened conjecture for general symplectic manifolds (see for example, [8, 13]).

Moreover, in the spirit of Morse theory, the result can be strengthened to having

a lower bound equal to the sum of the Betti numbers when the fixed points are
non-degenerate.

Now, here is how LS category enters the picture. It relies on a homotopy interpre-

tation of the condition ω|π2pMq “ 0. We have H2pM ;Rq – HompH2pMq,Rq, so

think of ω as a homomorphism ω : H2pMq Ñ R. The Hurewicz homomorphism

(in degree 2), h : π2pMq Ñ H2pMq, is defined by hpαq “ α˚pιq, where α : S2 Ñ
M is a representative of the homotopy class α P π2pMq and ι P H2pS2q – Z

is a chosen (and fixed) generator. The image of the Hurewicz homomorphism,

imphq, is then a subgroup of H2pMq. The notation ω|π2pMq “ 0 then means that

ω : H2pMq Ñ R vanishes on imphq Ď H2pMq. Recall the following.
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Theorem 35 (Hopf’s Theorem) . The universal cover classifying map f : M Ñ
Kpπ1pMq, 1q induces isomorphisms with integral coefficients

H1pM ;Zq – H1pKpπ1pMq, 1q;Zq
H2pM ;Zq
imph2q – H2pKpπ1pMq, 1q;Zq.

The second isomorphism has the following immediate implication.

Corollary 36. The condition ω|π2pMq “ 0 holds if and only if there exists ωπ P
H2pKpπ1pMq, 1q;Rq with f˚ωπ “ ω where f : M Ñ Kpπ1pMq, 1q is as above.

By our results on category weight, Corollary 36 implies that wgtpωq “ 2 and,

consequently, wgtpωnq “ 2n “ dimpMq. This then says, in particular, that

catpMq “ 2n “ dimpMq for a symplectically aspherical manifold. We will

see what this implies below. The key link between the analysis of the Arnold Con-

jecture and LS category is the following result [12].

Theorem 37. Suppose pM2n, ωq is a symplectically aspherical manifold and H : Mˆ
R Ñ R is a one-periodic time-dependent Hamiltonian. Then

1. There is a gradient-like flow Ψ on a compact metric space X8 such that

RestpΨq ď Number of contractible one ´ periodic

orbits of the flow Φ associated to H.

2. There is a map τ : X8 Ñ M that induces an injection in cohomology pwith any
coefficients Rq

τ˚ : H˚pM ;Rq Ñ H˚pX8;Rq.
Recalling that we replaced fixed points by one-periodic orbits and using Theo-

rem 37, we have

Fixpφq ě Number of contractible one ´ periodic orbits

ě RestpΨq
ě 1 ` catpτq, by Theorem 23.

Also, since τ˚pωnq ­“ 0 and 2n ` 1 “ dimpMq ` 1, we have by Property 14,

2n ` 1 ě CritpMq ě catpMq ` 1 ě catpτq ` 1 ě wgtpωnq ` 1 “ 2n ` 1

since ω “ f˚pωπq for f : M Ñ Kpπ1pMq, 1q. Hence, CritpMq “ catpτq ` 1.

This then leads to a proof of the following original version of Arnold’s Conjecture.
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Theorem 38 ([21, 23]) . Let pM,ωq be a closed symplectically aspherical manifold
and let CritpMq denote the minimum number of critical points for any smooth
function f : M Ñ R. If φ : M Ñ M is a Hamiltonian diffeomorphism and Fixpφq
stands for the number of fixed points of φ, then

Fixpφq ě CritpMq.

Proof:

Fixpφq ě Number of contractible one ´ periodic orbits

ě RestpΨq
ě 1 ` catpτq “ CritpMq.

�

5. Bochner-Type Theorems

5.1. Introduction

In the 1920’s, the development of algebraic topology by Alexander and Lefschetz

was accompanied by the efforts of Morse, de Rham and Lusternik-Schnirelmann

to relate algebraic topological invariants to global analysis. Of course, for some

manifolds such as Kähler manifolds, analysis and geometry are strongly bound to-

gether and this is reflected algebraic topologically in the fact that the cohomology

of a Kähler manifold satisfies the Hard Lefschetz property (see [27] for example).

Another result that exemplifies this mixture of geometry, analysis and topology is

the following result of S. Bochner (which on the face of it does not appear ana-

lytic!) [30].

