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Abstract. Completely integrable systems always admit more alternative Hamil-

tonian descriptions. The geometrical formulation of quantum systems shows that

similar conclusions hold true also for quantum systems. In addition, the description

of quantum systems on Hilbert manifolds, e.g., the complex projective space, shows

that not only quantum systems admit alternative Hamiltonian descriptions, they also

admit alternative linear descriptions.

1. Introduction

In his Lectures on Dynamics [7], Jacobi starts with the problem of integrating the

differential equations of motion. He explicitly says: In Mécanique Analytique one
finds everything related to the problem of setting up and transforming the differen-
tial equations, but very little on their integration.

He goes on to elaborate what we nowdays call the Hamilton-Jacobi theory and

elaborates on constants of the motion and symmetries.

The aim of our paper is to present a more general point of view in which the

Hamilton-Jacobi theory is only an instance of the general procedure of integrating

a system by reducing it to a normal form. In this respect we follow the view

point of Birkhoff, all dynamical systems in the same orbit of the diffeomorphism

group enjoy the same properties, therefore to study the integration problem one

may select a particular representative of the equivalence class and consider it as a

“normal form”.

In this picture, the Hamilton-Jacobi procedure becomes a way to reduce a given

Hamiltonian system to a normal form by replacing the full diffeomorphism group

with the subgroup of canonical transformation necessary to achieve the transition

to the normal form, the particular trnsformation is found by means of a generat-

ing function, solution of the Hamilton-Jacobi equation associated with the starting

Hamiltonian functions, the comparison Hamiltonian and the one we want to tran-

form.
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By using the well known fact that Quantum Mechanics can be treated as a Hamil-

tonian system (on an infinite or finite dimensional manifold as the case may be),

we maintain that most of our arguments apply both to Classical and Quantum Me-

chanics.

For Quantum Mechanics we should bear in mind that the carrier space (space of

pure states) is the complex projective space PH associated to the Hilbert space

H. In this framework, the geometric structures pertinent to the standard treatment

are a Riemannian structure, a Poisson structure and a complex structure. A com-

patibility condition among them qualifies the carrier space as a Kähler manifold.

In this respect, i.e., from the point of view of geometric structures, quantum me-

chanics requires additional structures with respect to the symplectic structure of

Hamiltonian classical dynamics. Of course the most difficult aspects of quantum

mechanics have to do with the infinite dimensionality of the carrier space and the

fact that infinite dimensional differential geometry is much less advanced than the

finite dimensional one. The most serious problem in the generic infinite dimen-

sional situation is that unbounded operators are not continuous, therefore all our

assumptions about differentiability cannot be applied without further qualifications

which should be made case-by-case.

Nevertheless, the structural aspects, what we may call synthetic as opposed to an-

alytics will be essentially the same.

To avoid technicalities we shall mainly restrict to finite dimensional carrier spaces.

To exhibit the variety of aspects emerging from the view point of Birkhoff we pri-

marily deal with linear systems, the evolution associated with a differential equa-

tion will be our main concern, additional geometric structures on the carrier space

will not be postulated at a “kinematical level” but derived by solving equations

defined by the dynamics we start with.

By using symmetries and constants of the motion it is possible to derive nonlinear

systems as reduction of linear ones. Of course, most of the properties valid for the

linear situation will be inherited by the nonlinear one when they are compatible

with the reduction procedure.

Many aspects will be illustrated by means of examples instead of formulating and

proving general theorems. A more extensive treatment of these issues can be found

in [4] and references therein.

Organization of the paper is as follows:

• The Geometrical Formulation of Quantum Mechanics

• Linear Systems on Vector Spaces (invariant structures: Poisson, symplectic,

Lagrangian)
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• Bihamiltonian Systems

• From linear to nonlinear (what happens of the superposition rule, Riccati

equation on PH).

2. Geometrical Formulation of Quantum Mechanics

The observation that quantum theory could be described in the language of sym-

plectic mechanics may be traced back in the work of Segal and Mackey [8, 11].

More recently, several authors have been investigating the further developments of

geometrical quantum mechanics, in doing so this methodology has unveiled new

aspects and insights into the workings of the quantum world the way we understand

it now, see [4] and references therein.

One particular aspect which may be connected with the existence of nonlinear

transformations connecting linear descriptions seem to us worth of notice.

Let us start by reviewing very briefly how quantum mechanics is usually formu-

lated.

