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Abstract. We study the 1-D motions of a charge under Coulomb force, within the

electrostatic approximation. When the electrostatic force is attractive, no oscillat-

ing motion takes place. When repulsive, nonlinear oscillations will arise. In both

cases dry friction has been taken into account and time equations have been solved

providing time as elliptic integrals of first and second kind. A short phase plane

analysis has been included. The oscillation period has been exactly computed and

found to increase versus the initial speed of the mobile.

1. Introduction

Most physical, biological, economic systems are inherently not linear so that they

lead to nonlinear ordinary differential equations. As a consequence a branch of ap-

plied research is looking for exact solutions, by means of either special functions

of the Mathematical Physics, or iterative approaches or perturbations, and so on.

For instance, A. More [3] highlights that a closed form solution makes the analy-

sis by far more elaborate and easier as its behavior becomes at once clear, when

expressed in closed form in terms of known functions.

Our Problem

A mobile M -point mass, always constrained on a straight trajectory, undergoes

dry friction, say μ > 0 its dynamic coefficient, having as propelling cause an

electrostatic force. The motion time law is required.

In fact, two invariable electric charges of opposite signs are placed: q0, at a certain

fixed point; the latter, say q, on the moving particle of mass M > 0. Let be L the

initial distance between them: we put the origin O of the reference at the start of the

mobile: so that the resting charge stays at x = −L and the Coulomb force will be

directed as the negative sense of x with a intensity F (x) = kqq0/(L+ x)2, being

x = x(t) ≥ 0 the (unknown) particle’s position at time t, and k = 9 × 109N ×
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m2/C2 the Coulomb’s constant. Considering, as before, the forces equation

ẍ = −μg −
kqq0

M(L+ x)2
, x(0) = 0, ẋ(0) = v0 > 0 (1)

we scale from x to the non dimensional co-ordinate ξ = x/L and put: a =
2μg/L, b = 2kqq0/ML2,

√
c = v0/L. In such a way the motion initial value

problem for the case of opposite charges takes the form of equation (2) below.

We are going to analyze the particle dynamics within the so called electrostatic

approximation1.

2. Solution with Electric Opposite Charges

The former discussion leads us to study the initial value problem for the second

order nonlinear autonomous differential equation:

ξ̈ = −
a

2
−

b

2(1 + ξ)2
, ξ(0) = 0, ξ̇(0) =

√
c (2)

where a, b, c > 0. The first remark is that the relevant differential equation has

no equilibria. The trajectories in the phase plan are divided by the (forbidden)

straight line ξ = −1. A phase portrait of (2), obtained using the VisualDSolve
Mathematica R© package [5] is represented in Fig. 1.

Let us approach (2) by the Weierstrass method. First we remark that we are inter-

ested only in the half plane ξ > −1. We see the sign of acceleration is negative for

any ξ. The Weierstrass function relevant to (2) is

Φ(ξ) = 2

∫ ξ

0

(
−
a

2
−

b

2(1 + u)2

)
du+ c =

c− (a+ b− c)ξ − aξ2

1 + ξ

so that its roots are

ξ1,2 =
−a− b+ c±

√
(a+ b− c)2 + 4ac

2a
· (3)

The singularity ξ = −1 lies inside the ξ-segment joining the roots ξ1 < ξ2: in such

a way the mass instantaneous ξ-position moves from the origin outward the major

1Coulomb’s law holds when the objects remain at rest, and has been found approximately cor-
rect only for slow movements. Such all conditions constitute the so called electrostatic approxi-
mation. When a movement takes place, some magnetic fields are produced altering the force be-
tween the objects. A Gauss’s assistant and leading experimental collaborator, Wilhelm Weber, estab-
lished in 1846–1848 an electrodynamics which would predict some velocity-dependent corrections
to Coulomb’s law. Nevertheless in what follows we will not take into account any change on depen-
dence of the mobile charge velocity.
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Figure 1. Phase portrait (ξ̇, ξ) of (2)

with a = b = c = 1.
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Figure 2. Non-oscillatory motion: inversion

of (7) with a = b = c = 1.

root ξ2 and and, after having caught the stopping point, is restored back towards

the minor root ξ1, without getting it because the motion meets its singular point at

ξ = −1. About this, Stratton, [6, p. 170] writes

In this fashion a point singularity is generated and the Coulomb law is then

valid at all points except r = 0. There is no reason to believe that such sin-

gularities exist in nature, but it is convenient to interpret a field at sufficient

distances as that which might be generated by systems of mathematical point

charges.