Theorem 39. If M has non-negative Ricci curvature, then b1pMq ď dimpMq.
Moreover, equality holds if and only if M – Tn pwhere the torus is flatq.

While the actual definition of Ricci curvature is not important for understanding

the statement, note that this result is proved by relating the Hodge Laplacian to the

connection Laplacian and the Ricci curvature form via the analysis associated to

the so-called Weitzenböck formula (see [20] for instance). The question for us is,

how can LS category impinge on this type of result? As we saw with the Arnold

conjecture, LS category can be used in conjunction with an intermediary theorem

that brings analysis closer to topology. Here that type of result is the following [2].
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Theorem 40 (Cheeger-Gromoll Theorem) . If M has non-negative Ricci curva-
ture, then M has a finite cover ĎM – T k ˆ N where N is one-connected.

It can be seen that the Cheeger-Gromoll theorem implies Bochner’s theorem, but

in fact, it gives much more.

Theorem 41 ([16]) . If M has non-negative Ricci curvature, then b1pMq ď catpMq.
Moreover, equality holds if and only if M – Tn (where the torus is flat).

We won’t prove this theorem because we will supercede it using our extra knowl-

edge about cat1. In fact, the second part of the statement is somewhat unsatis-

factory because equality only holds in a “trivial” case. This often means that an

estimate is flabby. Let’s now try to improve the estimate.

5.2. Non-Negative Ricci Curvature and one-Category

Theorem 41 can be refined using what we know about cat1 (see [19]).

Theorem 42. If M has non-negative Ricci curvature, then b1pMq ď cat1pMq.

Proof: By Theorem 40, there is a splitting ĎM – T kˆN of a finite cover ĎM Ñ M .

Now, we know that b1pMq ď b1pĎMq “ b1pT kq “ k by the transfer for finite

covers. (Recall that, for a finite cover with n-sheets p : X Ñ X , there is a transfer

homomorphism τ : H˚pX;Qq Ñ H˚pX;Qq such that τ ˝ p˚ “ n ¨ id.) Now, by

Property 18, we have

b1pMq ď k “ cat1pT k ˆ Nq “ cat1pĎMq ď cat1pMq.
�

Example 43. M “ T 2 ˆ S2 has a pproductq metric with non-negative Ricci cur-
vature. Clearly, b1pMq “ 2 and by Example 19, we see that cat1pMq “ 2 as
well. Note however, that M is not a torus. Therefore, qualitatively, the estimate of
Theorem 42 is much better than those found in Theorem 39 and Theorem 41.

5.3. Almost Non-Negative Sectional Curvature

Now let us see how this general approach can be applied to other problems on the

border between geometry and topology. Because the following curvature notion is

not so widely known, we give the definition.
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Definition 44. A closed smooth manifold Mm is said to be almost non-negatively

(sectionally) curved por ANSCq if it admits a sequence of Riemannian metrics
tgnunPN whose sectional curvatures and diameters satisfy

secpM, gnq ě ´ 1

n
and diampM, gnq ď 1

n
¨

Here is an old result of Yamaguchi [29] about these types of manifolds.

Theorem 45 (Yamaguchi’s Theorem) . If Mm is an ANSC manifold, then:

1. A finite cover of M is the total space of a fibration over a torus of dimension
b1pMq
2. If b1pMq “ m, then Mm is diffeomorphic to T b1pMq.

More recently, a beautiful structure theorem has been proved about ANSC mani-

folds [17].

Theorem 46 (Kapovitch-Petrunin-Tuschmann Theorem) . If M is an ANSC

manifold, then there is a finite cover ĎM that is the total space of a fibre bundle

F Ñ ĎM pÑ N

where N “ Kpπ, 1q is a nilmanifold psee Example 31 - 4) and F is a simply
connected closed manifold which is almost non-negatively curved in a generalized
sense.

A fundamental question is, what is the relationship between Yamaguchi’s old result

and this new structure theorem of Kapovitch-Petrunin-Tuschmann. Let’s begin to

answer this question by first proving the following Bochner-type theorem [19].

