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THE PTOLEMAEAN INEQUALITY IN H–TYPE GROUPS
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Abstract. We prove the Ptolemaean inequality and the Theorem of Ptolemaeus in

the setting of H–type Iwasawa groups.

1. Introduction

The purpose of this short note is to give an elementary proof of a generalization of

the Ptolemaean inequality in the context of H–type Iwasawa groups. These groups

are precisely the Iwasawa n–components of simple Lie algebras of real rank one [1,

p.704], thus we recover the results in [7] with a considerably simplified proof.

The Ptolemaean inequality in planar Euclidean geometry states that given a quadri-

lateral, then the product of the lengths of the diagonals is less or equal to the sum

of the products of the lengths of its opposite sides. Moreover, equality holds if and

only if the quadrilateral is inscribed in a circle. Many authors have proved gener-

alization of the Ptolemaean inequality in various settings (e.g. normed spaces [8],

CAT(0) spaces [2], Möbius spaces [3]).

Let (X, d) be a metric space. The metric d is called Ptolemaean if any four distinct

points p1, p2, p3 and p4 in X satisfy the Ptolemaean inequality; that is, for any

permutation (i, j, k, l) in the permutation group S4 we have

d(pi, pk) · d(pj , pl) ≤ d(pi, pj) · d(pk, pl) + d(pj , pk) · d(pl, pi). (1)

In a Ptolemaean space (X, d), we are most interested in the sets where Ptolemaean

inequality holds as an equality (Ptolemaeus’ Theorem). A subset Σ of X is called

a Ptolemaean circle if for any four distinct points p1, p2, p3, p4 ∈ Σ such that p1
and p3 separate p2 and p4 we have

d(p1, p3) · d(p2, p4) = d(p1, p2) · d(p3, p4) + d(p2, p3) · d(p4, p1).

Our main theorem is the following.

Theorem 1. Let G be an H−type Iwasawa group. Then the metric d defined in
(9) is Ptolemaean and its Ptolemaean circles are R−circles.
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The key ingredient of our proof is that under an appropriate normalization the

Ptolemaean inequality reduces to the triangle inequality.

2. H−Type Iwasawa Groups

In this section we briefly recall the definition and some basic properties of H−type

Iwasawa groups.

Let g be a finite–dimensional Lie algebra endowed with a left invariant inner prod-

uct 〈, 〉. Let j be the center of g and let b be the orthogonal completion of j in g.

For fixed t ∈ j consider the map Jt : b → b defined by 〈Jt(x), y〉 = 〈t, [x, y]〉,
where [·, ·] is the Lie bracket of g. Then, g is called an H–type algebra if [b, b] = j

and moreover Jt is an orthogonal map whenever 〈t, t〉 = 1. An H–type group G

is a connected and simply connected Lie group whose Lie algebra is an H–type

algebra.

H–type groups is a class of step 2 Carnot groups. If m = dim b, n = dim j

and N = m + n, then G is a homogeneous Carnot group on R
N with dilations

δλ(x, t) = (λx, λ2t), x ∈ R
m, t ∈ R

n, where λ > 0.

An H–type group G is called an Iwasawa group if for every x ∈ b and for every

t, t
′

∈ j with 〈t, t
′

〉 = 0, there exists a t
′′

∈ j such that Jt(Jt′ (x)) = Jt′′ (x), [4,

p.23].

From now on G shall always denote an H–type Iwasawa group. Since the ex-

ponential mapping is a bijection of g onto G, we shall parametrize p in G by

(x, t) ∈ b ⊕ j = g, where p = exp (x, t). Multiplication in G is of a special

form, see [1, p.687]: there exist m ×m skew symmetric and orthogonal matrices

U1, . . . , Un such that

(x, t)(x
′

, t
′

) =

(
x+ x′, t+ t′ +

1

2
[x, x′]

)
=
(
x+ x

′

, t1 + t
′1
+ 〈U1x, x

′

〉, . . . , tn + t
′n

+ 〈Unx, x
′

〉
)

for all (x, t), (x
′

, t
′

) ∈ G.