When the point charge is going away from the start up position, 0 ≤ ξ ≤ ξ2, time

equation becomes

t =
1
√
a

∫ ξ

0

√
1 + x

(ξ2 − x)(x− ξ1)
dx. (4)

Stopping time Ts can then be found by taking ξ = ξ2 in (4) and thanks to formula

3.141.10 p. 263 of [2]. We get

Ts =
2
√
ξ2 − ξ1√
a

E (ϕ(0, ξ2), k(ξ1, ξ2)) +
2 (1 + ξ1)

√
a
√
ξ2 − ξ1

F (ϕ(0, ξ2), k(ξ1, ξ2))

(5)

with

ϕ(ξ, ξ2) = arcsin

√
ξ2 − ξ

ξ2 + 1
, k(ξ1, ξ2) =

√
ξ2 + 1

ξ2 − ξ1
·

Solution to (2) for 0 ≤ t ≤ Ts is defined by

t = Ts−
2
√
ξ2 − ξ1√
a

E (ϕ(ξ, ξ2), k(ξ1, ξ2))+
2 (1 + ξ1)

√
a
√
ξ2 − ξ1

F (ϕ(ξ, ξ2), k(ξ1, ξ2)) .
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In what above F (ϕ, k) and E(ϕ, k) are the incomplete elliptic integrals of first and

second kind of amplitude ϕ and modulus k.

After Ts, in order to go on with integration, the initial conditions of (2) have to be

modified conveniently, so that

ξ̈ = −
a

2
−

b

2(1 + ξ)2
, ξ(Ts) = ξ2, ξ̇(Ts) = 0. (6)

Weierstrass function relevant to (6) is

Φ(ξ) = a
(ξ2 − ξ)(ξ − ξ3)

1 + ξ
where ξ3 = −

aξ2 + a+ b

a (1 + ξ2)
·

Notice that ξ3 < −1 since

−
aξ2 + a+ b

a (1 + ξ2)
< −1 ⇐⇒ aξ2 + a+ b > a (1 + ξ2) ⇐⇒ b > 0

Time equation is then, in force of 3.141.10 p. 263 of [2]

t =Ts +
2
√
a

×

(
1 + ξ3√
ξ2 − ξ3

F (ϕ(ξ, ξ2), k(ξ3, ξ2)) +
√
ξ2 − ξ3E (ϕ(ξ, ξ2), k(ξ3, ξ2))

)(7)

Time TΩ when the singularity would be theoretically met, can be set putting ξ = −1
in (7) so that

TΩ = Ts +
2
√
a

(
1 + ξ3√
ξ2 − ξ3

K(k(ξ3, ξ2)) +
√
ξ2 − ξ3E(k(ξ3, ξ2))

)
being K and E the complete determinations of F and E.

Fig. 2 shows the solution ξ = ξ(t) in the special case a = b = c = 1, so that

motion can be seen as it follows. By equation (2) the particle undergoes always a

negative acceleration. At the start-up, as a consequence of the initial speed, it goes

away from the origin, but at ξ1 it will be stopped. The motion sense is then inverted

and the electrostatic attraction will move it towards the fixed charge, which cannot

be raised due to a singularity at ξ = −1 where the mobile particle will never arrive.

The motion then will terminate just before there: no oscillation can arise.