Theorem 47. Suppose M is an ANSC manifold with associated finite cover ĎM
and KPT-fibre bundle

F Ñ ĎM pÑ N

where N “ Kpπ, 1q is a nilmanifold and F is a simply connected closed manifold.
Then:

i) b1pMq ď dimpNq ď dimpĎMq “ dimpMq
ii) Moreover, if the universal cover ĂM has non-zero Euler characteristic, then

b1pMq ď dimpNq ď cat1pMq.
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Proof: We know b1pMq ď b1pĎMq from the transfer. But the long exact homotopy

sequence of the bundle also gives π1pĎMq – π1pNq “ π. By Hopf’s Theorem, we

know that the first homology depends only on the fundamental group, so we obtain

H1pĎM ;Qq – H1pπ;Qq – H1pN ;Qq. Hence, b1pMq ď b1pĎMq “ b1pNq.

Now we must invoke some results from Rational Homotopy Theory (see [9, 27]).

Since N is a nilmanifold, it has a (rational-homotopy-theoretic) minimal model

p^px1, x2, . . . , xkq, dq, where each generator has degreepxjq “ 1 and k is the

rank of the torsionfree nilpotent group π. By the general theory, the differential d
is zero on x1, . . . , xs for some 2 ď s ď k and k “ dimpNq. (The case s “ k is a

torus.) Then b1pNq “ s ď k “ dimpNq. Since F Ñ ĎM pÑ N is a bundle, we see

that dimpNq ď dimpĎMq “ dimpMq. This proves i).

For ii), because F » ĂM and χpĂMq ­“ 0, the bundle F Ñ ĎM pÑ N has a Becker-

Gottlieb transfer map τ : H˚pĎM ;Zq Ñ H˚pN ;Zq with τ ˝ p˚pαq “ χpF q ¨ α, for

all α P H˚pN ;Zq. This implies that

p˚ : H˚pN ;Qq “ H˚pKpπ, 1q;Qq Ñ H˚pĎM ;Qq
is injective on rational cohomology. Hence, since ĎM Ñ N “ Kpπ, 1q may be

considered as the classifying map of the universal cover, Property 18 implies that

dimpNq ď cat1pĎMq. Thus

b1pMq ď b1pNq ď dimpNq ď cat1pMq.
�

Using Theorem 47, we can see how (a topological version of) Theorem 45 follows

from Theorem 46.

Theorem 48 ([19]) . Suppose a closed manifold M has a finite cover ĎM that is the
total space of a fibre bundle

F Ñ ĎM pÑ N

where N “ Kpπ, 1q is a nilmanifold and F is a simply connected closed manifold.
Then:

1. A finite cover of M is the total space of a fibration over a torus of dimension
b1pMq

2. If b1pMq “ m “ dimpMq, then Mm is homeomorphic to T b1pMq.

Note that we only get a homeomorphism in (2) instead of Yamaguchi’s diffeomor-

phism. Yamaguchi uses surgery techniques to move from a homeomorphism to a

diffeomorphism that are beyond the scope of this survey.
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Proof: Consider F Ñ ĎM pÑ N . From Theorem 47, we know that

b1pMq ď b1pĎMq “ b1pNq ď dimpNq ď dimpĎMq “ dimpMq.

Now, the general construction of the nilmanifold N via iterated principal S1-

bundles shows that we may start the iteration by a bundle over T b1p ĎMq or any

torus of lower dimension. Thus, item 1 follows since a composition of fibrations is

a fibration.

Now assume b1pMq “ m “ dimpMq. Then by the string of inequalities above,

dimpNq “ m “ dimpĎMq. Because we have a fibre bundle, we see that dimpF q “
0 and (since F is connected) we have ĎM “ N . But then we have b1pNq “ m “
dimpNq by the inequalities. For a nilmanifold, this can only happen if N is a

torus Tm and π – Z
m. Now, ĎM “ Tm covers M , so M is a KpG, 1q where

G “ π1pMq. Since M is a closed m-manifold that is also a KpG, 1q, we have that

G is torsionfree. Now, π – Z
m has finite index in G and b1pπq “ m “ b1pMq “

b1pGq, so G – Z
m by the following.

Lemma 49. If π – Z
m is a finite index subgroup of a torsionfree group G and

b1pGq “ m, then G – Z
m.