With any physical system we associate a complex Hilbert space H, the choice of

a linear carrier space and a linear equation of motion is usually motivated [3] by

the need to incorporate interference. The probabilistic interpretation of quantum

mechanics requires the restriction to norm-one-vectors; to preserve the probability

one usually restricts the evolution to be unitary, the differential equation of motion

will then be associated with a skew-Hermitian “infinitesimal generator”, written as

iH with H Hermitian operator. Observables are identified with Hermitian opera-

tors which are usually thought of as the real elements of the C∗-algebra of bounded

operators acting on H.

If we use Dirac’s bra and ket notation, we find that pure physical states are asso-

ciated with rank-one projectors, this association depends on the specific Hermitian

product we are using

ρψ =
|ψ〉〈ψ|
〈ψ|ψ〉

From the Schrödinger differential equation

d|ψ〉
dt

=
H

i�
|ψ〉

one derives the equation of motion for rank-one projectors

dρψ
dt

=
1

i�
[H, ρψ] .
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Using the linearity of the equation, it is possible to extend this equation to convex

linear combinations

ρ =
∑
j

pjρψj

with pj ≥ 0,
∑

j pj = 1, to get the equation of motion on density states

dρ

dt
=

1

i�
[H, ρ] .

If we use also complex linear combinations we arrive at equations of motion for

generic operators
dA

dt
=

1

i�
[H,A]

which represent equations of motion in the Heisenberg picture.

It is now clear that the dynamics on the complex projective space ceases to be

linear, the sum of two rank-one projectors is no more a rank-one projector.

To remedy this situation, after all interference phenomena should be treated also

on this nonlinear space, we have to write down a composition law for pure states

which is inner, out of two pure states gives another pure state.

Such a composition law may be given the following form [4, 9], out of �1 and ρ2
we get

ρ = |c1|2 ρ1 + |c2|2 ρ2 + c1c
∗
2

ρ1ρoρ1√
Tr (ρ1ρoρ2ρ0)

+ h.c.

with the understanding that
∣∣c21∣∣ and

∣∣c22∣∣ are required to satisfy ρ2 = ρ, Trρ = 1.

The reason we have inserted this composition law by means of fiducial state ρ0
is due to the circumstance that, when written in homogeneous coordinates for the

complex projective space, Schrödinger equation becomes a Riccati-type equation

and the given composition is exactly the one we would get by composing solu-

tions by means of the “harmonic ratio” [2]. To illustrate how Riccati equation

emerges from Schrï£¡dinger equation on the space of state vectors, we consider the

two-dimensional case, H = C
2. Let us introduce an orthonormal basis |e1〉, |e2〉,

〈ej |ek〉 = δjk, and define associated coordinates, by setting z1 (ψ) = 〈e1|ψ〉,
z2 (ψ) = 〈e2|ψ〉. In this basis we write Schrödinger equation as

d

dt

∣∣∣∣z1z2
∣∣∣∣ = H

i�

∣∣∣∣z1z2
∣∣∣∣

whith H being the Hermitian matrix∣∣∣∣h11 h12
h21 h22

∣∣∣∣ .
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In this way we find

ż1 =
1

i�
(h11z1 + h12z2) , ż2 =

1

i�
(h21z1 + h22z2)

along the corresponding complex conjugate equations for z̄1, z̄2.

We introduce homogeneous coordinates to implement the probabilistic interpreta-

tion, according to which the physical state is associated with the ray defined by

λ

∣∣∣∣z1z2
∣∣∣∣ with λ any complex number different from zero, we have ξ = z1/z2 and

obtain
dξ

dt
=

h21
i�

+
h22 − h11

i�
ξ − h12

i�
ξ2.

This Riccati equation has composition law

ξ (t)− ξ1 (t)

ξ (t)− ξ2 (t)
= k

ξ1 (t)− ξ3 (t)

ξ2 (t)− ξ3 (t)

in terms of solutions ξ1 (t) , ξ2 (t) , ξ3 (t) and initial conditions determining k. This

composition law says we can still describe interference phenomena even though the

equation of motion is not linear. Perhaps, we should also remark that the lack of

completeness of the vector field representing the evolution, equation of motion, is

an artifact of the coordinates we have introduced to describe the space of pure states

S2. The actual dynamics is associated with a one-parameter group of transforma-

tions preserving the Kähler structure on the complex projective space CP
1 ≡ S2.