3. Solution with Concordant Electric Charges

The only change we make to the preceding model is the polarity of charges so that,

cœteris paribus, an electrostatic repulsion will act. Accordingly, the new Cauchy
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problem is

ξ̈ = −
a

2
+

b

2(1 + ξ)2
, ξ(0) = 0, ξ̇(0) =

√
c (8)

where a, b, c > 0. First of all, we see the sign of acceleration is a priori not

fixed, depending on ξ time evolution and on relationship between a and b. The

Weierstrass function of (8) is

Φ(ξ) = 2

∫ ξ

0

(
−
a

2
+

b

2(1 + u)2

)
du+ c =

c− (a− b− c)ξ − aξ2

1 + ξ

whose roots are

ξ1,2 =
−a+ b+ c±

√
(−a+ b+ c)2 + 4ac

2a
· (9)

The singularity ξ = −1 lies outside the roots ξ1 < ξ2, therefore the solution to (8)

is periodic2 and moves between them. Accordingly, the mobile will go towards ξ2
and, after having raised the stopping point, it goes back towards ξ1. Notice that in

such a case we have: −1 < ξ1 < 0 < ξ2. If we study the differential equation (8)

in the phase plane, introducing the Hamiltonian

H(q, p) =
1

2
p2 +

1

2

(
aq +

b

1 + q

)
and the phase plan equivalent system in the (q, p) plane

q̇ =
∂H

∂p
= p, ṗ = −

∂H

∂q
=

1

2

(
−a+

b

(1 + q)2

)
we find a center C and a saddle S where

C =

(√
b−

√
a

√
a

, 0

)
, S =

(
−

√
b+

√
a

√
a

, 0

)
.

The system orbits are separated again by the straight line q = −1. Center C lies

in the half plane q > −1 which is of interest for the model, while saddle S lies

in the half plane q < −1 not interesting in our analysis. The phase portrait, again

obtained using [5] is shown in Fig. 3.

Time equation, from the motion start-up is

t =

∫ ξ

0

dx√
Φ(x)

=
1
√
a

∫ ξ

0

√
1 + x

(ξ2 − x)(x− ξ1)
dx. (10)

2This means that, notwithstanding the physical energy dissipation due to the friction, the oscilla-
tion amplitude is not damped thanks to the energy provided by the electric field of source.
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Figure 3. Phase portrait of (ξ̇, ξ), generated via (8) with a = b = c = 1.

The stop-time Ts can be found by taking ξ = ξ2 in (10): we compute by means of

formula 3.141.17, p. 263 of [2] or through the entry 236.01 of [1]

Ts =
2
√
ξ2 + 1
√
a

E
(
ϕ̂(0, ξ2), k̂(ξ1, ξ2)

)
(11)

with

ϕ̂(ξ, ξ2) = arcsin

√
ξ2 − ξ

ξ2 − ξ1
, k̂(ξ1, ξ2) =

√
ξ2 − ξ1

ξ2 + 1
·

The oscillation period is provided by the complete elliptic integral of second kind,

see [2, entry 3.141.17, p. 263]

T =
2
√
a

∫ ξ2

ξ1

√
1 + x

(ξ2 − x)(x− ξ1)
dx =

4
√
a

√
1 + ξ2E (k(ξ1, ξ2)) . (12)

Integrating (10), one finds time equation giving time as a second kind incomplete

elliptic integral of position, 0 ≤ t ≤ Ts

t = Ts −

√
1 + ξ2√

a
E
(
ϕ̂(ξ, ξ2), k̂(ξ1, ξ2)

)
. (13)

Going ahead, if Ts < t ≤ Ts +
T
2 we get

t = Ts +

√
1 + ξ2√

a
E
(
ϕ̂(ξ, ξ2), k̂(ξ1, ξ2)

)
. (14)
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Finally, for T + T
2 < t ≤ T

t = Ts + T −

√
1 + ξ2√

a
E
(
ϕ̂(ξ, ξ2), k̂(ξ1, ξ2)

)
. (15)

Each of equations (13), (14), (15) cannot be explicitly inverted by means of known

functions. Nevertheless they allow the solution’s computation. Accordingly, doing

this and the relevant welding, we get a time-sketch of oscillations.
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Figure 4. Oscillatory motion (libration)

sample case a = b = c = 1.
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Figure 5. The oscillation period T special

case c = b = 1, 0 ≤ a ≤ 10, as a function

of the a-friction parameter.