See [19] for a proof of this group-theoretic result. Hence M “ KpZm, 1q is a

homotopy torus. Since the (surgery) topological structure set for the torus is trivial,

we have that M is then homeomorphic to Tm. �

6. Topological Complexity

6.1. Introduction

The phrase “topological complexity” has both an old and new meaning within the

framework of LS category theory. The old meaning refers to Smale’s measure of

the complexity of an algorithm [24]. The new meaning refers to Farber’s measure

of the insolubility of the motion planning problem in robotics [5–7]. The inter-

esting thing about these apparently unrelated problems is that they both rely on

sectional category as the basis of their defining measures. In this section, we will

present these notions with an emphasis on the categorical aspects. For properties

of sectional category, see Subsection 3.3.
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6.2. Smale’s Topological Complexity

What is an algorithm? Without having a specific definition, it would be impos-

sible to measure complexity. Smale took a simple definition of algorithm which

surprisingly fits many situations.

Definition 50. An algorithm tree is a connected directed graph G with vertices
tR, V1, . . . , VN , L1, . . . , Lmu satisfying the following conditions.

1. There are no loops, i.e., G is a tree.

2. The root R has only one edge and that edge comes out of R.

3. Each Vi has one edge coming into it and either one or two edges coming out
of it. Those Vi with one edge coming out are called computation vertices

and those with two edges coming out are called branch vertices.

4. Each leaf Lj has only one edge coming into it.

Example 51. Here is a typical algorithm tree. Note that the algorithm proceeds
from the root pwhere the input is madeq to one of the leaves pwhere the output
appearsq.

R

��
V1

����
��
��
��

�����
����

����
����

����
����

V2

����
��
��
��

		�
��

��
��

� V3

��
V4

��

V5

����
��
��
��

		�
��

��
��

� V6

����
��
��
��

		�
��

��
��

�

L1 L2 L3 L4 L5

Definition 52. The Smale topological complexity of an algorithm tree G, τpGq,
is the number of branch vertices in G. This is also equal to one fewer than the
number of leaves in the tree

#tLju ´ 1 “ #tBranch Viu “ τpGq.
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The Smale topological complexity of a particular problem P is the minimum of the
topological complexities of all algorithms which solve the problem

τpP q “ mintτpGq ; G “ algorithm tree for P u.

Smale’s main example (which motivates the definition in fact) is to the root finding

problem.

Problem 53 (Root Finding Problem) Find the roots of P pxq, where

P pxq “ a0 ` a1x ` a2x
2 ` ¨ ¨ ¨ ` ad´1x

d´1 ` xd.

is a monic polynomial of degree d with complex coefficients. Here, the word “find”
is taken to mean “find to within a given accuracy ε”. This problem is denoted by
RF pd, εq.

After Smale’s work, the following result was proved that gave an upper bound for

the Smale topological complexity of the root finding problem.

Theorem 54 (Vassiliev) There exists an algorithm tree of topological complexity
d´1 for the problem of determining roots of degree d monic polynomials to within
a given ε ą 0. Thus, the topological complexity of the problem is at most d ´ 1

τpRF pd, εqq ď d ´ 1.

Let Pd denote the set of degree d monic polynomials with complex coefficients.

Take the mapping π : Cd Ñ Pd given by

πpξ1, . . . , ξdq “
dź

i“1

px ´ ξiq.

Let

Δ “ tpξ1, . . . , ξdq ; ξi “ ξj for some i ‰ ju Ď Cd

πpΔq “ Σ “ tPolynomials with repeated rootsu Ď Pd.

Denote the restriction

π|Cd´Δ : Cd ´ Δ Ñ Pd ´ Σ

by π as well. The symmetric group on d letters, Spdq, acts by permuting the d
coordinates ξi and this action has no fixed points on Cd ´ Δ. Therefore, π is a

pd !q-fold covering map. Here is Smale’s result.
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Theorem 55 (Smale) . For any d there exists εd ą 0 such that, for ε ă εd, the
topological complexity τpRF pd, εqq for the problem of finding roots of degree d
monic polynomials to within ε is at least the sectional category of the covering
π : Cd ´ Δ Ñ Pd ´ Σ. That is

τpRF pd, εqq ě secatpπq.
Proof (Sketch of Proof): It can be shown that the problem can be reduced to

the case of polynomials with no repeated roots. Suppose there is an algorithm tree

which solves the root finding problem. Let the solution algorithm tree be G with

vertices tR, V1, . . . , VN , L1, . . . , Lmu. For i “ 1, . . . ,m, define Zi to be the set

tP pxq P Pd ´ Σ; the output of the algorithm tree G applied to P pxq
exits the tree through leaf Liu.