Schrödinger equation on H = C
n may be written in a similar form

dψ

dt
=

H

i�
ψ =

∣∣∣∣H1 V

V
†

H2

∣∣∣∣ψ.
Separating the upper n − 1 components of ψ denoted by ξ from the n−th one η

i.e., ψ =

∣∣∣∣ξη
∣∣∣∣ , Schrödinger equation may be written as

dξ

dt
= H1ξ + V η

dη

dt
= V †ξ +H2η.

If we now set z = ξ/η, in analogy with the two-dimensional case, we get

ż = V +H1z − zH2 − zV †z.

This is again a Riccati-type equation, but now z ia an (n− 1)−component vector,

as is V , while H2 is a single real variable.
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As the carrier space is no more linear, we cannot consider operators anymore, thus

we shall replace them with expectation value functions

eA ([ψ]) =
〈ψ |Aψ〉
〈ψ |ψ〉 = TrρψA.

When the operator A is hermitian these expectation value functions are called

Kälherian functions. They are completely characterized by the property that the

Hamiltonian vector fields associated with them are also Killing vector fields. Here

the Poisson structure and the Riemannian tensors are those arising from projecting

the imaginary and the real part of the Hermitian tensor from the complex Hilbert

space to the space of rays, or complex projective space, when expressed in con-

travariant form.

In summary, the standard formulation of quantum mechanics, when written in

terms of pure states gives rise to a geometrical formulation on the manifold of rays,

the complex projective space. Equations of motion are described by a Hamiltonian

vector field which is also a Killing vector field preserving the complex structure.

In conclusion the equations of motion of a quantum system are represented by a

vector field Γ on a Hilbert manifold M , for physical motivations connected with

the probabilistic interpretation, the vector field is required to be Hamiltonian and

Killing

3. Classical Dynamics

In principle it would be possible to formulate also classical dynamics on the Hilbert

space of square integrable functions on phase space with the Liouville measure

associated with the symplectic volume ωn. Now, infinitesimal generators of the

evolution may be arbitrary differential operators of arbitrary order (indeed, they

could even be pseudo-differential operators). The non local character of quantum

mechanics is encoded in the non local product of expectation-value functions and

the corresponding derivations associated with higher order differential operators.

In classical mechanics, described on phase space, we may write the equations of

motion in the form

i
∂f (q, p, t)

∂t
= Ĥf (q, p, t)

with Ĥ the Liouville operator

Ĥ = −i
∂H

∂p

∂

∂q
+ i

∂H

∂q

∂

∂p
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and H is the Hamiltonian function. In general, to restrict the equation to states,

we replace f (p, q) with ρ (p, q) which is a probability density on phase space. It

is possible to introduce the Hilbert space of square integrable functions on phase

space with respect to the Liouville measure ωn, ω being the symplectic structure.

the Liouville probability density may now be written as ρ (p, q) = ψ∗ (p, q)ψ (p, q) .
It should be stressed that in this picture the operators q̂ and p̂ commute differently

than in quantum mechanics. all operators are first order operators while are deriva-

tions for the standard point-wise product and therefore their exponentiations will

be one-parameter groups of automorphisms of the local point-wise product. The

motivation for introducing this Hilbert space point of view for classical mechanics

was to study the ergodicity issues and the understanding of Lyapunov exponents.

This was attempted by Koopman [6].

In this picture, the one-parameter group of transformations is an automorphism

group of the point wise product on functions, i.e., of the local product.

In the quantum case, the one-parameter group of “unitary transformations” on the

complex projective space does not generate automorphisms of the point wise prod-

uct of Kälherian functions but of the non local product corresponding to the oper-

ator product, namely

eA � eB ([ψ]) = TrρψA ·B = eAB ([ψ]) .

It should be remarked, however, that the requirement of irreducibility of the repre-

sentation for the canonical commutation relations requires that quantum mechanics

be formulated on the space of square integrable functions on a Lagrangian subman-

ifold of the phase space of the classical system.

In any case, our considerations allow us to say that a classical dynamical system

is represented by a vector field Γ on a carrier space M endowed with a symplectic

structure ω such that iΓω = −dH . Thus, unlike for quantum case, the vector field

describing the dynamics is Hamiltonian but is not required to be a Killing vector

field.

Now, we can consider the problem of integrating a dynamical vector field Γ on a

manifold M .