The motion can then be described as follows. By (8) the particle undergoes a

variable-sign-acceleration as a consequence of the friction. The motion with μ > 0
is then foreseen to be periodic, between the positions ξ1 and ξ2 with ξ2 < 0. The

integration highlights that, at the start-up, as a consequence of its initial speed, the

particle goes away from the origin: but at ξ1 it will be stopped at time Ts. The

motion sense is then inverted and the point moves beyond the origin in the region

of negative ξ till to the most far, say ξ1. After that, the electrostatic repulsion

prevails and the particle is pushed back to the origin. The complete oscillation

period 2Ts is over when the mass crosses the origin again, according to the sketch

of Fig. 4. Notice that such a oscillation is not symmetric with respect to ξ = 0.

Following Pars [4], it could be more appropriately named as libration. Looking

at the period expression (12), we check that it (obviously) goes inversely with the

friction parameter a, as shown in Fig. 5.

Furthermore, the modulus k̂ depends on ξ1 and ξ2 which depend on a, b, c. For

instance fixing the values a = 1, b = 1 there will survive a dependence on c only,

with c linked to the kinetic energy E by c = 2E
mL2 · We can then obtain a plot of

such a period-energy function T = T (c), see Fig. 6.
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Figure 6. The oscillation period-energy function T = T (c), special case

a = b = 1, 0 ≤ c ≤ 10.

The period-energy T = T (c) function’s growth with c can analytically be inspected

by inserting the values of ξ1 and ξ2, as given by (9), in its c-derivative obtained

from (12). Notice that the T (0) value is

T (0) =
4
√
b

a
E

(√
b− a

b

)
which in the computational example a = b = 1 reduces to 2π. By “energy” we re-

fer only to initial kinetic energy content of the mobile, with no reference to its elec-
trostatic energy which is a deeply different object concerning a system of charges

at rest in space.

About the function period-energy, we observe what follows. The greater is such a

energy, the greater will be the leak space the particle will sweep before its stop due

to loss of energy. In such a way its motion reversion will start from a more long

distance: so that the total time it will spend for a go/return cycle will be greater.

Conclusions

Two kinds of one dimensional motion have been comparatively computed within

the electrostatic approximation and with different signs of the charges. When they

are opposite, the motion, first flowing outwards, is inverted being the particle nec-

essarily attracted by the source of the field: in such a way the motion terminates

just for not falling into the singularity.
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If the charges are concordant, the mobile, after a initial leak away, inverts its motion

again, but the repulsion makes it to oscillate around its start up position ξ = 0. The

period of such asymmetric oscillation is computed by a complete elliptic integral

of second kind and has been found to increase for increasing initial speeds of the

mobile charge.

In both movements time is obtained as a function of position ξ through incomplete

elliptic integrals of first and second kind.

References

[1] Byrd P. and Friedman M., Handbook of Elliptic Integrals for Engineers and
Scientists, Springer, New York 1971.

[2] Gradshteyn I. and Ryzhik I., Table of Integrals, Series, and Products, Aca-

demic Press, New York 2007.

[3] More A., Analytical Solutions for the Colebrook and White Equation and for
Pressure Drop in Ideal gas Flow in Pipes, Chemical Engineering Science 61
(2006) 5515–5519.

[4] Pars L., A Treatise on Analytical Dynamics, Heinemann, London 1965.

[5] Slavik A., Wagon S. and Schwalbe D., VisualDSolve: Visualizing Differential
Equations with Mathematica, eBook available at wolfram.com 2013.

[6] Stratton J., Electromagnetic Theory, McGraw-Hill, New York 1941.

Giovanni Mingari Scarpello

via Negroli 6

Milan 20136

ITALY

E-mail address: giovannimingari@yahoo.it

Daniele Ritelli

Department of Statistics

Bologna University

via Belle Arti 41

Bologna 40126

ITALY

E-mail address: daniele.ritelli@unibo.it