Since an algorithm exists we define an input-output map φ : Pd ´ Σ Ñ Cd by

φpP pxqq “ pz1, z2, . . . , zdq
(the output of the algorithm) where each zi satisfies |zi ´ ξi| ă ε, for ξi the true

roots of P pxq. The branch inequalities say that Zi is a semi-algebraic set, so the

Tietze extension theorem gives an open set Ui containing Zi and an extension

φ : Ui Ñ Cd. These input-output maps are “sections to within ε”. It requires a

clever argument, but in fact these φ’s can be deformed to actual sections. But this

is exactly sectional category! Therefore, we obtain

secatpπq ď m ´ 1 “ #pbranchesq “ τpRF pd, εqq.
�

We now see that, combined with Vassiliev’s result, we have

d ´ 1 ě τpRF pd, εqq ě secatpπq.
Now, we know something about secatpπq from Property 16. The covering map

π : Cd ´Δ Ñ Pd ´Σ is a principal bundle induced by a classifying map f : Pd ´
Σ Ñ KpSpdq, 1q. Then, we have secatpπq “ catpfq. Of course, we also know

how to estimate catpfq using category weight by Property 14. For this, we need to

know the highest degree where the induced map on cohomology f˚ is non-zero.

For this, we recognize that in fact, Cd ´ Δ “ R
2rds is the ordered configuration

space of d points in R
2, a space that has been studied extensively. (Here and below

we use Vassiliev’s notation, see [28].) The symmetric group Spdq acts freely on

R
2rds by permuting the ordering and the resulting quotient is the dth unordered

configuration space, denoted R
2pdq, which is Pd ´ Σ.
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Now, it is known that R2pdq “ KpBrpdq, 1q, where Brpdq is the braid group
and there is a homomorphism Brpdq Ñ Spdq arising from the classifying map

f : R2pdq Ñ KpSpdq, 1q of the covering projection R
2rds Ñ R

2pdq. But here is

a result about this situation that was discovered (essentially) before Smale’s topo-

logical complexity was even invented.

Theorem 56 (Arnold-Fuchs-Vassiliev) .

Hd´1pKpBrpdq, 1q;˘Zq “
#
0 if d ‰ pq, for p prime

Zp if d “ pq, for p prime

Moreover, the homomorphism f˚:H˚pKpSpdq, 1q;˘Zq Ñ H˚pKpBrpdq, 1q;˘Zq
is surjective.

First, note that the notation ˘Z means that cohomology is taken with respect to

local coefficients given by the Spdq-module Z defined by multiplying an integer

by ˘1 according to the parity of the permutation. But the properties of category

weight hold for any coefficients, so because f˚ is surjective, it is simply the highest

degree of H˚pKpBrpdq, 1q;˘Zq. This then bounds catpfq from below. We then

obtain the following from Theorem 56.

Corollary 57. For d equal to a power of some prime, there exists εd ą 0 such that,
for ε ă εd

τpRF pd, εqq “ d ´ 1.

Proof: Since f˚ is surjective and Hd´1pBrpdq;˘Zq ­“ 0, there exists a class

u P Hd´1pSpdq;˘Zq with f˚puq ­“ 0. Hence

secatpπq “ catpfq ě wgtpuq ě d ´ 1.

�

So, for the case of the root finding problem when the degree d is a power of a prime,

the best possible solution algorithm requires precisely d ´ 1 decisions. Thus, a re-

sult far from homotopy theory follows from the homotopical properties of sectional

category — a rather surprising consequence.

6.3. Farber’s Topological Complexity

A mechanical system S is described by its totality of states X “ XpSq, this is the

configuration space of S .
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Example 58. A planar robot arm with n links has configuration space the n-torus
Tn since the relevant parameters of the system are the n angles between consecu-
tive links.

Example 59. When we have a rigid body in R
3, each configuration prelative to a

fixed frameq can be identified with an element of the rotation group SOp3q. Thus,
SOp3q is the configuration space for rigid body motion.