As Birkhoff [1] pointed out, all dynamical systems in the orbit of Diff(M) passing

through Γ will share the same properties of Γ, therefore we might study a partic-

ularly relevant representative of the equivalence class to unveil the properties of

each one of them in the orbit, what would be called a “normal form”.

To be concrete, we shall carry on this analysis in the simple case of linear systems.
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4. Linear Structures and Linear Vector Fields

Our starting point is a pair (Γ,M), a vector field Γ representing the dynamics and

a carrier manifold M , thought of as a space of states.

A linear structure on M is characterized by a vector field Δ having the following

properties:

1. There exists one and only one point, a critical point for Δ, such that Δ(m0)=0

2. The eigenvalue problem

LΔh = 0.h

has only trivial solutions on each connected component of M

3. The eigenvalue problem

LΔf = f

has as many functionally independent solutions (f1, f2, ..., fn) as the dimen-

sion of the carrier space M

4. Δ is a complete vector field on M .

Such a vector field Δ is also called a dilation vector field.

Proposition 1. A connected manifold M , possessing a dilation vector field Δ, may
be endowed with a vector space structure.

The statement follows by selecting a family of independent solutions for the eigen-

value equation

LΔf = f

say (f1, f2, ..., fn) with fiεF(M). We may define a composition law on points of

M by setting

(λ1m1 + λ2m2) (f) = λ1f (m1) + λ2f (m2) , m1,m2 ∈ M

where f belongs to the linear span of (f1, f2, ..., fn) . Notice that (λ ·m) (f) =
λ · f (m) gives again a point in M because of the completeness assumption on Δ.

By using (f1, f2, ..., fn) as a coordinate system for the whole of M , we have that

dfj (Δ) = fj implies fj (m0) = 0 and Δ = fj∂/∂fj .

Thus the point m0 is the null vector of the vector space structure on M . It is now

clear that any other vector field in the orbit Diff(M) passing through Δ will give

rise to another linear structure.
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The subgroup of diffeomorphisms preserving Δ will be the group of linear trans-

formations, GL (M,Δ), which is isomorphic to GL (n,R) therefore alternate lin-

ear structures are parametrized by Diff (M) /GL (M,Δ) .

Having defined a linear structure, it is possible to define linear vector fields

Definition 2. A vector field Γ is linear with respect to Δ if [Γ,Δ] = 0.

Proposition 3. Any linear vector field Γ is represented by a class of matrices defin-
ing an orbit of GL (n,R).

Proof: Consider a particular independent set of solutions LΔfj = fj , j = 1, 2, ..., n.

We have

LΓLΔfj = LΓfj = γkj fk, γkj ∈ R.

If we choose a different basis of solutions, we associate a different matrix to Γ,
all of them will be related by the matrix

∣∣∣∣T i
k

∣∣∣∣ taking from one basis to another,

therefore they are elements in the orbit TγT−1 with T ∈ GL (n,R) . The vector

field Γ may be represented as a linear homogeneous differential operator

Γ = fkγ
k
j

∂

∂fj
·

The equation of motion associated with Γ are written, in the selected basis,

dh

dt
= fkγ

k
j

∂h

∂fj
·

In finite dimensions, a solution is provided by the exponentiation of the represen-

tative matrix γ, i.e.,
�x (t) = etγ�x (0) .

�

Even though for each initial condition we have found the solution, it is clear that

many questions like conservation, stability, periodic orbits and many others cannot

be easily answered from the given form.

As matter of fact more can be said if we reduce γ to some normal form. For

instance, we may use Schur decomposition to write γ = N+S, with N a nilpotent

matrix and S semisimple, [N,S] = 0.

The commutativity property gives rise to the “composition of independent mo-

tions”

etN · etS = et(N+S).
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As N is nilpotent, etN reduces to a polynomial in t, of degree equal one-less nilpo-

tency index.

We may derive in general that the commutant of γ, say [γ]′, the algebra of matrices

commuting with γ contains all powers of γ and is Abelian if all eigenvalues are

not degenerate. If γ admits degenerate eigenvalues, the algebra of symmetries will

not be Abelian.

An interesting question from our point of view is the existence of constants of

motion.

From our experience coming from Hamiltonian formalism, where there is a con-

nection between symmetries and constants of the motion, we could investigate the

possibility that our dynamical vector field preserves quadratic forms or bilinear

maps.

In geometrical languages solutions of the equation LΓT = 0 would give all invari-

ant tensor field T .

Of particular relevance are tensor fields of rank two, perhaps decomposed into

symmetric and skewsymmetric ones.