We note that (x, t)−1 = (−x,−t) and also that the matrices U 1, . . . , Un have the

following property

U iU j + U jU i = 0, for every i, j ≤ n with i �= j.

The distance d in G is defined via a gauge d̃. If p ∈ G is parametrized by (x, t) ∈
R
n × R

n we set

d̃(p) =
(
|x|4 + 16|t|2

) 1

4 . (2)
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For clarity we shall prove the following proposition.

Proposition 2. For every p, q ∈ G we have

d̃(p−1q) ≤ d̃(p) + d̃(q). (3)

Equality holds if and only if p = exp(x, 0), q = exp(λx, 0) for some λ ∈ R.

The above inequality has been proved by Cygan in [5] and we shall only sketch the

proof.

Proof: We parametrize p−1 by (x, t) and q by (x′, t). Then,

d̃(p−1q)4 = |x+ x′|4 + 16

∣∣∣∣t+ t′ +
1

2
[x, x′]

∣∣∣∣2
which is equal to

d̃(p)4 + d̃(q)4 + 4
(
〈x, x′〉2 + |[x, x′]|2

)
+ 4

(
|x|2〈x, x′〉+ 4〈t, [x, x′]〉

)
+ 4

(
|x′|2〈x, x′〉+ 4〈t′, [x, x′]〉

)
+ 2

(
|x|2|x′|2 + 16〈t, t′〉

)
.

The following inequalities hold.(
|x|2|x′|2 + 16〈t, t′〉

)
≤ d̃(p)2d̃(q)2 (4)(

|x|2〈x, x′〉+ 4〈t, [x, x′]〉
)
≤ d̃(p)2

(
〈x, x′〉2 + |[x, x′]|2

)1/2
(5)(

|x′|2〈x, x′〉+ 4〈t′, [x, x′]〉
)
≤ d̃(q)2

(
〈x, x′〉2 + |[x, x′]|2

)1/2
(6)(

〈x, x′〉2 + |[x, x′]|2
)
≤ |x|2|x′|2 ≤ d̃(p)2d̃(q)2. (7)

The first three inequalities are immediate. The last inequality follows by applying

the Cauchy–Schwarz inequality to Cygan’s hermitian form, [5, p.70]

h(x, x′) = 〈x, x′〉+ i[x, x′].

Combining the above we have

d̃(p−1q)4 ≤d̃(p)4 + d̃(q)4 + 6d̃(p)2d̃(q)2 + 4d̃(p)3d̃(q) + 4d̃(p)d̃(q)3

=
(
d̃(p) + d̃(q)

)4 (8)

thus we obtain the desired triangle inequality.
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Observe now that equality in (3) holds if and only if (4), (5), (6) and (7) hold

simultaneously as equalities. Therefore, from the last inequality considered as an

equality we have x′ = λx. Hence all other inequalities hold as equalities if and

only if t = t′ = 0.

�

The distance d in G is defined by

d(p, q) = d̃(p−1q). (9)

Then, we have that d(p, q) = 0 if and only if p = q and d(p, q) = d(q, p). Also we

observe that d is invariant by left translations and is scaled up to a factor λ when

we apply a dilation δλ, [1, p.705]. From (3) we have that

d(p, q) ≤ d(p, 0) + d(0, q). (10)

Thus, if p, r, q ∈ G then by invariance we deduce that

d(p, q) ≤ d(p, r) + d(r, q)

i.e., the triangle inequality for the distance function d.

It is worth remarking that the definition of the gauge function d̃ generalizes to

arbitrary Carnot groups but the corresponding function d = d(·, ·) is not in general

a distance but only a pseudo–distance, [6, p.300], [1, p.231].

The key feature of the class of H−type Iwasawa groups is the existence of a natural

inversion, which generalizes the inversion σ(x) = − x
|x|2

of RN \ {0}.