Example 60. If n particles por robotsq move in a space Y to avoid collisions, then
the configuration space is

F pY, nq “ tpy1, . . . , ynq P Y n ; yi ­“ yj , i ­“ ju.
In particular, if n robots move along a wire network pgraphq Γ in a factory, then a
position for each of the robots gives a point in F pΓ, nq. The definition of F pY, nq
that we have written above is actually the general topological definition of the
configuration space associated to the space Y .

In robotics, the fundamental problem is how to control a robot from any one con-

figuration to any other configuration. Now, there are two important requirements.

1) The process of finding the path should work for all pairs of points. In other

words, no matter what state the robot is in, there is a control process that can

bring it to any given state.

2) The process should be fully automated (i.e., algorithmic). This is particularly

important since robots are expected to act without human guidance.

Formally, we write the following.

Problem 61. Let X be the configuration space of a system S . The motion planning

problem is to algorithmically determine a continuous path γ : I Ñ X with γp0q “
A and γp1q “ B for any A,B P X .

A precise mathematical formulation of the problem is the following (see [5]). Let

ev : XI Ñ X ˆ X be the evaluation fibration evpγq “ pγp0q, γp1qq, where XI

is the space of all paths γ : I Ñ X . A motion planning algorithm is a continuous

section

s : X ˆ X Ñ XI , ev ˝ s “ 1XˆX .

Unfortunately, we have the following sobering result.
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Proposition 62. A motion planning algorithm s : X ˆ X Ñ XI exists if and only
if X is contractible pi.e., deformable to a pointq.

Proof: If X » ˚, then there is a homotopy H : X ˆ I Ñ X with Hpx, 0q “ x and

Hpx, 1q “ B0, for fixed B0. Given A,B, define

γptq “
#
HpA, 2tq 0 ď t ď 1{2
HpB, 2 ´ 2tq 1{2 ď t ď 1.

Since this continuously determines a path γptq for each pair pA,Bq, we obtain a

motion planning algorithm. On the other hand, if a motion planning algorithm

s : X ˆX Ñ XI exists, define H : X ˆ I Ñ X by HpA, tq “ spA,B0qptq. Then

HpA, 0q “ A and HpA, 1q “ B0 because s is a section of ev. �

So what can be done for more general spaces if motion planning algorithms only

exist for contractible configuration spaces? Well, this is precisely the LS category

approach to a space’s complexity.

Definition 63. The Topological Complexity of the motion planning algorithm prob-
lem for X is

TCpXq “ secatpev : XI Ñ X ˆ Xq.
The idea behind this definition is that we decompose X ˆ X into open sets U
for which there is a motion planning algorithm in X . By this we mean that the

path that connects two points of U may go outside U itself. The complexity of

the configuration space with respect to finding a motion planning algorithm is then

measured by the sectional category of the evaluation map ev : XI Ñ X ˆ X .

The relation between LS category and topological complexity is expressed by the

following inequalities.

Proposition 64. Topological complexity is a homotopy invariant and the following
estimates hold

catpXq ď TCpXq ď catpX ˆ Xq ď 2 catpXq.

For the proof of homotopy invariance, see [5]. The estimate TCpXq ď catpXˆXq
is simply (1) of Property 16 while the estimate catpXq ď TCpXq follows from

(5) of Property 16 when we recognize that the (based) path fibration PX Ñ X is

a pullback of the evaluation fibration ev : XI Ñ X ˆ X by the mapping X Ñ
X ˆ X , x ÞÑ px0, xq for a fixed basepoint x0 P X . Here is the fundamental

example (see [5]).
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Proposition 65.

TCpSnq “
#
1 n odd

2 n even.

Proof: Case n odd. Let’s break Sn ˆ Sn into two open sets.

U “ tpx, yq ; y ­“ ´xu, V “ tpx, yq ; y “ ´xu.
(Note that the second set is not open, but we can take a small deformable neigh-

borhood around the anti-diagonal to “make it open”.) We need to define local

sections on these sets. This means specifying a path from x to y in an algorith-

mic continuous fashion. For U , simply take the path that is the unique minimizing

geodesic between x and y. This makes sense precisely because y ­“ ´x. For

V this definition would be a problem since there are two minimizing geodesics.

However, here we can use the fact that, since the Euler characteristic of an odd

sphere is zero, there is a non-vanishing vector field on Sn. So, at x, take the vector

field vector as the initial condition of a geodesic and take this path to y “ ´x.