For instance Γ = Λ (dH), i.e., the existence of an Hamiltonian description in

terms of Poisson tensor Λ and the quadratic hamiltonian H , when written in terms

of matrices, would give γ = ΛH , where Λ and H are the representative matrices

for the Poisson tensor and the Hamiltonian function respectively. We would have

Λ = Λjk
∂

∂fj
∧ ∂

∂fk
, H =

1

2
Hjkfjfk

so that at matrix level γk
j = ΛjmHmk.

Thus, the existence of Hamiltonian descriptions for the linearizable vector field

Γ amounts to the decomposition of the representative matrix as the product of a

skew-symmetric times a symmetric matrix.

For the generic case we can immediately give a necessary and sufficient condition

for such a decomposition.

Proposition 4. If γ has minimal degeneracy, a necessary and sufficient condition
for the decomposition γ = Λ ·H , is that all odd powers of γ are traceless.

Proof: In one direction the choice is obvious because Trγ = Trγ† and (Λ ·H)† =
−H · Λ. The general proof may be found in [5]. �

What is relevant for our considerations is the part that all matrices in the orbit

TγT−1 = γ
(
TΛT †

)(
T †
)−1

HT−1 =
(
TΛT †

) (
T−1

)†
HT−1
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have also the same property, i.e., they are Hamiltonian, factorizable with respect to

different Poisson structures and different Hamiltonians.

Of course, of particular significance is the family of transformations for which

TγT−1 = γ,
(
TΛT †) �= Λ, i.e., symmetries for γ which are not canonical.

These particular symmetries will carry one Hamiltonian description into an alter-

native one. We find that Hamiltonian systems admitting symmetries which are not

canonical will always be bi-Hamiltonian.

From our considerations it should be clear that there are linear systems with a large

group of symmetries which may admit no constants of the motion.

For instance this is the case for the dilation vector field Δ itself. The equa-

tion LΔh = 0 admits only trivial solutions while the symmetry group is the full

GL (n,R) .

A generic linear Hamiltonian system will have all powers γk as symmetries but

only the odd powers γ2k+1 will generate canonical symmetries. Thus, any linear

Hamiltonian system always admits alternative Hamiltonian descriptions.

However, this way of generating alternative Hamiltonian descriptions will not ex-

haust the family of alternative ones. For instance the two-dimensional isotropic

Harmonic Oscillator has different decompositions with H positive definite (the

standard one) or with signature (+ +−−) which arises from

Λ =
∂

∂q1
∧ ∂

∂p1
− ∂

∂q2
∧ ∂

∂p2
, H =

1

2

(
p21 + q21 − p22 − q22

)
.

Obviously this factorization cannot be related to the standard one by similarity

transformation.

Remark 5. When the Poisson tensor is not degenerate, we can invert it and define
a symplectic structure. When this symplectic structure is exact, we can consider a
symplectic potential and use it to define a cotangent bundle structure on M. From
the Hamiltonian, if transversal to fibers, with a nondegenerate Hessian, we can go
to the Lagrangian description. It is therefore clear that the chain of steps Poisson-
Symplectic-Lagrangian puts more and more restrictions on the dynamical vector
field we are considering, and correspondingly on the transformation group we may
use to find “normal forms”.

A final comment is in order when the orbits of our dynamical evolution are all

bounded. Going back to the decomposition of γ = N + S, it is clear that for

bounded orbits N must be zero and S should admit only purely imaginary eigen-

values if they are not vanishing.
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Thus, not vanishing purely imaginary eigenvalues require M to have even dimen-

sion. As a matter of fact, in this situation, M maybe endowed with a complex

structure so that it becomes isomorphic with C
n, Λ will represent the imaginary

part of an Hermitian structure and in all we can prove the following proposition.

Proposition 6. A complex linear vector field Γ generates a flow φt : Cn → C
n

preserving same Hermitian scalar product h, i.e., φ�
th = h, iff any one of the

following equivalent conditions is satisfied.

1. H = H†, where the adjoint is taken with respect to the scalar product de-
fined by h, i.e., LΓh = 0

2. H is diagonalizable and has a real spectrum

3. all orbits e−iHtψ are bounded sets, for any initial condition ψ.

When moving to infinite dimensions, one may try to use a similar procedure, how-

ever the corresponding separation of H holds true only for a special class of oper-

ators. Therefore one has to use a different approach. Further details can be found

in [10].
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