The inversion map σ : G \ {0} → G \ {0} is defined by (cf. [1, p.705])

σ(x, t) =

(
−
|x|2x− 4

∑n
k=1 U

kx

|x|4 + 16|t|2
,−

t

|x|4 + 16|t|2

)
and satisfies σ2 = id.

We shall consider the one point compactification Ĝ of G by adding the point ∞ at

infinity. The distance d is extended in Ĝ in the obvious way and is denoted by the

same symbol: for every p ∈ G

d(p,∞) = +∞, d(∞,∞) = 0.

The actions of left translations and dilations are also extended naturally in Ĝ: left

translation of any element of Ĝ by ∞ maps it to ∞ and the image ∞ by any

λ−dilation is again ∞. For the inversion σ we set σ(0) = ∞ and σ(∞) = 0; the

following holds [1, p.706]

d(σ(p), 0) =
1

d(p, 0)
, d(σ(p), σ(q)) =

d(p, q)

d(p, 0) d(0, q)
·
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Note that the last equality holds in an H–type group G if and only if G is Iwasawa

[4, p.23].

Finally, for every x ∈ R
m\{0} we define the standard R–circle Rx passing through

0 and ∞ as the set

Rx = {(λx, 0) ; λ ∈ R}.

An R–circle is the image of some Rx under the action of the similarity group Ĝ:

this group comprises maps which are composites of left translations, dilations and

the inversion σ, [4, p.9].

3. Proof of Theorem 1

Given four distinct points p1, p2, p3, p4 ∈ G we define their cross–ratio X(p1, p2,
p3, p4) by

X1/2(p1, p2, p3, p4) =
d(p1, p3)d(p2, p4)

d(p1, p4)d(p2, p3)
(11)

and the definition is extended in the obvious way if one of the points is ∞. From

the properties of left translations, dilations and inversion one may verify that the

cross–ratio X(p1, p2, p3, p4) is invariant under the action of the similarity group of

Ĝ. This allows us to normalize so that two of the points of a given quadruple are 0
and ∞.

Given a quadruple p1, p2, p3, p4 of distinct points in Ĝ, let pi, pi, pk, pl a permuta-

tion of these points. Let also

X1 = X(pi, pj , pk, pl), X2 = X(pi, pk, pj , pl).

From (1) and (11) it follows that the Ptolemaean inequality is satisfied if and only

if

X
1/2
1 +X

1/2
2 ≥ 1. (12)

We now normalise so that pi = ∞, pl = 0. Thus, we have

X
1/2
1 =

d(pj , 0)

d(pj , pk)
, and X

1/2
2 =

d(pk, 0)

d(pj , pk)
·

Consequently, (12) is equivalent to

d(pj , 0) + d(0, pk) ≥ d(pj , pk) (13)

i.e., the triangle inequality for the distance function d. Since the permutation was

arbitrary, this proves the Ptolemaean inequality (1).
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Moreover, if equality is valid then

X
1/2
1 +X

1/2
2 = 1 (14)

which is equivalent to

d(pj , 0) + d(0, pk) = d(pj , pk). (15)

Thus, as we have seen in Section 2, this happens if and only if pj = (x, 0) and

pk = (λx, 0) for some λ ∈ R. Since pi = ∞ and pl = 0 we conclude that

pi, pj , pk, pl are in a standard R–circle and the proof of the result is complete.

Finally, let us observe that there is at least one Ptolemaean pseudo-metric which

has the same isometries with the Korányi metric.

More precisely, let G be an H−type group and Π : G → R
n, (x, t) → x, be the

projection to R
n. Then the pseudo-metric defined by

d1((x, t), (x
′, t′)) = de(x, x

′)

where de is the Euclidean metric, is Ptolemaean (since the Euclidean metric is). It

is elementary to prove that this pseudo-metric is invariant under the action of the

group by left translations as well as rotations.
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