(Here we use the fact that geodesics are great circles.) Since we have local sec-

tions on U and V , we see that TCpSnq ď 1. By Proposition 64, we also see that

1 “ catpSnq ď TCpSnq ď 1, so TCpSnq “ 1.

Case n even. So what is the only difference in the case of n being even? It is

simply that the Euler characteristic of an even sphere is 2, not 0. So we cannot use

the method on V to find an algorithmic path. However, we do know that there is a

vector field on Sn with only a single zero x0, say. So if we define U as above and

V “ tpx, yq ; y “ ´x, x ­“ x0u, W “ tpx0,´x0qu,
then we can use the vector field on V as before. Again, we can take a small

contractible neighborhood around px0,´x0q that deforms to px0,´x0q, so we need

only define a path for this single point. For this we can take any path from x0 to

´x0. Therefore, since we cover with three sets U, V, W , TCpSnq ď 2. To get a

good lower bound, we use (3) of Property 16 by considering the element

χ “ x b 1 ´ 1 b x

P pHnpSn;Qq b H0pSn;Qqq ‘ pH0pSn;Qq b HnpSn;Qqq
– HnpSn ˆ Sn;Qq

where x ­“ 0 in HnpSn;Qq. Now, ev˚pχq “ 0 because XI » X and ev˚pxb 1 “
x “ ev˚p1 b xq. Also, χ2 ­“ 0 since graded commutativity of cohomology gives

χ2 “ ´x b x ´ p´1qn2

x b x
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and n is even. (Note that this argument would not work for n odd.) Hence, by (3)

of Property 16, TCpSnq ě 2. Thus, TCpSnq “ 2. �

Remark 66. There are several things to note about this result. First, although
TC is a homotopy invariant, we are using geometric entities such as geodesics
and vector fields to obtain local sections. More homotopical approaches to TC
have more recently appeared that reformulate TC akin to the reformulation of
category in Section 3. Secondly, note that odd spheres realize the lower bound of
Proposition 64 while even spheres realize the upper bound.

Here is another case where the lower bound of Proposition 64 is realized. This is

an important case because Lie groups are often configuration spaces for systems

such as robots.

Theorem 67. If X is a Lie group, then TCpXq “ catpXq.

Proof: By Proposition 64, we must only show that TCpXq ď catpXq. To see this,

we use both parts of (5) of Property 16 together with the existence of a multiplica-

tion (with inverse and identity e) on X . First, take the pullback

Q ��

q

��

PX

p0
��

X ˆ X
μ �� X

where μ : X ˆ X Ñ X is given by μpx, yq “ yx´1. The definition of pullback

gives Q “ tpx, y, γq | γp0q “ e, γp1q “ yx´1u. Since we have a pullback, we

see that

secatpqq ď secatpp0q “ catpXq.
But now consider the diagram

Q
φ ��

q

��

XI

ev

��
X ˆ X

id �� X ˆ X

where φpx, y, γqptq “ γptq ¨ x. We then have

evpφpx, y, γqq “ pγp0q ¨ x, γp1q ¨ xq “ px, yq
so the diagram commutes. Again by (5) of Property 16, we obtain

TCpXq “ secatpXq ď secatpqq.
Putting the two inequalities together gives the result. �
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Example 68. Recall from Example 58 that the configuration space of a planar
robot arm with n links is an n-torus Tn. We immediately see that TCpTnq “ n
since we know catpTnq “ n. So a solution to the motion planning problem requires
a covering of Tn ˆ Tn by at least n ` 1 open sets over which local sections (i.e.,
motion plans) can be constructed.

Example 69. Recall from Example 59 that SOp3q is the configuration space for
rigid body motion. By the above, we have that TCpSOp3qq “ 3 since it is known
that SOp3q – RP3 and we have seen in Theorem 3 that catpRP3q “ 3. This
means that if we have a robot arm with a hand giving it orientation, then there
are obstructions to passing continuously from any state to any other state. We
require four open sets in which motion planning can be accomplished. This tells
engineers that they should expect discontinuous motions at times and that some
type of intervention might be necessary to avoid breakage of the robot arm.

Here is a result for configuration spaces on R
m [6].

Theorem 70.

TCpF pRm, nqq “
#
2n ´ 2 m odd

2n ´ 3 m even.

Now, TC does not just have applications to robotics. There is a feedback loop to

topology as well. A longstanding problem in topology has been the question of the

smallest dimensional Euclidean space that supports an immersion of a given real

projective space. Here is a very surprising result that provides a new approach to

the problem [5].

Theorem 71. For n ­“ 1, 3, 7, TCpRPnq is the smallest k such that RPn admits
an immersion into R

k.

Remark 72. Note that Example 69 gave TCpRP3q “ 3, but RP3 does not im-
merse in R

3. Thus, the exceptional cases arise when R
k, k “ 2, 4, 8 have “prod-

uct” structures pcomplex, quaternion, Cayley numbersq. Note also that, while
Proposition 64 tells us that 2 ď TCpRP2q ď 4, Theorem 71 gives TCpRP2q “ 3
since RP2 immerses in R

3 pas Boy’s surface sayq but not in R
2.

Proposition 65 begs the question of determining spaces with low topological com-

plexity. In [10], these spaces were identified.

Theorem 73 (Grant-Lupton-Oprea) . If TCpXq “ 1, then X is homotopy equiv-
alent to some sphere of odd dimension. Moreover, if X is also a closed manifold,
then X is homeomorphic to an odd sphere.
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This result has a rather complicated proof, but the starting point is the recognition

that the inequality catpXq ď TCpXq “ 1 implies that X is a co-H-space (i.e., a

space with co-multiplication) since catpXq “ 1 identifies these spaces. Now, there

are co-H-spaces that are not spheres. In fact, every suspension ΣX is a co-H-space

and catpΣXq “ 1 as can be seen by decomposing ΣX into its top and bottom

cones. So Theorem 73 is giving yet another indication that TC is a more powerful

invariant than LS category.

A major question in the subject is, what is the topological complexity of a Kpπ, 1q.

Eilenberg and Ganea showed that, when the (geometric) dimension of a Kpπ, 1q is

greater than 3, then

cdpπq “ catpKpπ, 1qq “ dimpKpπ, 1qq.
Here, cdpπq is the cohomological dimension of the group π, so we only get a finite

number above when cdpπq ă 8: in particular, only when π is torsionfree. There

are some determinations of TC for Kpπ, 1q which often use some type of auxiliary

structure associated to the group π that enables an application of Property 16 - 3

(e.g. see [3]). Here is a more general result that centers on the subgroup structure

of π [11].

Theorem 74 (Grant-Lupton-Oprea) . If A and B are complementary subgroups
of π (i.e., AB “ π and A X B “ H), then

cdpA ˆ Bq ď TCpKpπ, 1qq.
Using this result, we can recover lower bounds for TC for various types of Kpπ,1q’s

such as right-angled Artin groups and braid groups. Furthermore, using much

harder arguments, we obtain the following result.

Corollary 75. Let H denote the Higman group with presentation

xx, y, z, w | xyx´1y´2, yzy´1z´2, zwz´1w´2, wxw´1x´2y.
Then TCpHq “ 4.

It is known that the group H is acyclic (it has the same integer homology as a triv-

ial group), and so H˚pH; kq “ 0 (in positive degrees) for every abelian group

k. Moreover, H has no non-trivial finite quotients, so it has no non-trivial fi-

nite dimensional representations over any field. It then follows that if M is any

coefficient ZrHs-module which is finitely generated as an abelian group, then

H˚pH;Mq “ 0. Thus the group H is difficult to distinguish from a trivial group

using cohomological invariants.
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On the other hand, since H is not a free group we have cdpHq ě 2. The two-

dimensional complex associated to the presentation P is known to be aspherical

and it follows that catpHq “ cdpHq “ 2. Thus the topological complexity of

Higman’s group satisfies 2 ď TCpHq ď 4. A nontrivial argument using Bass-

Serre theory shows the result that TCpHq “ 4.

7. Final Words

We have seen several themes throughout this work. First, LS category and its

offspring often serve as intermediaries or translators between the worlds of ge-

ometry or applied mathematics and topology, providing measures of complexity

estimable by algebraic means. Secondly, the ubiquity of Kpπ, 1q-manifolds or

manifolds such as RPn where cat “ dim in applications shows that the power of

LS category-like invariants is perhaps felt the most when the fundamental group is

present. Finally, the emergence of TC as a new player in applied topology gives

credence to the belief that LS category is a living breathing subject as we approach

the middle of the second decade of the 21st century.
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